1
|
Fu H, Pan D. Mechanisms of HSV gene regulation during latency and reactivation. Virology 2025; 602:110324. [PMID: 39626607 DOI: 10.1016/j.virol.2024.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) are prevalent human pathogens associated with many diseases. After productive (lytic) infection in peripheral tissues, HSV establishes lifelong latent infection in neurons of the peripheral nervous system. Periodic reactivation from latency, triggered by certain stimuli, can resume the lytic cycle. Lytic infection, latent infection and reactivation follow distinct viral gene expression patterns. The switch between the different infection programs is controlled by complicated regulatory mechanisms involving numerous viral and host molecules. Recent studies integrating cutting-edge technologies including neuronal culture techniques have greatly improved our understanding of the molecular details of latency and reactivation but many questions remain. This review summarizes the current knowledge about how HSV gene expression is regulated during latency and reactivation and discusses the important questions remaining to be addressed in future.
Collapse
Affiliation(s)
- Hui Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Domanico LF, Dunn GP, Kobiler O, Taylor MP. A dual fluorescent herpes simplex virus type 1 recombinant reveals divergent outcomes of neuronal infection. J Virol 2024; 98:e0003224. [PMID: 38651900 PMCID: PMC11092338 DOI: 10.1128/jvi.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Critical stages of lytic herpes simplex virus type 1 (HSV-1) replication are marked by the sequential expression of immediate early (IE) to early (E), then late (L) viral genes. HSV-1 can also persist in neuronal cells via a non-replicative, transcriptionally repressed infection called latency. The regulation of lytic and latent transcriptional profiles is critical to HSV-1 pathogenesis and persistence. We sought a fluorescence-based approach to observe the outcome of neuronal HSV-1 infection at the single-cell level. To achieve this goal, we constructed and characterized a novel HSV-1 recombinant that enables discrimination between lytic and latent infection. The dual reporter HSV-1 encodes a human cytomegalovirus-immediate early (hCMV-IE) promoter-driven enhanced yellow fluorescent protein (eYFP) to visualize the establishment of infection and an endogenous mCherry-VP26 fusion to report lytic replication. We confirmed that viral gene expression, replication, and spread of infection are not altered by the incorporation of the fluorescent reporters, and fluorescent protein (FP) detection virtuously reports the progression of lytic replication. We demonstrate that the outcome of HSV-1 infection of compartmentalized primary neurons is determined by viral inoculating dose: high-dose axonal inoculation proceeds to lytic replication, whereas low-dose axonal inoculation establishes a latent HSV-1 infection. Interfering with low-dose axonal inoculation via small molecule drugs reports divergent phenotypes of eYFP and mCherry reporter detection, correlating with altered states of viral gene expression. We report that the transcriptional state of neuronal HSV-1 infection is variable in response to changes in the intracellular neuronal environment.IMPORTANCEHerpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that infects approximately 67% of the global human population. HSV-1 invades the peripheral nervous system, where latent HSV-1 infection persists within the host for life. Immunological evasion, viral persistence, and herpetic pathologies are determined by the regulation of HSV-1 gene expression. Studying HSV-1 gene expression during neuronal infection is challenging but essential for the development of antiviral therapeutics and interventions. We used a recombinant HSV-1 to evaluate viral gene expression during infection of primary neurons. Manipulation of cell signaling pathways impacts the establishment and transcriptional state of HSV-1 latency in neurons. The work here provides critical insight into the cellular and viral factors contributing to the establishment of latent HSV-1 infection.
Collapse
Affiliation(s)
- Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Gary P. Dunn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
4
|
Ouwendijk WJD, Roychoudhury P, Cunningham AL, Jerome KR, Koelle DM, Kinchington PR, Mohr I, Wilson AC, Verjans GGMGM, Depledge DP. Reanalysis of single-cell RNA sequencing data does not support herpes simplex virus 1 latency in non-neuronal ganglionic cells in mice. J Virol 2024; 98:e0185823. [PMID: 38445887 PMCID: PMC11019907 DOI: 10.1128/jvi.01858-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.
Collapse
Affiliation(s)
- Werner J. D. Ouwendijk
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David M. Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | - Paul R. Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | | | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF) partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Fredrikson JP, Domanico LF, Pratt SL, Loveday EK, Taylor MP, Chang CB. Single-cell herpes simplex virus type 1 infection of neurons using drop-based microfluidics reveals heterogeneous replication kinetics. SCIENCE ADVANCES 2024; 10:eadk9185. [PMID: 38416818 PMCID: PMC10901367 DOI: 10.1126/sciadv.adk9185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Single-cell analyses of viral infections reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of herpes simplex virus type 1 (HSV-1) infection of neurons at the single-cell level. We used micrometer-scale Matrigel beads, termed microgels, to culture individual murine superior cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are encapsulated in individual media-in-oil droplets with a dual-fluorescent reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. These techniques for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Shawna L. Pratt
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Emma K. Loveday
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun signaling during initial HSV-1 infection modulates latency to enhance later reactivation in addition to directly promoting the progression to full reactivation. J Virol 2024; 98:e0176423. [PMID: 38193709 PMCID: PMC10878265 DOI: 10.1128/jvi.01764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and periodically reactivates to permit transmission, which can result in clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection, and therefore, HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. The activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required to transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during the HSV latent infection of neurons to promote reactivation but not during the initial JNK-dependent Phase I. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.IMPORTANCEThe molecular mechanisms that regulate the reactivation of herpes simplex virus-1 (HSV-1) from latent infection are unknown. The host transcription and pioneer factor c-Jun is the main target of the JNK cell stress pathway that is known to be important in exit of HSV from latency. Surprisingly, we found that c-Jun does not act with JNK during exit from latency but instead promotes the transition to full reactivation. Moreover, c-Jun and enhanced neuronal stress during initial neuronal infection promoted a more reactivation-competent form of HSV-1 latency. c-Jun, therefore, functions at multiple stages during HSV-1 latent infection of neurons to promote reactivation. Importantly, this study contributes to a growing body of evidence that de novo HSV-1 infection conditions can modulate latent infection and impact future reactivation events, raising important questions on the clinical impact of stress during initial HSV-1 acquisition on future reactivation events and consequences.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Dochnal SA, Whitford AL, Francois AK, Krakowiak PA, Cuddy S, Cliffe AR. c-Jun Signaling During Initial HSV-1 Infection Modulates Latency to Enhance Later Reactivation in addition to Directly Promoting the Progression to Full Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566462. [PMID: 37986840 PMCID: PMC10659354 DOI: 10.1101/2023.11.10.566462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herpes simplex virus-1 (HSV-1) establishes a latent infection in peripheral neurons and can periodically reactivate to permit transmission and clinical manifestations. Viral transactivators required for lytic infection are largely absent during latent infection and therefore HSV-1 relies on the co-option of neuronal host signaling pathways to initiate its gene expression. Activation of the neuronal c-Jun N-terminal kinase (JNK) cell stress pathway is central to initiating biphasic reactivation in response to multiple stimuli. However, how host factors work with JNK to stimulate the initial wave of gene expression (known as Phase I) or the progression to full, Phase II reactivation remains unclear. Here, we found that c-Jun, the primary target downstream of neuronal JNK cell stress signaling, functions during reactivation but not during the JNK-mediated initiation of Phase I gene expression. Instead, c-Jun was required for the transition from Phase I to full HSV-1 reactivation and was detected in viral replication compartments of reactivating neurons. Interestingly, we also identified a role for both c-Jun and enhanced neuronal stress during initial neuronal infection in promoting a more reactivation-competent form of HSV-1 latency. Therefore, c-Jun functions at multiple stages during HSV latent infection of neurons to promote reactivation. Importantly, by demonstrating that initial infection conditions can contribute to later reactivation abilities, this study highlights the potential for latently infected neurons to maintain a molecular scar of previous exposure to neuronal stressors.
Collapse
Affiliation(s)
- Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Alison K. Francois
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Patryk A. Krakowiak
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| | - Sean Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908
| |
Collapse
|
8
|
Fredrikson JP, Domanico LF, Pratt SL, Loveday EK, Taylor MP, Chang CB. Single-cell Herpes Simplex Virus type-1 infection of neurons using drop-based microfluidics reveals heterogeneous replication kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558333. [PMID: 37790515 PMCID: PMC10542126 DOI: 10.1101/2023.09.18.558333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Single-cell analyses of viral infections often reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of HSV-1 infection of neurons at the single-cell level. We used micron-scale Matrigel beads, termed microgels, to culture individual murine Superior Cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are subsequently enclosed in individual media-in-oil droplets with a dual fluorescent-reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. The innovative techniques presented here for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Luke F. Domanico
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Shawna L. Pratt
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Emma K. Loveday
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Ouwendijk WJ, Roychoudhury P, Cunningham AL, Jerome KR, Koelle DM, Kinchington PR, Mohr I, Wilson AC, Verjans GM, Depledge DP. Reanalysis of single-cell RNA sequencing data does not support herpes simplex virus 1 latency in non-neuronal ganglionic cells in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549345. [PMID: 37503290 PMCID: PMC10370134 DOI: 10.1101/2023.07.17.549345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Most individuals are latently infected with herpes simplex virus type 1 (HSV-1) and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent virus is also present in immune cells recovered from ganglia in a mouse model used for studying latency. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for this conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were nearexclusively detected in a mixed population of cells undergoing cell death. Specific loss of HSV1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained by inaccuracies in the data analyses.
Collapse
Affiliation(s)
- Werner J.D. Ouwendijk
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - David M. Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, 98101, USA
| | - Paul R. Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
10
|
Cuddy SR, Cliffe AR. The Intersection of Innate Immune Pathways with the Latent Herpes Simplex Virus Genome. J Virol 2023; 97:e0135222. [PMID: 37129520 PMCID: PMC10231182 DOI: 10.1128/jvi.01352-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Innate immune responses can impact different stages of viral life cycles. Herpes simplex virus latent infection of neurons and subsequent reactivation provide a unique context for immune responses to intersect with different stages of infection. Here, we discuss recent findings linking neuronal innate immune pathways with the modulation of latent infection, acting at the time of reactivation and during initial neuronal infection to have a long-term impact on the ability of the virus to reactivate.
Collapse
Affiliation(s)
- Sean R. Cuddy
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Ratnasiri K, Wilk AJ, Lee MJ, Khatri P, Blish CA. Single-cell RNA-seq methods to interrogate virus-host interactions. Semin Immunopathol 2023; 45:71-89. [PMID: 36414692 PMCID: PMC9684776 DOI: 10.1007/s00281-022-00972-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The twenty-first century has seen the emergence of many epidemic and pandemic viruses, with the most recent being the SARS-CoV-2-driven COVID-19 pandemic. As obligate intracellular parasites, viruses rely on host cells to replicate and produce progeny, resulting in complex virus and host dynamics during an infection. Single-cell RNA sequencing (scRNA-seq), by enabling broad and simultaneous profiling of both host and virus transcripts, represents a powerful technology to unravel the delicate balance between host and virus. In this review, we summarize technological and methodological advances in scRNA-seq and their applications to antiviral immunity. We highlight key scRNA-seq applications that have enabled the understanding of viral genomic and host response heterogeneity, differential responses of infected versus bystander cells, and intercellular communication networks. We expect further development of scRNA-seq technologies and analytical methods, combined with measurements of additional multi-omic modalities and increased availability of publicly accessible scRNA-seq datasets, to enable a better understanding of viral pathogenesis and enhance the development of antiviral therapeutics strategies.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron J Wilk
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Purvesh Khatri
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Center for Biomedical Informatics Research, Stanford, CA, USA.
- Inflammatix, Inc., Sunnyvale, CA, 94085, USA.
| | - Catherine A Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
12
|
Tabtieng T, Lent RC, Kaku M, Monago Sanchez A, Gaglia MM. Caspase-Mediated Regulation and Cellular Heterogeneity of the cGAS/STING Pathway in Kaposi's Sarcoma-Associated Herpesvirus Infection. mBio 2022; 13:e0244622. [PMID: 36255240 PMCID: PMC9765453 DOI: 10.1128/mbio.02446-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
As a result of the ongoing virus-host arms race, viruses have evolved numerous immune subversion strategies, many of which are aimed at suppressing the production of type I interferons (IFNs). Apoptotic caspases have recently emerged as important regulators of type I IFN signaling both in noninfectious contexts and during viral infection. Despite being widely considered antiviral factors since they can trigger cell death, several apoptotic caspases promote viral replication by suppressing innate immune response. Indeed, we previously discovered that the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) exploits caspase activity to suppress the antiviral type I IFN response and promote viral replication. However, the mechanism of this novel viral immune evasion strategy is poorly understood, particularly with regard to how caspases antagonize IFN signaling during KSHV infection. Here, we show that caspase activity inhibits the DNA sensor cGAS during KSHV lytic replication to block type I IFN induction. Furthermore, we used single-cell RNA sequencing to reveal that the potent antiviral state conferred by caspase inhibition is mediated by an exceptionally small percentage of IFN-β-producing cells, thus uncovering further complexity of IFN regulation during viral infection. Collectively, these results provide insight into multiple levels of cellular type I IFN regulation that viruses co-opt for immune evasion. Unraveling these mechanisms can inform targeted therapeutic strategies for viral infections and reveal cellular mechanisms of regulating interferon signaling in the context of cancer and chronic inflammatory diseases. IMPORTANCE Type I interferons are key factors that dictate the outcome of infectious and inflammatory diseases. Thus, intricate cellular regulatory mechanisms are in place to control IFN responses. While viruses encode their own immune-regulatory proteins, they can also usurp existing cellular interferon regulatory functions. We found that caspase activity during lytic infection with the AIDS-associated oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus inhibits the DNA sensor cGAS to block the antiviral type I IFN response. Moreover, single-cell RNA sequencing analyses unexpectedly revealed that an exceptionally small subset of infected cells (<5%) produce IFN, yet this is sufficient to confer a potent antiviral state. These findings reveal new aspects of type I IFN regulation and highlight caspases as a druggable target to modulate cGAS activity.
Collapse
Affiliation(s)
- Tate Tabtieng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biochemistry, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Rachel C. Lent
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Machika Kaku
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Immunology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Alvaro Monago Sanchez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biochemistry, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
- Program in Immunology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Wisconsin, USA
| |
Collapse
|
13
|
Whitford AL, Clinton CA, Kennedy EBL, Dochnal SA, Suzich JB, Cliffe AR. Ex Vivo Herpes Simplex Virus Reactivation Involves a Dual Leucine Zipper Kinase-Dependent Wave of Lytic Gene Expression That Is Independent of Histone Demethylase Activity and Viral Genome Synthesis. J Virol 2022; 96:e0047522. [PMID: 35604215 PMCID: PMC9215252 DOI: 10.1128/jvi.00475-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) maintains a lifelong latent infection in neurons and periodically reactivates, resulting in the production of infectious virus. The exact cellular pathways that induce reactivation are not understood. In primary neuronal models of HSV latency, the cellular protein dual leucine zipper kinase (DLK) has been found to initiate a wave of viral gene expression known as phase I. Phase I occurs independently of both viral DNA replication and the activities of histone demethylase enzymes required to remove repressive heterochromatin modifications associated with the viral genome. In this study, we investigated whether phase I-like gene expression occurs in ganglia reactivated from infected mice. Using the combined trigger of explant-induced axotomy and inhibition of phosphatidylinositide 3-kinase (PI3K) signaling, we found that HSV lytic gene expression was induced rapidly from both sensory and sympathetic neurons. Ex vivo reactivation involved a wave of viral late gene expression that occurred independently of viral genome synthesis and histone demethylase activity and preceded the detection of infectious virus. Importantly, we found that DLK was required for the initial induction of lytic gene expression. These data confirm the essential role of DLK in inducing HSV-1 gene expression from the heterochromatin-associated genome and further demonstrate that HSV-1 gene expression during reactivation occurs via mechanisms that are distinct from lytic replication. IMPORTANCE Reactivation of herpes simplex virus from a latent infection is associated with clinical disease. To develop new therapeutics that prevent reactivation, it is important to understand how viral gene expression initiates following a reactivation stimulus. Dual leucine zipper kinase (DLK) is a cellular protein that has previously been found to be required for HSV reactivation from sympathetic neurons in vitro. Here, we show that DLK is essential for reactivation from sensory ganglia isolated from infected mice. Furthermore, we show that DLK-dependent gene expression ex vivo occurs via mechanisms that are distinct from production replication, namely, lytic gene expression that is independent of viral DNA replication and histone demethylase activity. The identification of a DLK-dependent wave of lytic gene expression from sensory ganglia will ultimately permit the development of novel therapeutics that target lytic gene expression and prevent the earliest stage of reactivation.
Collapse
Affiliation(s)
- Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Corinne A. Clinton
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - E. B. Lane Kennedy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jon B. Suzich
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Dochnal S, Merchant HY, Schinlever AR, Babnis A, Depledge DP, Wilson AC, Cliffe AR. DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals. J Virol 2022; 96:e0050822. [PMID: 35608347 PMCID: PMC9215246 DOI: 10.1128/jvi.00508-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of herpes simplex virus 1 (HSV-1) latent infection and reactivation in neurons requires the use of in vitro model systems. Establishing a quiescent infection in cultured neurons is problematic, as any infectious virus released can superinfect the cultures. Previous studies have used the viral DNA replication inhibitor acyclovir to prevent superinfection and promote latency establishment. Data from these previous models have shown that reactivation is biphasic, with an initial phase I expression of all classes of lytic genes, which occurs independently of histone demethylase activity and viral DNA replication but is dependent on the cell stress protein DLK. Here, we describe a new model system using HSV-1 Stayput-GFP, a reporter virus that is defective for cell-to-cell spread and establishes latent infections without the need for acyclovir. The establishment of a latent state requires a longer time frame than previous models using DNA replication inhibitors. This results in a decreased ability of the virus to reactivate using established inducers, and as such, a combination of reactivation triggers is required. Using this system, we demonstrate that biphasic reactivation occurs even when latency is established in the absence of acyclovir. Importantly, phase I lytic gene expression still occurs in a histone demethylase and viral DNA replication-independent manner and requires DLK activity. These data demonstrate that the two waves of viral gene expression following HSV-1 reactivation are independent of secondary infection and not unique to systems that require acyclovir to promote latency establishment. IMPORTANCE Herpes simplex virus-1 (HSV-1) enters a latent infection in neurons and periodically reactivates. Reactivation manifests as a variety of clinical symptoms. Studying latency and reactivation in vitro is invaluable, allowing the molecular mechanisms behind both processes to be targeted by therapeutics that reduce the clinical consequences. Here, we describe a novel in vitro model system using a cell-to-cell spread-defective HSV-1, known as Stayput-GFP, which allows for the study of latency and reactivation at the single neuron level. We anticipate this new model system will be an incredibly valuable tool for studying the establishment and reactivation of HSV-1 latent infection in vitro. Using this model, we find that initial reactivation events are dependent on cellular stress kinase DLK but independent of histone demethylase activity and viral DNA replication. Our data therefore further validate the essential role of DLK in mediating a wave of lytic gene expression unique to reactivation.
Collapse
Affiliation(s)
- Sara Dochnal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Husain Y. Merchant
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Austin R. Schinlever
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Impact of Cultured Neuron Models on α-Herpesvirus Latency Research. Viruses 2022; 14:v14061209. [PMID: 35746680 PMCID: PMC9228292 DOI: 10.3390/v14061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
A signature trait of neurotropic α-herpesviruses (α-HV) is their ability to establish stable non-productive infections of peripheral neurons termed latency. This specialized gene expression program is the foundation of an evolutionarily successful strategy to ensure lifelong persistence in the host. Various physiological stresses can induce reactivation in a subset of latently-infected neurons allowing a new cycle of viral productive cycle gene expression and synthesis of infectious virus. Recurring reactivation events ensure transmission of the virus to new hosts and contributes to pathogenesis. Efforts to define the molecular basis of α-HV latency and reactivation have been notoriously difficult because the neurons harboring latent virus in humans and in experimentally infected live-animal models, are rare and largely inaccessible to study. Increasingly, researchers are turning to cultured neuron infection models as simpler experimental platforms from which to explore latency and reactivation at the molecular level. In this review, I reflect on the strengths and weaknesses of existing neuronal models and briefly summarize the important mechanistic insights these models have provided. I also discuss areas where prioritization will help to ensure continued progress and integration.
Collapse
|