1
|
Gao M, Wang F, Xu T, Qiu Y, Cao T, Liu S, Wu W, Zhou Y, Liu H, Liu F, Huang J. Age-associated accumulation of RAB9 disrupts oocyte meiosis. Aging Cell 2024:e14449. [PMID: 39676221 DOI: 10.1111/acel.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The critical role of some RAB family members in oocyte meiosis has been extensively studied, but their role in oocyte aging remains poorly understood. Here, we report that the vesicle trafficking regulator, RAB9 GTPase, is essential for oocyte meiosis and aging in humans and mice. RAB9 was mainly located at the meiotic spindle periphery and cortex during oocyte meiosis. In humans and mice, we found that the RAB9 protein level were significantly increased in old oocytes. Age-related accumulation of RAB9 inhibits first polar body extrusion and reduces the developmental potential of oocytes. Further studies showed that increased Rab9 disrupts spindle formation and chromosome alignment. In addition, Rab9 overexpression disrupts the actin cap formation and reduces the cortical actin levels. Mechanically, Rab9-OE increases ROS levels, decreases mitochondrial membrane potential, ATP content and the mtDNA/nDNA ratio. Further studies showed that Rab9-OE activates the PINK1-PARKIN mitophagy pathway. Importantly, we found that reducing RAB9 protein expression in old oocytes could partially improve the rate of old oocyte maturation, ameliorate the accumulation of age-related ROS levels and spindle abnormalities, and partially rescue ATP levels, mtDNA/nDNA ratio, and PINK1 and PARKIN expression. In conclusion, our results suggest that RAB9 is required to maintain the balance between mitochondrial function and meiosis, and that reducing RAB9 expression is a potential strategy to ameliorate age-related deterioration of oocyte quality.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Fang Wang
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tengteng Xu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecology, Clinical Transformation and Application Key Lab for Obstetrics and Gynecology, Pediatrics, and Reproductive Medicine of Jiangmen, Jiangmen Central Hospital, Jiangmen, China
| | - Yanling Qiu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tianqi Cao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Simiao Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenlian Wu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yitong Zhou
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiying Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fenghua Liu
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Lee IW, Tazehkand AP, Sha ZY, Adhikari D, Carroll J. An aggregated mitochondrial distribution in preimplantation embryos disrupts nuclear morphology, function, and developmental potential. Proc Natl Acad Sci U S A 2024; 121:e2317316121. [PMID: 38917013 PMCID: PMC11228517 DOI: 10.1073/pnas.2317316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
A dispersed cytoplasmic distribution of mitochondria is a hallmark of normal cellular organization. Here, we have utilized the expression of exogenous Trak2 in mouse oocytes and embryos to disrupt the dispersed distribution of mitochondria by driving them into a large cytoplasmic aggregate. Our findings reveal that aggregated mitochondria have minimal impact on asymmetric meiotic cell divisions of the oocyte. In contrast, aggregated mitochondria during the first mitotic division result in daughter cells with unequal sizes and increased micronuclei. Further, in two-cell embryos, microtubule-mediated centering properties of the mitochondrial aggregate prevent nuclear centration, distort nuclear shape, and inhibit DNA synthesis and the onset of embryonic transcription. These findings demonstrate the motor protein-mediated distribution of mitochondria throughout the cytoplasm is highly regulated and is an essential feature of cytoplasmic organization to ensure optimal cell function.
Collapse
Affiliation(s)
- In-Won Lee
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Abbas Pirpour Tazehkand
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zi-Yi Sha
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Ono Y, Shirasawa H, Takahashi K, Goto M, Ono T, Sakaguchi T, Okabe M, Hirakawa T, Iwasawa T, Fujishima A, Sugawara T, Makino K, Miura H, Fukunaga N, Asada Y, Kumazawa Y, Terada Y. Shape of the first mitotic spindles impacts multinucleation in human embryos. Nat Commun 2024; 15:5381. [PMID: 38918406 PMCID: PMC11199590 DOI: 10.1038/s41467-024-49815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
During human embryonic development, early cleavage-stage embryos are more susceptible to errors. Studies have shown that many problems occur during the first mitosis, such as direct cleavage, chromosome segregation errors, and multinucleation. However, the mechanisms whereby these errors occur during the first mitosis in human embryos remain unknown. To clarify this aspect, in the present study, we image discarded living human two-pronuclear stage zygotes using fluorescent labeling and confocal microscopy without microinjection of DNA or mRNA and investigate the association between spindle shape and nuclear abnormality during the first mitosis. We observe that the first mitotic spindles vary, and low-aspect-ratio-shaped spindles tend to lead to the formation of multiple nuclei at the 2-cell stage. Moreover, we observe defocusing poles in many of the first mitotic spindles, which are strongly associated with multinucleation. Additionally, we show that differences in the positions of the centrosomes cause spindle abnormality in the first mitosis. Furthermore, many multinuclei are modified to form mononuclei after the second mitosis because the occurrence of pole defocusing is firmly reduced. Our study will contribute markedly to research on the occurrence of mitotic errors during the early cleavage of human embryos.
Collapse
Affiliation(s)
- Yuki Ono
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazumasa Takahashi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mayumi Goto
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takahiro Ono
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Taichi Sakaguchi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Motonari Okabe
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeo Hirakawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takuya Iwasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Fujishima
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Tae Sugawara
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Makino
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Miura
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, Japan
| | - Yukiyo Kumazawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
4
|
Ye Y, Homer HA. A surge in cytoplasmic viscosity triggers nuclear remodeling required for Dux silencing and pre-implantation embryo development. Cell Rep 2024; 43:113917. [PMID: 38446665 DOI: 10.1016/j.celrep.2024.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Embryonic genome activation (EGA) marks the transition from dependence on maternal transcripts to an embryonic transcriptional program. The precise temporal regulation of gene expression, specifically the silencing of the Dux/murine endogenous retrovirus type L (MERVL) program during late 2-cell interphase, is crucial for developmental progression in mouse embryos. How this finely tuned regulation is achieved within this specific window is poorly understood. Here, using particle-tracking microrheology throughout the mouse oocyte-to-embryo transition, we identify a surge in cytoplasmic viscosity specific to late 2-cell interphase brought about by high microtubule and endomembrane density. Importantly, preventing the rise in 2-cell viscosity severely impairs nuclear reorganization, resulting in a persistently open chromatin configuration and failure to silence Dux/MERVL. This, in turn, derails embryo development beyond the 2- and 4-cell stages. Our findings reveal a mechanical role of the cytoplasm in regulating Dux/MERVL repression via nuclear remodeling during a temporally confined period in late 2-cell interphase.
Collapse
Affiliation(s)
- Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
| | - Hayden Anthony Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia.
| |
Collapse
|