1
|
Portales AE, Miguel I, Rodriguez MJ, Novaro V, Gambaro SE, Giovambattista A. CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sci 2023; 322:121652. [PMID: 37011871 DOI: 10.1016/j.lfs.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
AIMS In white adipose tissue (WAT) the cell cycle regulators CDK4 and CDK6 (CDK4/6) promote adipogenesis and maintain the adipocyte mature state. Here we aimed to investigate their role in the Ucp1-mediated thermogenesis of WAT depots and in the biogenesis of beige adipocytes. MAIN METHODS We treated mice with the CDK4/6 inhibitor palbociclib at room temperature (RT) or cold and analyzed thermogenic markers in the epididymal (abdominal) and inguinal (subcutaneous) WAT depots. We also assessed the effect of in vivo palbociclib-treatment on the percentage of beige precursors in the stroma vascular fraction (SVF), and on its beige adipogenic potential. Finally, we treated SVFs and mature adipocytes from WAT depots with palbociclib in vitro to study the role of CDK4/6 in beige adipocytes biogenesis. KEY FINDINGS In vivo CDK4/6 inhibition downregulated thermogenesis at RT and impaired cold-induced browning of both WAT depots. It also reduced the percentage of beige precursors and the beige adipogenic potential of the SVF upon differentiation. A similar result was observed with direct CDK4/6 inhibition in the SVF of control mice in vitro. Importantly, CDK4/6 inhibition also downregulated the thermogenic program of beige differentiated- and depots-derived adipocytes. SIGNIFICANCE CDK4/6 modulate Ucp1-mediated thermogenesis of WAT depots in basal and cold-stressing conditions controlling beige adipocytes biogenesis by adipogenesis and transdifferentiation. This shows a pivotal role of CDK4/6 in WAT browning that could be applied to fight obesity or browning-associated hypermetabolic conditions such as cancer cachexia.
Collapse
|
2
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
3
|
Wang J, Wu S, Zhan H, Bi W, Xu Y, Liang Y, Ge Y, Peng L, Jin X, Lu K, Zhao J, Gao L, He Z. p38α in the preoptic area inhibits brown adipose tissue thermogenesis. Obesity (Silver Spring) 2022; 30:2242-2255. [PMID: 36321273 DOI: 10.1002/oby.23552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Elevation of energy expenditure through an increase of brown adipose tissue (BAT) thermogenesis is regarded as one of the most promising ways to prevent obesity development. The preoptic area (POA) of the hypothalamus is a critical area for control of BAT thermogenesis. However, the intracellular signaling cascades in the POA for regulation of BAT thermogenesis are poorly understood. METHODS Phosphorylation proteomics (phosphoproteomics) and bioinformatics approaches were used to disclose numerous hypothalamic signaling pathways involved in the regulation of BAT thermogenesis. Conditional manipulation of the p38α gene in mouse POA was performed by stereotaxic injection of adeno-associated virus 9 vector to explore the role of p38α in BAT thermogenesis. RESULTS Multiple hypothalamic signaling pathways were triggered by cold exposure, especially the mitogen-activated protein kinase (MAPK) signaling pathway. The p38α activation, but not extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH2-terminal kinase (JNK), in the hypothalamus was significantly decreased during cold exposure. p38α deficiency in the POA dramatically elevated energy expenditure owing to a marked increase in BAT thermogenesis, resulting in significantly decreased body weight gain and fat mass. Overexpression of p38α in the POA led to a dramatic increase in weight gain. CONCLUSIONS These results demonstrate that p38α in the POA exacerbates obesity development, at least in part owing to a decrease in BAT thermogenesis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shanshan Wu
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Huidong Zhan
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenkai Bi
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yang Xu
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yixiao Liang
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yueping Ge
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Li Peng
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xinchen Jin
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Keke Lu
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhao He
- Department of Endocrinology, Medical Integration and Practice Center & Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Wang Q, Zhang B, Stutz B, Liu ZW, Horvath TL, Yang X. Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity. SCIENCE ADVANCES 2022; 8:eabn8092. [PMID: 36044565 PMCID: PMC9432828 DOI: 10.1126/sciadv.abn8092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/14/2022] [Indexed: 05/31/2023]
Abstract
The ventromedial hypothalamus (VMH) is known to regulate body weight and counterregulatory response. However, how VMH neurons regulate lipid metabolism and energy balance remains unknown. O-linked β-d-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), catalyzed by O-GlcNAc transferase (OGT), is considered a cellular sensor of nutrients and hormones. Here, we report that genetic ablation of OGT in VMH neurons inhibits neuronal excitability. Mice with VMH neuron-specific OGT deletion show rapid weight gain, increased adiposity, and reduced energy expenditure, without significant changes in food intake or physical activity. The obesity phenotype is associated with adipocyte hypertrophy and reduced lipolysis of white adipose tissues. In addition, OGT deletion in VMH neurons down-regulates the sympathetic activity and impairs the sympathetic innervation of white adipose tissues. These findings identify OGT in the VMH as a homeostatic set point that controls body weight and underscore the importance of the VMH in regulating lipid metabolism through white adipose tissue-specific innervation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Bernardo Stutz
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Ma H, He C, Li L, Gao P, Lu Z, Hu Y, Wang L, Zhao Y, Cao T, Cui Y, Zheng H, Yang G, Yan Z, Liu D, Zhu Z. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes (Lond) 2022; 46:1544-1555. [PMID: 35589963 DOI: 10.1038/s41366-022-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.
Collapse
Affiliation(s)
- Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China. .,Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
6
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
7
|
Chen Y, Fernandez EA, Roger C, Lopez-Mejia IC, Fajas Coll L, Ji H. Adipocyte-Specific CDK7 Ablation Leads to Progressive Loss of Adipose Tissue and Metabolic Dysfunction. FEBS Lett 2022; 596:1434-1444. [PMID: 35294049 DOI: 10.1002/1873-3468.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Adipose tissue regulates whole-body energy homeostasis. Both lipodystrophy and obesity, the extreme and opposite aspects of adipose tissue dysfunction, result in metabolic disorders: insulin resistance and hepatic steatosis. Cyclin-dependent kinases (CDKs) have been reported to be involved in adipose tissue development and functions. Using adipose tissue-specific knockout mice, here we demonstrate that the deletion of CDK7 in adipose tissue results in progressive lipodystrophy, insulin resistance, impaired adipokine secretion and down-regulation of fat-specific genes, which are aggravated on high-fat diet and during aging. Our studies suggest that CDK7 is a key regulatory component of adipose tissue maintenance and systemic energy homeostasis.
Collapse
Affiliation(s)
- Yizhe Chen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Eric Aria Fernandez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Catherine Roger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas Coll
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Institut National de la Santé et de la Recherche Médicale (Inserm), Languedoc Roussillon, France
| | - Honglei Ji
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
8
|
Castillo-Armengol J, Barquissau V, Geller S, Ji H, Severi I, Venema W, Fenandez EA, Moret C, Huber K, Leal-Esteban LC, Nasrallah A, Martinez-Carreres L, Niederhäuser G, Seoane-Collazo P, Lagarrigue S, López M, Giordano A, Croizier S, Thorens B, Lopez-Mejia IC, Fajas L. Hypothalamic CDK4 regulates thermogenesis by modulating sympathetic innervation of adipose tissues. EMBO Rep 2020; 21:e49807. [PMID: 32657019 PMCID: PMC7507572 DOI: 10.15252/embr.201949807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
This study investigated the role of CDK4 in the oxidative metabolism of brown adipose tissue (BAT). BAT from Cdk4−/− mice exhibited fewer lipids and increased mitochondrial volume and expression of canonical thermogenic genes, rendering these mice more resistant to cold exposure. Interestingly, these effects were not BAT cell‐autonomous but rather driven by increased sympathetic innervation. In particular, the ventromedial hypothalamus (VMH) is known to modulate BAT activation via the sympathetic nervous system. We thus examined the effects of VMH neuron‐specific Cdk4 deletion. These mice display increased sympathetic innervation and enhanced cold tolerance, similar to Cdk4−/− mice, in addition to browning of scWAT. Overall, we provide evidence showing that CDK4 modulates thermogenesis by regulating sympathetic innervation of adipose tissue depots through hypothalamic nuclei, including the VMH. This demonstrates that CDK4 not only negatively regulates oxidative pathways, but also modulates the central regulation of metabolism through its action in the brain.
Collapse
Affiliation(s)
| | - Valentin Barquissau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Honglei Ji
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Wiebe Venema
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eric Aria Fenandez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Catherine Moret
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Anita Nasrallah
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Guy Niederhäuser
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|