1
|
Jiang Z, Li Z, Chen Y, Nie N, Liu X, Liu J, Shen Y. MLN4924 alleviates autoimmune myocarditis by promoting Act1 degradation and blocking Act1-mediated mRNA stability. Int Immunopharmacol 2024; 139:112716. [PMID: 39038386 DOI: 10.1016/j.intimp.2024.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Prolonged exposure to interleukin-17A (IL-17A) can induce autoimmune myocarditis, and MLN4924, an inhibitor of NEDD8 activating enzyme (NAE), has been reported to effectively suppress various inflammatory reactions. However, the effects of MLN4924 in IL-17A-mediated inflammation associated with autoimmune myocarditis remain uncertain. METHODS An experimental autoimmune myocarditis (EAM) model was established and treated with MLN4924. The inflammation degree of heart tissues was assessed histopathologically. The expression levels of inflammatory cytokines and chemokines were measured using ELISA and RT-qPCR, respectively. Additionally, the interaction of biomacromolecules was detected through co-immunoprecipitation (Co-IP) and RNA immunoprecipitation (RIP). RESULTS MLN4924 could attenuate IL-17A-induced inflammation. In the in vivo studies, MLN4924 treatment improved inflammatory responses, diminished immune cell infiltration and tissue fibrosis, and reduced the secretion of various inflammatory cytokines in serum, including IL-1β, IL-6, TNF-α, and MCP-1. In vitro experiments further corroborated these findings, showing that MLN4924 treatment reduced the secretion and transcription of pro-inflammatory factors, particularly MCP-1. Mechanistically, we confirmed that MLN4924 promoted Act1 ubiquitination degradation and disrupted Act1's interaction with IL-17R, thereby impeding the formation of the IL-17R/Act1/TRAF6 complex and subsequent activation of TAK1, c-Jun, and p65. Moreover, MLN4924 interfered with Act1's binding to mRNA, resulting in mRNA instability. CONCLUSIONS In conclusion, MLN4924 effectively alleviated inflammatory symptoms in EAM by disrupting the interaction between IL and 17R and Act1, thereby reducing Act1-mediated mRNA stability and resulting in decreased expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Zuli Jiang
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuolun Li
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Youming Chen
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Na Nie
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiner Liu
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Liu
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Shen
- Department of Clinical Laboratory, Key Laboratory of Henan province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Ho M, Bonavida B. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Cells 2024; 13:864. [PMID: 38786085 PMCID: PMC11119125 DOI: 10.3390/cells13100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Innovations in cancer immunotherapy have resulted in the development of several novel immunotherapeutic strategies that can disrupt immunosuppression. One key advancement lies in immune checkpoint inhibitors (ICIs), which have shown significant clinical efficacy and increased survival rates in patients with various therapy-resistant cancers. This immune intervention consists of monoclonal antibodies directed against inhibitory receptors (e.g., PD-1) on cytotoxic CD8 T cells or against corresponding ligands (e.g., PD-L1/PD-L2) overexpressed on cancer cells and other cells in the tumor microenvironment (TME). However, not all cancer cells respond-there are still poor clinical responses, immune-related adverse effects, adaptive resistance, and vulnerability to ICIs in a subset of patients with cancer. This challenge showcases the heterogeneity of cancer, emphasizing the existence of additional immunoregulatory mechanisms in many patients. Therefore, it is essential to investigate PD-L1's interaction with other oncogenic genes and pathways to further advance targeted therapies and address resistance mechanisms. Accordingly, our aim was to investigate the mechanisms governing PD-L1 expression in tumor cells, given its correlation with immune evasion, to uncover novel mechanisms for decreasing PD-L1 expression and restoring anti-tumor immune responses. Numerous studies have demonstrated that the upregulation of Raf Kinase Inhibitor Protein (RKIP) in many cancers contributes to the suppression of key hyperactive pathways observed in malignant cells, alongside its broadening involvement in immune responses and the modulation of the TME. We, therefore, hypothesized that the role of PD-L1 in cancer immune surveillance may be inversely correlated with the low expression level of the tumor suppressor Raf Kinase Inhibitor Protein (RKIP) expression in cancer cells. This hypothesis was investigated and we found several signaling cross-talk pathways between the regulations of both RKIP and PD-L1 expressions. These pathways and regulatory factors include the MAPK and JAK/STAT pathways, GSK3β, cytokines IFN-γ and IL-1β, Sox2, and transcription factors YY1 and NFκB. The pathways that upregulated PD-L1 were inhibitory for RKIP expression and vice versa. Bioinformatic analyses in various human cancers demonstrated the inverse relationship between PD-L1 and RKIP expressions and their prognostic roles. Therefore, we suspect that the direct upregulation of RKIP and/or the use of targeted RKIP inducers in combination with ICIs could result in a more targeted anti-tumor immune response-addressing the therapeutic challenges related to PD-1/PD-L1 monotherapy alone.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Study of the inflammatory activating process in the early stage of Fusobacterium nucleatum infected PDLSCs. Int J Oral Sci 2023; 15:8. [PMID: 36754953 PMCID: PMC9908923 DOI: 10.1038/s41368-022-00213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 02/10/2023] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells (PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and the host inflammatory response at the early stage of F. nucleatum infection.
Collapse
|
4
|
Liu S, Deng S, Ding Y, Flores JJ, Zhang X, Jia X, Hu X, Peng J, Zuo G, Zhang JH, Gong Y, Tang J. Secukinumab attenuates neuroinflammation and neurobehavior defect via PKCβ/ERK/NF-κB pathway in a rat model of GMH. Exp Neurol 2023; 360:114276. [PMID: 36402169 DOI: 10.1016/j.expneurol.2022.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIMS Germinal matrix hemorrhage (GMH) is a disastrous clinical event for newborns. Neuroinflammation plays an important role in the development of neurological deficits after GMH. The purpose of this study is to investigate the anti-inflammatory role of secukinumab after GMH and its underlying mechanisms involving PKCβ/ERK/NF-κB signaling pathway. METHODS A total of 154 Sprague-Dawley P7 rat pups were used. GMH was induced by intraparenchymal injection of bacterial collagenase. Secukinumab was administered intranasally post-GMH. PKCβ activator PMA and p-ERK activator Ceramide C6 were administered intracerebroventricularly at 24 h prior to GMH induction, respectively. Neurobehavioral tests, western blot and immunohistochemistry were used to evaluate the efficacy of Secukinumab in both short-term and long-term studies. RESULTS Endogenous IL-17A, IL-17RA, PKCβ and p-ERK were increased after GMH. Secukinumab treatment improved short- and long-term neurological outcomes, reduced the synthesis of MPO and Iba-1 in the perihematoma area, and inhibited the synthesis of proinflammatory factors, such as NF-κB, IL-1β, TNF-α and IL-6. Additionally, PMA and ceramide C6 abolished the beneficial effects of Secukinumab. CONCLUSION Secukinumab treatment suppressed neuroinflammation and attenuated neurological deficits after GMH, which was mediated through the downregulation of the PKCβ/ERK/NF-κB pathway. Secukinumab treatment may provide a promising therapeutic strategy for GMH patients.
Collapse
Affiliation(s)
- Shengpeng Liu
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiaoli Zhang
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiaojing Jia
- Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, China; Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Guangdong, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, Shanghai 200040, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
5
|
Wei X, Zheng Z, Feng Z, Zheng L, Tao S, Zheng B, Huang B, Zhang X, Liu J, Chen Y, Zong W, Shan Z, Fan S, Chen J, Zhao F. Sigma-1 receptor attenuates osteoclastogenesis by promoting ER-associated degradation of SERCA2. EMBO Mol Med 2022; 14:e15373. [PMID: 35611810 PMCID: PMC9260208 DOI: 10.15252/emmm.202115373] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Sigma-1 receptor (Sigmar1) is a specific chaperone located in the mitochondria-associated endoplasmic reticulum membrane (MAM) and plays a role in several physiological processes. However, the role of Sigmar1 in bone homeostasis remains unknown. Here, we show that mice lacking Sigmar1 exhibited severe osteoporosis in an ovariectomized model. In contrast, overexpression of Sigmar1 locally alleviated the osteoporosis phenotype. Treatment with Sigmar1 agonists impaired both human and mice osteoclast formation in vitro. Mechanistically, SERCA2 was identified to interact with Sigmar1 based on the immunoprecipitation-mass spectrum (IP-MS) and co-immunoprecipitation (co-IP) assays, and Q615 of SERCA2 was confirmed to be the critical residue for their binding. Furthermore, Sigmar1 promoted SERCA2 degradation through Hrd1/Sel1L-dependent ER-associated degradation (ERAD). Ubiquitination of SERCA2 at K460 and K541 was responsible for its proteasomal degradation. Consequently, inhibition of SERCA2 impeded Sigmar1 deficiency enhanced osteoclastogenesis. Moreover, we found that dimemorfan, an FDA-approved Sigmar1 agonist, effectively rescued bone mass in various established bone-loss models. In conclusion, Sigmar1 is a negative regulator of osteoclastogenesis, and activation of Sigmar1 by dimemorfan may be a potential treatment for osteoporosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoan Wei
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zeyu Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zhenhua Feng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Lin Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Siyue Tao
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Bingjie Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Bao Huang
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Xuyang Zhang
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Junhui Liu
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Yilei Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Wentian Zong
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zhi Shan
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Shunwu Fan
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Jian Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Fengdong Zhao
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Marino M, Mele E, Pastorino GMG, Meccariello R, Operto FF, Santoro A, Viggiano A. Neuroinflammation: Molecular Mechanisms And Therapeutic Perspectives. Cent Nerv Syst Agents Med Chem 2022; 22:160-174. [PMID: 36177627 DOI: 10.2174/1871524922666220929153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neuroinflammation is a key component in the etiopathogenesis of neurological diseases and brain aging. This process involves the brain immune system that modulates synaptic functions and protects neurons from infection or damage. Hence, the knowledge of neuroinflammation related pathways and modulation by drugs or natural compounds is functional to developing therapeutic strategies aimed at preserving, maintaining and restoring brain health. OBJECTIVE This review article summarizes the basics of neuroinflammation and related signaling pathways, the success of the dietary intervention in clinical practice and the possible development of RNA-based strategies for treating neurological diseases. METHODS Pubmed search from 2012 to 2022 with the keywords neuroinflammation and molecular mechanisms in combination with diet, miRNA and non-coding RNA. RESULTS Glial cells-play a crucial role in neuroinflammation, but several pathways can be activated in response to different inflammatory stimuli, inducing cell death by apoptosis, pyroptosis or necroptosis. The dietary intervention has immunomodulatory effects and could limit the inflammatory process induced by microglia and astrocytes. Thus by inhibiting neuroinflammation and improving the symptoms of a variety of neurological diseases, diet exerts pleiotropic neuroprotective effects independently from the spectrum of pathophysiological mechanisms underlying the specific disorder. Furthermore, data from animal models revealed that altered expression of specific noncoding RNAs, in particular microRNAs, contributes to neuroinflammatory diseases; consequently, RNA-based strategies may be promising to alleviate the consequences of neuroinflammation. CONCLUSION Further studies are needed to identify the molecular pathways and the new pharmacological targets in neuroinflammation to lay the basis for more effective and selective therapies to be applied, in parallel to dietary intervention, in the treatment of neuroinflammation-based diseases.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi, Italy
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
| | | | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, 80133 Napoli, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Medical School, University of Salerno, Salerno, Italy
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi, Italy
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università di Salerno, 84081 Baronissi, Italy
| |
Collapse
|
7
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
8
|
An Q, Sun C, Li R, Chen S, Gu X, An S, Wang Z. Calcitonin gene-related peptide regulates spinal microglial activation through the histone H3 lysine 27 trimethylation via enhancer of zeste homolog-2 in rats with neuropathic pain. J Neuroinflammation 2021; 18:117. [PMID: 34020664 PMCID: PMC8139106 DOI: 10.1186/s12974-021-02168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) as a mediator of microglial activation at the transcriptional level may facilitate nociceptive signaling. Trimethylation of H3 lysine 27 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that regulates inflammatory-related gene expression after peripheral nerve injury. In this study, we explored the relationship between CGRP and H3K27me3 in microglial activation after nerve injury, and elucidated the underlying mechanisms in the pathogenesis of chronic neuropathic pain. METHODS Microglial cells (BV2) were treated with CGRP and differentially enrichments of H3K27me3 on gene promoters were examined using ChIP-seq. A chronic constriction injury (CCI) rat model was used to evaluate the role of CGRP on microglial activation and EZH2/H3K27me3 signaling in CCI-induced neuropathic pain. RESULTS Overexpressions of EZH2 and H3K27me3 were confirmed in spinal microglia of CCI rats by immunofluorescence. CGRP treatment induced the increased of H3K27me3 expression in the spinal dorsal horn and cultured microglial cells (BV2) through EZH2. ChIP-seq data indicated that CGRP significantly altered H3K27me3 enrichments on gene promoters in microglia following CGRP treatment, including 173 gaining H3K27me3 and 75 losing this mark, which mostly enriched in regulation of cell growth, phagosome, and inflammation. qRT-PCR verified expressions of representative candidate genes (TRAF3IP2, BCL2L11, ITGAM, DAB2, NLRP12, WNT3, ADAM10) and real-time cell analysis (RTCA) verified microglial proliferation. Additionally, CGRP treatment and CCI increased expressions of ITGAM, ADAM10, MCP-1, and CX3CR1, key mediators of microglial activation in spinal dorsal horn and cultured microglial cells. Such increased effects induced by CCI were suppressed by CGRP antagonist and EZH2 inhibitor, which were concurrently associated with the attenuated mechanical and thermal hyperalgesia in CCI rats. CONCLUSION Our findings highly indicate that CGRP is implicated in the genesis of neuropathic pain through regulating microglial activation via EZH2-mediated H3K27me3 in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qi An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chenyan Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
9
|
Qin Q, Liu H, Shou J, Jiang Y, Yu H, Wang X. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases. Cell Mol Immunol 2021; 18:992-1004. [PMID: 32901127 PMCID: PMC8115060 DOI: 10.1038/s41423-020-00525-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023] Open
Abstract
Aberrant inflammasome activation contributes to the pathogenesis of various human diseases, including atherosclerosis, gout, and metabolic disorders. Elucidation of the underlying mechanism involved in the negative regulation of the inflammasome is important for developing new therapeutic targets for these diseases. Here, we showed that Raf kinase inhibitor protein (RKIP) negatively regulates the activation of the NLRP1, NLRP3, and NLRC4 inflammasomes. RKIP deficiency enhanced caspase-1 activation and IL-1β secretion via NLRP1, NLRP3, and NLRC4 inflammasome activation in primary macrophages. The overexpression of RKIP in THP-1 cells inhibited NLRP1, NLRP3, and NLRC4 inflammasome activation. RKIP-deficient mice showed increased sensitivity to Alum-induced peritonitis and Salmonella typhimurium-induced inflammation, indicating that RKIP inhibits NLRP3 and NLRC4 inflammasome activation in vivo. Mechanistically, RKIP directly binds to apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and competes with NLRP1, NLRP3, or NLRC4 to interact with ASC, thus interrupting inflammasome assembly and activation. The depletion of RKIP aggravated inflammasome-related diseases such as monosodium urate (MSU)-induced gouty arthritis and high-fat diet (HFD)-induced metabolic disorders. Furthermore, the expression of RKIP was substantially downregulated in patients with gouty arthritis or type 2 diabetes (T2D) compared to healthy controls. Collectively, our findings suggest that RKIP negatively regulates NLRP1, NLRP3, and NLRC4 inflammasome activation and is a potential therapeutic target for the treatment of inflammasome-related diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Arthritis, Gouty/immunology
- Arthritis, Gouty/metabolism
- Arthritis, Gouty/pathology
- CARD Signaling Adaptor Proteins/antagonists & inhibitors
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- Calcium-Binding Proteins/antagonists & inhibitors
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Case-Control Studies
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Inflammasomes/immunology
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Peritonitis/immunology
- Peritonitis/metabolism
- Peritonitis/pathology
- Phosphatidylethanolamine Binding Protein/genetics
- Phosphatidylethanolamine Binding Protein/metabolism
- Phosphatidylethanolamine Binding Protein/physiology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Qiang Qin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Huan Liu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Jia'nan Shou
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Jiang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| | - Xiaojian Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
11
|
Gabriela-Freitas M, Pinheiro J, Raquel-Cunha A, Cardoso-Carneiro D, Martinho O. RKIP as an Inflammatory and Immune System Modulator: Implications in Cancer. Biomolecules 2019; 9:biom9120769. [PMID: 31766768 PMCID: PMC6995551 DOI: 10.3390/biom9120769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP), an important modulator of intracellular signalling pathways, is commonly downregulated in multiple cancers. This reduction, or loss of expression, is correlated not only with the presence of metastasis, contributing to RKIP’s classification as a metastasis suppressor, but also with tumour aggressiveness and poor prognosis. Recent findings suggest a strong involvement of RKIP in the modulation of tumour microenvironment components, particularly by controlling the infiltration of specific immune cells and secretion of pro-metastatic factors. Additionally, RKIP interaction with multiple signalling molecules seems to potentiate its function as a regulator of inflammatory processes, mainly through stimulation of anti- or pro-inflammatory cytokines. Furthermore, RKIP is involved in the modulation of immunotherapeutic drugs response, through diverse mechanisms that sensitize cells to apoptosis. In the present review, we will provide updated information about the role of RKIP as an inflammatory and immune modulator and its potential implications in cancer will be addressed.
Collapse
Affiliation(s)
- Maria Gabriela-Freitas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil
- Correspondence: ; Tel.: +351-253604868
| |
Collapse
|
12
|
The effects of interleukin 17A on left stellate ganglion remodeling are mediated by neuroimmune communication in normal structural hearts. Int J Cardiol 2019; 279:64-71. [PMID: 30642646 DOI: 10.1016/j.ijcard.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND It is reported interleukin (IL)-17A, a classical proinflammatory cytokine, is implicated in neuroimmune-associated remodeling in neural plasticity and pathological conditions. However, the effect of IL-17A on left stellate ganglion (LSG) remodeling remains unclear. OBJECTIVE This study was performed to determine whether exogenous IL-17A promotes LSG remodeling and destabilize ventricular electrophysiological properties (EPs) in normal canines. METHODS 24 beagles were randomly allocated into three groups. In the first group, animals were subjected to 0.1 ml phosphate buffer saline (PBS) microinjection of into LSG (n = 8), an equivalent IL-17A was administrated in the second group (n = 8), and an equivalent anti-IL-17A mAb plus IL-17A was administrated in the third group (n = 8). The ventricular EPs, neural function and activity of the LSG were determined at baseline and 30 min after administration. In the end, LSG tissues were collected. RESULTS Compared with the control group, the experimental group had a significantly shorter effective refractory period (ERP) and action potential duration (APD)90, an increased ERP, APD90, Smax dispersion, and APD alternans cycle length; and steepened APD restitution curves. In addition, IL-17A enhanced the neural function and activity of the LSG, upregulated the expressions of neuropeptides and proinflammatory cytokines and cells. And all these effects were attenuated by anti-IL-17A mAb. Importantly, IL-17 receptor A (IL-17R-A) was detected in sympathetic neurons in the LSG. CONCLUSION IL-17A promoted LSG remodeling by regulating the neural inflammation response. It did so by binding to IL-17R-A, resulting in unstable ventricular electrophysiology in normal structural hearts.
Collapse
|
13
|
Fluoride induces apoptosis and autophagy through the IL-17 signaling pathway in mice hepatocytes. Arch Toxicol 2018; 92:3277-3289. [DOI: 10.1007/s00204-018-2305-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
|