1
|
Deng W, Citu C, Liu A, Zhao Z. Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level. Genome Res 2024; 34:1687-1699. [PMID: 39424325 PMCID: PMC11529867 DOI: 10.1101/gr.279363.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wankun Deng
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
2
|
Geng M, Liu W, Li J, Yang G, Tian Y, Jiang X, Xin Y. LncRNA as a regulator in the development of diabetic complications. Front Endocrinol (Lausanne) 2024; 15:1324393. [PMID: 38390204 PMCID: PMC10881719 DOI: 10.3389/fendo.2024.1324393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia, which induces the production of AGEs, ROS, inflammatory cytokines, and growth factors, leading to the formation of vascular dysfunction and target organ damage, promoting the development of diabetic complications. Diabetic nephropathy, retinopathy, and cardiomyopathy are common complications of diabetes, which are major contributors to disability and death in people with diabetes. Long non-coding RNAs affect gene transcription, mRNA stability, and translation efficiency to influence gene expression for a variety of biological functions. Over the past decade, it has been demonstrated that dysregulated long non-coding RNAs are extensively engaged in the pathogenesis of many diseases, including diabetic complications. Thus, this review discusses the regulations of long non-coding RNAs on the primary pathogenesis of diabetic complications (oxidative stress, inflammation, fibrosis, and microvascular dysfunction), and some of these long non-coding RNAs may function as potential biomarkers or therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Mengrou Geng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
3
|
Mrowicka M, Mrowicki J, Majsterek I. Relationship between Biochemical Pathways and Non-Coding RNAs Involved in the Progression of Diabetic Retinopathy. J Clin Med 2024; 13:292. [PMID: 38202299 PMCID: PMC10779474 DOI: 10.3390/jcm13010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic retinopathy (DR) is a progressive blinding disease, which affects the vision and quality of life of patients, and it severely impacts the society. This complication, caused by abnormal glucose metabolism, leads to structural, functional, molecular, and biochemical abnormalities in the retina. Oxidative stress and inflammation also play pivotal roles in the pathogenic process of DR, leading to mitochondrial damage and a decrease in mitochondrial function. DR causes retinal degeneration in glial and neural cells, while the disappearance of pericytes in retinal blood vessels leads to alterations in vascular regulation and stability. Clinical changes include dilatation and blood flow changes in response to the decrease in retinal perfusion in retinal blood vessels, leading to vascular leakage, neovascularization, and neurodegeneration. The loss of vascular cells in the retina results in capillary occlusion and ischemia. Thus, DR is a highly complex disease with various biological factors, which contribute to its pathogenesis. The interplay between biochemical pathways and non-coding RNAs (ncRNAs) is essential for understanding the development and progression of DR. Abnormal expression of ncRNAs has been confirmed to promote the development of DR, suggesting that ncRNAs such as miRNAs, lncRNAs, and circRNAs have potential as diagnostic biomarkers and theranostic targets in DR. This review provides an overview of the interactions between abnormal biochemical pathways and dysregulated expression of ncRNAs under the influence of hyperglycemic environment in DR.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.M.); (I.M.)
| | | | | |
Collapse
|
4
|
Zhu S, Chen L, Wang M, Zhang J, Chen G, Yao Y, Song S, Li T, Xu S, Yu Z, Shen B, Xu D, Chi ZL, Wu W. Schwann cell-derived extracellular vesicles as a potential therapy for retinal ganglion cell degeneration. J Control Release 2023; 363:641-656. [PMID: 37820984 DOI: 10.1016/j.jconrel.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Senmiao Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Lili Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Gang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325027, China
| | - Shihan Song
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shenglan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhonghao Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Duogang Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
5
|
Yu D, Wu Y, Zhu L, Wang Y, Sheng D, Zhao X, Liang G, Gan L. The landscape of the long non-coding RNAs in developing mouse retinas. BMC Genomics 2023; 24:252. [PMID: 37165305 PMCID: PMC10173636 DOI: 10.1186/s12864-023-09354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes. Nevertheless, a global view of its expression and function in the mouse retina, a crucial model for neurogenesis study, still needs to be made available. RESULTS Herein, by integrating the established gene models and the result from ab initio prediction using short- and long-read sequencing, we characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas (from the embryonic day of 12.5 to the neonatal day of P28), which was so far the most comprehensive collection of retinal lncRNAs. Next, derived from transcriptomics analyses of different tissues and developing retinas, we found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retinas. In addition, we investigated the expression of MRLGs in some mouse mutants and revealed that 97 intergenic MRLGs might be involved in regulating differentiation and development of retinal neurons through Math5, Isl1, Brn3b, NRL, Onecut1, or Onecut2 mediated pathways. CONCLUSIONS In summary, this work significantly enhanced our knowledge of lncRNA genes in mouse retina development and provided valuable clues for future exploration of their biological roles.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Yuqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Leilei Zhu
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yuying Wang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Donglai Sheng
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xiaofeng Zhao
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
7
|
Cao W, Zhang N, He X, Xing Y, Yang N. Long non-coding RNAs in retinal neovascularization: current research and future directions. Graefes Arch Clin Exp Ophthalmol 2023; 261:615-626. [PMID: 36171459 DOI: 10.1007/s00417-022-05843-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Retinal neovascularization (RNV) is an intractable pathological hallmark of numerous ocular blinding diseases, including diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. However, current therapeutic methods have potential side effects and limited efficacy. Thus, further studies on the pathogenesis of RNV-related disorders and novel therapeutic targets are critically required. Long non-coding RNAs (lncRNAs) have various functions and participate in almost all biological processes in living cells, such as translation, transcription, signal transduction, and cell cycle control. In addition, recent research has demonstrated critical modulatory roles of various lncRNAs in RNV. In this review, we summarize current knowledge about the expression and regulatory functions of lncRNAs related to the progression of pathological RNV. METHODS We searched databases such as PubMed and Web of Science to gather and review information from the published literature. CONCLUSIONS In general, lncRNA MEG3 attenuates RNV, thus protecting the retina from excessive and dysregulated angiogenesis under high glucose stress. In contrast, lncRNAs MALAT1, MIAT, ANRIL, HOTAIR, HOTTIP, and SNHG16, have been identified as causative molecules in the pathological progression of RNV. Comprehensive and in-depth studies of the roles of lncRNAs in RNV indicate that targeting lncRNAs may be an alternative therapeutic approach in the near future, enabling new options for attenuating RNV progression and treating RNV-related retinal diseases.
Collapse
Affiliation(s)
- Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Long Non-Coding RNAs in Retinal Ganglion Cell Apoptosis. Cell Mol Neurobiol 2023; 43:561-574. [PMID: 35226226 DOI: 10.1007/s10571-022-01210-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
Abstract
Traumatic optic neuropathy or other neurodegenerative diseases, including optic nerve transection, glaucoma, and diabetic retinopathy, can lead to progressive and irreversible visual damage. Long non-coding RNAs (lncRNAs), which belong to the family of non-protein-coding transcripts, have been linked to the pathogenesis, progression, and prognosis of these lesions. Retinal ganglion cells (RGCs) are critical for the transmission of visual information to the brain, damage to which results in visual loss. Apoptosis has been identified as one of the most essential modes of RGC death. Emerging evidence suggests that lncRNAs can regulate RGC degeneration by directly or indirectly modulating apoptosis-associated signaling pathways. This review presents a comprehensive overview of the role of lncRNAs in RGC apoptosis at transcriptional, post-transcriptional, translational, and post-translational levels, emphasizing on the potential mechanisms of action. The current limitations and future perspectives of exploring the connection between lncRNAs and RGC apoptosis have been summarized. Understanding the intricate molecular interaction network of lncRNAs and RGC apoptosis will open new avenues for the identification of novel diagnostic biomarkers, therapeutic targets, and molecules for prognostic evaluation of diseases related to RGC injury.
Collapse
|
9
|
Zablowsky N, Farack L, Rofall S, Kramer J, Meyer H, Nguyen D, Ulrich AKC, Bader B, Steigemann P. High Throughput FISH Screening Identifies Small Molecules That Modulate Oncogenic lncRNA MALAT1 via GSK3B and hnRNPs. Noncoding RNA 2023; 9:ncrna9010002. [PMID: 36649031 PMCID: PMC9844399 DOI: 10.3390/ncrna9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Traditionally, small molecule-based drug discovery has mainly focused on proteins as the drug target. Opening RNA as an additional target space for small molecules offers the possibility to therapeutically modulate disease-driving non-coding RNA targets as well as mRNA of otherwise undruggable protein targets. MALAT1 is a highly conserved long-noncoding RNA whose overexpression correlates with poor overall patient survival in some cancers. We report here a fluorescence in-situ hybridization-based high-content imaging screen to identify small molecules that modulate the oncogenic lncRNA MALAT1 in a cellular setting. From a library of FDA approved drugs and known bioactive molecules, we identified two compounds, including Niclosamide, an FDA-approved drug, that lead to a rapid decrease of MALAT1 nuclear levels with good potency. Mode-of-action studies suggest a novel cellular regulatory pathway that impacts MALAT1 lncRNA nuclear levels by GSK3B activation and the involvement of the RNA modulating family of heterogenous nuclear ribonucleoproteins (hnRNPs). This study is the basis for the identification of novel targets that lead to a reduction of the oncogenic lncRNA MALAT1 in a cancer setting.
Collapse
|
10
|
Humulus lupulus L. extract and its active constituent xanthohumol attenuate oxidative stress and nerve injury induced by iron overload via activating AKT/GSK3β and Nrf2/NQO1 pathways. J Nat Med 2023; 77:12-27. [PMID: 36074228 DOI: 10.1007/s11418-022-01642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Hops, the dried female clusters from Humulus lupulus L., have traditionally been used as folk medicines for treating insomnia, neuralgia, and menopausal disorders. However, its pharmacological action on iron overload induced nerve damage has not been investigated. This study aims to evaluate the protective effects of hops extract (HLE) and its active constituent xanthohumol (XAN) on nerve injury induced by iron overload in vivo and in vitro, and to explore its underlying mechanism. The results showed that HLE and XAN significantly improved the memory impairment of iron overload mice, mainly manifested as shortened latency time, increased crossing platform times and spontaneous alternation ratio, and increased the expression of related proteins. Additionally, HLE and XAN significantly increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and remarkably decreased malondialdehyde (MDA) level in hippocampus. Also, HLE and XAN apparently reduced reactive oxygen species (ROS) content of PC12 cells induced by iron dextran (ID), and improved the oxidative stress level. Moreover, HLE and XAN significantly upregulated the expression of nuclear factor E2-related factor (Nrf2), NAD(P)H quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1), SOD, phosphorylated AKT (p-AKT), and phosphorylated GSK3β (p-GSK3β) both in hippocampus and PC12 cells. These findings demonstrated the protective effect of HLE and XAN against iron-induced memory impairment, which is attributed to its antioxidant profile by activation of AKT/GSK3β and Nrf2/NQO1 pathways. Also, it was suggested that hops could be a potential candidate for iron overload-related neurological diseases treatment.
Collapse
|
11
|
Zohar K, Giladi E, Eliyahu T, Linial M. Oxidative Stress and Its Modulation by Ladostigil Alter the Expression of Abundant Long Non-Coding RNAs in SH-SY5Y Cells. Noncoding RNA 2022; 8:ncrna8060072. [PMID: 36412908 PMCID: PMC9680243 DOI: 10.3390/ncrna8060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, brain injury, and the decline in cognitive function with aging are accompanied by a reduced capacity of cells in the brain to cope with oxidative stress and inflammation. In this study, we focused on the response to oxidative stress in SH-SY5Y, a human neuroblastoma cell line. We monitored the viability of the cells in the presence of oxidative stress. Such stress was induced by hydrogen peroxide or by Sin1 (3-morpholinosydnonimine) that generates reactive oxygen and nitrogen species (ROS and RNS). Both stressors caused significant cell death. Our results from the RNA-seq experiments show that SH-SY5Y cells treated with Sin1 for 24 h resulted in 94 differently expressed long non-coding RNAs (lncRNAs), including many abundant ones. Among the abundant lncRNAs that were upregulated by exposing the cells to Sin1 were those implicated in redox homeostasis, energy metabolism, and neurodegenerative diseases (e.g., MALAT1, MIAT, GABPB1-AS1, NEAT1, MIAT, GABPB1-AS1, and HAND2-AS1). Another group of abundant lncRNAs that were significantly altered under oxidative stress included cancer-related SNHG family members. We tested the impact of ladostigil, a bifunctional reagent with antioxidant and anti-inflammatory properties, on the lncRNA expression levels. Ladostigil was previously shown to enhance learning and memory in the brains of elderly rats. In SH-SY5Y cells, several lncRNAs involved in transcription regulation and the chromatin structure were significantly induced by ladostigil. We anticipate that these poorly studied lncRNAs may act as enhancers (eRNA), regulating transcription and splicing, and in competition for miRNA binding (ceRNA). We found that the induction of abundant lncRNAs, such as MALAT1, NEAT-1, MIAT, and SHNG12, by the Sin1 oxidative stress paradigm specifies only the undifferentiated cell state. We conclude that a global alteration in the lncRNA profiles upon stress in SH-SY5Y may shift cell homeostasis and is an attractive in vitro system to characterize drugs that impact the redox state of the cells and their viability.
Collapse
|
12
|
Hu T, Niu Y, Fu J, Dong Z, He D, Liu J. Antisense lncRNA PCNA-AS1 promotes esophageal squamous cell carcinoma progression through the miR-2467-3p/PCNA axis. Open Med (Wars) 2022; 17:1483-1494. [PMID: 36213440 PMCID: PMC9490863 DOI: 10.1515/med-2022-0552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Multiple studies have indicated that long non-coding RNAs are aberrantly expressed in cancers and are pivotal in developing various tumors. No studies have investigated the expression and function of long non-coding antisense RNA PCNA-AS1 in esophageal squamous cell carcinoma (ESCC). In this study, the expression of PCNA-AS1 was identified by qRT–PCR. Cell function assays were used to explore the potential effect of PCNA-AS1 on ESCC progression. A prediction website was utilized to discover the relationships among PCNA-AS1, miR-2467-3p and proliferating cell nuclear antigen (PCNA). Dual luciferase reporter gene and RNA immunoprecipitation (RIP) assays were executed to verify the binding activity between PCNA-AS1, miR-2467-3p and PCNA. As a result, PCNA-AS1 was highly expressed in ESCC and was associated with patient prognosis. PCNA-AS1 overexpression strongly contributed to ESCC cell proliferation, invasion and migration. PCNA-AS1 and PCNA were positively correlated in ESCC. Bioinformatics analysis, RIP and luciferase reporter gene assays revealed that PCNA-AS1 could act as a competitive endogenous RNA to sponge miR-2467-3p, thus upregulating PCNA. In conclusion, the current outcome demonstrates that PCNA-AS1 may be a star molecule in the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jianfeng Fu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Dongwei He
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|
13
|
Song Z, He C, Wen J, Yang J, Chen P. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy. Curr Genomics 2022; 23:246-261. [PMID: 36777876 PMCID: PMC9875540 DOI: 10.2174/1389202923666220531105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.
Collapse
Affiliation(s)
- Zhaoxia Song
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China;,Address correspondence to this author at the Department of Medical Genetics, College of Basic Medical Sciences, Jilin University. Address: Room 413, 126 Xinmin Street, Changchun, Jilin 130021, China; Tel/Fax: 0086-18584362191; E-mail:
| |
Collapse
|
14
|
Arneson D, Zhang G, Ahn IS, Ying Z, Diamante G, Cely I, Palafox-Sanchez V, Gomez-Pinilla F, Yang X. Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol Life Sci 2022; 79:480. [PMID: 35951114 PMCID: PMC9372016 DOI: 10.1007/s00018-022-04495-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. METHODS We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute (7-day) phases of mTBI at single-cell resolution. RESULTS We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. CONCLUSIONS Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
15
|
Miyashita A, Kobayashi M, Ishibashi S, Nagata T, Chandrasekhar A, Zochodne DW, Yokota T. The Role of Long Noncoding RNA MALAT1 in Diabetic Polyneuropathy and the Impact of Its Silencing in the Dorsal Root Ganglion by a DNA/RNA Heteroduplex Oligonucleotide. Diabetes 2022; 71:1299-1312. [PMID: 35276003 DOI: 10.2337/db21-0918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Diabetic polyneuropathy (DPN) is the most common complication of diabetes, yet its pathophysiology has not been established. Accumulating evidence suggests that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays pivotal roles in the regulation of cell growth and survival during diabetic complications. This study aimed to investigate the impact of MALAT1 silencing in dorsal root ganglion (DRG) sensory neurons, using an α-tocopherol-conjugated DNA/RNA heteroduplex oligonucleotide (Toc-HDO), on the peripheral nervous system of diabetic mice. We identified MALAT1 upregulation in the DRG of chronic diabetic mice that suggested either a pathological change or one that might be protective, and systemic intravenous injection of Toc-HDO effectively inhibited its gene expression. However, we unexpectedly noted that this intervention paradoxically exacerbated disease with increased thermal and mechanical nociceptive thresholds, indicating further sensory loss, greater sciatic-tibial nerve conduction slowing, and additional declines of intraepidermal nerve fiber density in the hind paw footpads. Serine/arginine-rich splicing factors, which are involved in pre-mRNA splicing by interacting with MALAT1, reside in nuclear speckles in wild-type and diabetic DRG neurons; MALAT1 silencing was associated with their disruption. The findings provide evidence for an important role that MALAT1 plays in DPN, suggesting neuroprotection and regulation of pre-mRNA splicing in nuclear speckles. This is also the first example in which a systemically delivered nucleotide therapy had a direct impact on DRG diabetic neurons and their axons.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ambika Chandrasekhar
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Yao J, Wu XY, Yu Q, Yang SF, Yuan J, Zhang ZQ, Xue JS, Jiang Q, Chen MB, Xue GH, Cao C. The requirement of phosphoenolpyruvate carboxykinase 1 for angiogenesis in vitro and in vivo. SCIENCE ADVANCES 2022; 8:eabn6928. [PMID: 35622925 PMCID: PMC9140980 DOI: 10.1126/sciadv.abn6928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
We here examined the potential biological function of phosphoenolpyruvate carboxykinase 1 (PCK1) in angiogenesis. shRNA- or CRISPR-Cas9-induced PCK1 depletion potently inhibited endothelial cell proliferation, migration, sprouting, and tube formation, whereas ectopic PCK1 overexpression exerted opposite activity. In HUVECs, Gαi3 expression and Akt activation were decreased following PCK1 depletion, but were augmented by ectopic PCK1 overexpression. In vivo, retinal expression of PCK1 gradually increased from postnatal day 1 (P1) to P5. The intravitreous injection of endothelial-specific PCK1 shRNA adenovirus at P1 potently inhibited the radial extension of vascular plexus at P5. Conditional endothelial knockdown of PCK1 in adult mouse retina increased vascular leakage and the number of acellular capillaries while decreasing the number of RGCs in murine retinas. In diabetic retinopathy patients, PCK1 mRNA and protein levels were up-regulated in retinal tissues. Together, PCK1 is essential for angiogenesis possibly by mediating Gαi3 expression and Akt activation.
Collapse
Affiliation(s)
- Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-yuan Wu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Shuo-fei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yuan
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-song Xue
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Min-bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Guan-hua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cong Cao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
17
|
Khani-Habibabadi F, Zare L, Sahraian MA, Javan M, Behmanesh M. Hotair and Malat1 Long Noncoding RNAs Regulate Bdnf Expression and Oligodendrocyte Precursor Cell Differentiation. Mol Neurobiol 2022; 59:4209-4222. [DOI: 10.1007/s12035-022-02844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
|
18
|
Soelter TM, Whitlock JH, Williams AS, Hardigan AA, Lasseigne BN. Nucleic acid liquid biopsies in Alzheimer's disease: current state, challenges, and opportunities. Heliyon 2022; 8:e09239. [PMID: 35469332 PMCID: PMC9034064 DOI: 10.1016/j.heliyon.2022.e09239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients' ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patient survival, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid β and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in AD have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid β and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acid species associated with AD from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Andrew A. Hardigan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
19
|
Min J, Ma J, Wang Q, Yu D. Long non-coding RNA SNHG1 promotes bladder cancer progression by upregulating EZH2 and repressing KLF2 transcription. Clinics (Sao Paulo) 2022; 77:100081. [PMID: 36087568 PMCID: PMC9468346 DOI: 10.1016/j.clinsp.2022.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Long Non-Coding RNAs (LncRNAs) act as an indispensable role in cancer development. The study aimed to investigate the role and mechanism of lncRNA Small Nucleolar RNA Host Gene 1 (SNHG1) in Bladder Cancer (BC) progression. METHOD The expression, prognostic value, diagnostic value, and correlation of SNHG1, Enhancer of Zeste 2 polycomb repressive complex 2 subunit (EZH2), and Kruppel Like Factor 2 (KLF2) were analyzed through bioinformatics analysis. The expression was also validated in BC tissues and cell lines. Besides, their regulation and binding were tested via qPCR, Western blot, Dual-Luciferase Reporter Assay (DLRA), Argonaute RISC catalytic component 2-RNA Immunoprecipitation (AGO2-RIP), and Chromatin Immunoprecipitation (ChIP). A xenograft model in nude mice was also established. RESULTS SNHG1 was significantly overexpressed in BC tissues and cells. Importantly, SNHG1 was associated with poor survival, and ROC curves revealed high diagnostic values. Moreover, by CCK8, wound healing, transwell, and Western blot analysis, SNHG1 knockdown significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition of BC cells. Additionally, in vivo experiments showed that silencing SNHG1 hindered tumorigenesis and tumor growth. Regarding mechanism, the results of AGO2-RIP, ChIP or DLRA showed that SNHG1 played different roles at diverse subcellular sites. In the cytoplasm, SNHG1 acted as a competing endogenous RNA for miR-137-3p to promote EZH2 expression. In the nucleus, SNHG1 could interact with EZH2 to inhibit KLF2 transcription. CONCLUSION Our study elucidated that SNHG1 formed a regulatory network and played an oncogenic role in BC, which provided a novel therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Jie Min
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiaxing Ma
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Dexin Yu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
20
|
Song F, Chen Z, Lyu D, Gu Y, Lu B, Hao S, Xu Y, Jin X, Fu Q, Yao K. Expression profiles of long noncoding RNAs in human corneal epithelial cells exposed to fine particulate matter. CHEMOSPHERE 2022; 287:131955. [PMID: 34478962 DOI: 10.1016/j.chemosphere.2021.131955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE The aim of this study was to investigate the expression profiles of long noncoding RNAs (lncRNAs) in human corneal epithelial cells (HCECs) exposed to fine particulate matter (PM2.5) and to identify potential biological pathways involved in PM2.5-induced toxicity in HCECs. METHODS Using RNA sequencing (RNA-seq) and hierarchy clustering analysis, lncRNA expression profiles in PM2.5-treated and untreated HCECs were examined. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to predict the role of altered lncRNAs in biological processes and pathways. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay was conducted to verify the RNA-seq results in HCECs and human corneal epithelial cell sheets. RESULTS In total, 65 lncRNAs were altered in the PM2.5-treated HCECs, including 41 upregulated and 24 downregulated lncRNAs. The results of the qRT-PCR assay were consistent with those of the RNA-seq analysis. The expression of two significantly upregulated lncRNAs was confirmed in human corneal epithelial cell sheets. The GO analysis demonstrated that altered lncRNAs in the PM2.5-treated HCECs were significantly enriched in three domains: cellular component, molecular function, and biological process. The KEGG pathway analysis revealed enriched pathways of lncRNA co-expressed mRNAs, including cancer, RNA transport, and Rap1 signaling. CONCLUSIONS Our results suggest that lncRNAs are involved in the pathogenesis of PM2.5-induced ocular diseases, exerting their effects through biological processes and pathogenic pathways. Among the altered lncRNAs, RP3-406P24.3 and RP11-285E9.5 may play significant roles in PM2.5-induced ocular surface injury.
Collapse
Affiliation(s)
- Fan Song
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Danni Lyu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiuming Jin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
21
|
Construction and analysis of mRNA, lncRNA, and transcription factor regulatory networks after retinal ganglion cell injury. Exp Eye Res 2021; 215:108915. [PMID: 34971620 DOI: 10.1016/j.exer.2021.108915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Retinal ganglion cell (RGC) injury is a critical pathological feature of several optic neurodegenerative diseases. The regulatory mechanisms underlying RGC injury remain poorly understood. Recent evidence has highlighted the important roles of long noncoding RNAs (lncRNAs) in degenerative neuropathy but few studies have focused on lncRNAs associated with RGC injury. In this study, we analyzed dysregulated lncRNAs associated with RGC injury, their potential regulatory functions, and the molecular mechanisms underlying the regulation of lncRNAs and transcription factors (TFs). We analyzed lncRNA and mRNA profiles in the GSE142881 dataset associated with RGC injury and identified 1049 differentially expressed genes (DEGs), with 18 differentially expressed (DE) TFs among 883 DE mRNAs and 312 DE lncRNAs. The predicted DE lncRNAs and DE mRNAs were used to construct a lncRNA-mRNA co-expression network. Functional enrichment analysis was performed to explore the functions of the lncRNAs and mRNAs. The co-expression network between DE lncRNAs and DE mRNAs was highly enriched in inflammatory and immune-related pathways, indicating that they play role in the process of RGC injury. Among the DE mRNAs, we screened 18 DE TFs, including activating transcription factor 3 (ATF3), associated with RGC injury. Co-expression analysis predicted that 13 lncRNAs were potential binding targets of ATF3. The screening of the potential targets of these 13 lncRNAs showed that they were also significantly enriched in functional pathways associated with inflammation and apoptosis. After analysis, we constructed the mRNA-ATF3-lncRNA regulatory network after RGCs injury. In summary, we identified the gene module associated with immune and inflammatory responses after optic nerve injury and constructed a regulatory network of lncRNA-TF-mRNA. The results indicate that lncRNAs, by binding to TFs, can regulate downstream genes and function during RGC injury. The results provide a foundation for further studies of the mechanism of RGC injury and provide insight into the clinical diagnosis and investigation direction of neurodegenerative diseases such as traumatic optic neuropathy and glaucoma.
Collapse
|
22
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
23
|
Zhang R, Feng Y, Lu J, Ge Y, Li H. lncRNA Ttc3-209 Promotes the Apoptosis of Retinal Ganglion Cells in Retinal Ischemia Reperfusion Injury by Targeting the miR-484/Wnt8a Axis. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33687475 PMCID: PMC7960841 DOI: 10.1167/iovs.62.3.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Apoptosis of the retinal ganglion cells (RGCs) can cause irreversible damage to visual function after retinal ischemia reperfusion injury (RIR). Using a lncRNA chip assay, we selected lncRNA Ttc-209 and characterized its role in RGCs during ischemia reperfusion (I/R)–induced apoptosis. Methods We created an ischemic model of RGCs by applying Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 hours. RIR was induced in mice by elevating the intraocular pressure to 120 mm Hg for 1 hour by cannulation of the cornea; this was followed by reperfusion. Real-time quantitative PCR was used to detect the expression levels of long noncoding RNA (lncRNA), microRNA (miRNA), and target gene mRNA. Western blotting, flow cytometry, immunofluorescent staining, and TUNEL assays were performed to detect cell apoptosis. Dual-luciferase reporter assays and FISH were used to identify endogenous competitive RNA (ceRNA) mechanisms that link lncRNAs, miRNAs, and target genes. We also used scotopic electroretinography examinations to evaluate visual function in treated mice. Results lncRNA Ttc3-209 was significantly upregulated after I/R injury and played a proapoptotic role in RGCs during I/R-induced apoptosis. Mechanistically, lncRNA Ttc3-209 is a ceRNA that competitively binds to miR-484 and upregulates the translation of its target (Wnt8a mRNA), thus promoting apoptosis in RGCs. Conclusions Reducing the expression of lncRNA Ttc3-209 had a protective effect against apoptosis in RGCs. This may provide a new therapeutic option for the prevention of RGC apoptosis in response to RIR injury.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuqing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jinfang Lu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yanni Ge
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
24
|
Blasiak J, Hyttinen JMT, Szczepanska J, Pawlowska E, Kaarniranta K. Potential of Long Non-Coding RNAs in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:9178. [PMID: 34502084 PMCID: PMC8431062 DOI: 10.3390/ijms22179178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with poorly known pathogenesis and lack of effective treatment. Age and family history are the strongest AMD risk factors, and several loci were identified to contribute to AMD. Recently, also the epigenetic profile was associated with AMD, and some long non-coding RNAs (lncRNAs) were shown to involve in AMD pathogenesis. The Vax2os1/2 (ventral anterior homeobox 2 opposite strand isoform 1) lncRNAs may modulate the balance between pro- and anti-angiogenic factors in the eye contributing to wet AMD. The stress-induced dedifferentiation of retinal pigment epithelium cells can be inhibited by the ZNF503-AS1 (zinc finger protein 503 antisense RNA 2) and LINC00167 lncRNAs. Overexpression of the PWRN2 (Prader-Willi region non-protein-coding RNA 2) lncRNA aggravated RPE cells apoptosis and mitochondrial impairment induced by oxidative stress. Several other lncRNAs were reported to exert protective or detrimental effects in AMD. However, many studies are limited to an association between lncRNA and AMD in patients or model systems with bioinformatics. Therefore, further works on lncRNAs in AMD are rational, and they should be enriched with mechanistic and clinical studies to validate conclusions obtained in high-throughput in vitro research.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
25
|
Mohammadnejad A, Baumbach J, Li W, Lund J, Larsen MJ, Li S, Mengel-From J, Michel TM, Christiansen L, Christensen K, Hjelmborg J, Tan Q. Differential lncRNA expression profiling of cognitive function in middle and old aged monozygotic twins using generalized association analysis. J Psychiatr Res 2021; 140:197-204. [PMID: 34118637 DOI: 10.1016/j.jpsychires.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Cognitive impairment is the most prominent symptom in neurodegenerative disorders affecting quality of life and mortality. However, despite years of research, the molecular mechanism underlying the regulation of cognitive function and its impairment is poorly understood. This study aims to elucidate the role of long non-coding RNAs (lncRNAs) expression and lncRNA-mRNA interaction networks, by analyzing lncRNA expression in whole blood samples of 400 middle and old aged monozygotic twins in association with cognitive function using both linear models and a generalized correlation coefficient (GCC) to capture the diverse patterns of correlation. We detected 13 probes (p < 1e-03) displaying nonlinear and 7 probes (p < 1e-03) showing linear correlations. After combining the results, we identified 20 lncRNA probes with p < 1e-03. The top lncRNA probes were annotated to genes, along with the non-coding MALAT1, that play roles in neurodegenerative diseases. The top lncRNAs were linked to functional clusters including peptidyl-glycine modification, vascular smooth muscle cells, mitotic spindle organization and protein tyrosine phosphatase. In addition, mapping of the top significant lncRNAs to the lncRNA-mRNA interaction network detected significantly enriched biological pathways involving neuroactive ligand-receptor interaction, proteasome and chemokines. We show that GCC served as a complementary approach in detecting lncRNAs missed by the conventional linear models. A combination of GCC and linear models identified lncRNAs of diverse patterns of association enriched for GO biological and molecular functions meaningful in cognitive performance and cognitive decline. The novel lncRNA regulatory network further contributed to detect significant pathways implicated in cognition.
Collapse
Affiliation(s)
- Afsaneh Mohammadnejad
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Jan Baumbach
- Computational Biomedicine, Department of Mathematics and Computer Science, University of Southern Denmark, Denmark; Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany.
| | - Weilong Li
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Jesper Lund
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Martin J Larsen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| | - Shuxia Li
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Jonas Mengel-From
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark.
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark; Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Lene Christiansen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark.
| | - Jacob Hjelmborg
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.
| | - Qihua Tan
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark.
| |
Collapse
|
26
|
García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J. The Emerging Role of Long Non-Coding RNAs and MicroRNAs in Neurodegenerative Diseases: A Perspective of Machine Learning. Biomolecules 2021; 11:1132. [PMID: 34439798 PMCID: PMC8391852 DOI: 10.3390/biom11081132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive neuronal dysfunction and death of brain cells population. As the early manifestations of NDs are similar, their symptoms are difficult to distinguish, making the timely detection and discrimination of each neurodegenerative disorder a priority. Several investigations have revealed the importance of microRNAs and long non-coding RNAs in neurodevelopment, brain function, maturation, and neuronal activity, as well as its dysregulation involved in many types of neurological diseases. Therefore, the expression pattern of these molecules in the different NDs have gained significant attention to improve the diagnostic and treatment at earlier stages. In this sense, we gather the different microRNAs and long non-coding RNAs that have been reported as dysregulated in each disorder. Since there are a vast number of non-coding RNAs altered in NDs, some sort of synthesis, filtering and organization method should be applied to extract the most relevant information. Hence, machine learning is considered as an important tool for this purpose since it can classify expression profiles of non-coding RNAs between healthy and sick people. Therefore, we deepen in this branch of computer science, its different methods, and its meaningful application in the diagnosis of NDs from the dysregulated non-coding RNAs. In addition, we demonstrate the relevance of machine learning in NDs from the description of different investigations that showed an accuracy between 85% to 95% in the detection of the disease with this tool. All of these denote that artificial intelligence could be an excellent alternative to help the clinical diagnosis and facilitate the identification diseases in early stages based on non-coding RNAs.
Collapse
Affiliation(s)
- Ángela García-Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Cynthia Martin-Jimenez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Andres Felipe Aristizábal Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Á.G.-F.); (C.M.-J.); (A.F.A.P.)
| |
Collapse
|
27
|
Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H, Huang J. Down Syndrome Critical Region 1 Reduces Oxidative Stress-Induced Retinal Ganglion Cells Apoptosis via CREB-Bcl-2 Pathway. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 33104163 PMCID: PMC7594594 DOI: 10.1167/iovs.61.12.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Irreversible retina ganglion cell (RGC) loss is a key process during glaucoma progression. Down syndrome critical region 1 (DSCR1) has been shown to have protective effects against neuronal death. In this study, we aimed to investigate the neuroprotective mechanisms of DSCR1 on RGCs. Methods DBA/2J mice and optic nerve crush (ONC) rat model were used for vivo assays. Oxidative stress model of primary RGCs was carried out with in vitro transduction. DSCR1 protein localization was assessed by immunofluorescence. Differential protein expression was validated by Western blot, and gene expression was detected by real-time PCR. TUNEL was used to identify cell apoptosis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to analyze cell viability. Results Significant upregulation of DSCR1 was observed in DBA/2J mice, ONC rat model, and RGCs treated with H2O2, reaching peaks at the age of 6 months in DBA/2J mice, 5 days after ONC in rats, and 24 hours after H2O2 treatment in RGCs, respectively. DSCR1 was shown to be expressed in the ganglion cell layer. In vitro, overexpressed DSCR1 significantly promoted phosphorylation of cyclic AMP response element binding protein (CREB), B-cell lymphoma 2 (Bcl-2) expression, and RGC survival rate while reducing cleaved caspase 3 expression in H2O2-treated RGCs. On the other hand, the opposite effects were shown after knockdown of DSCR1. In addition, silencing of CREB inhibited expression of DSCR1. Conclusions Our results suggested that DSCR1 might protect the RGCs against oxidative stress via the CREB–Bcl-2 pathway, which may provide a theoretical basis for future treatments of glaucoma.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Liu J, Qu X. The roles of long non-coding RNAs in ocular diseases. Exp Eye Res 2021; 207:108561. [PMID: 33812869 DOI: 10.1016/j.exer.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
In recent years, lncRNAs have been shown to regulate gene expression at the epigenetic, transcriptional and translational level, thus exerting various functions in biological and pathological processes involving cell proliferation, apoptosis, cell cycle and immune response. An increasing number of researches have unveiled that lncRNAs are dysregulated in pathogenesis and the development of different ocular diseases, such as glaucoma, cataract, retinal disease and ocular tumors. Also, it has been reported that lncRNAs may exert significant roles in various ocular diseases. Here, we summarized the functions of lncRNAs on relevant ocular diseases and further clarified their mechanisms. Here, several previous studies with detailed information of lncRNAs which have been proved to be the diagnostic or prognostic biomarkers and potential therapeutic targets were included. Also, it is our hope to provide a thorough knowledge of the functions of lncRNAs in eye diseases and the methods by which lncRNAs can influence ocular diseases.
Collapse
Affiliation(s)
- Jinlu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
29
|
Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry 2021; 26:1060-1074. [PMID: 33173194 DOI: 10.1038/s41380-020-00947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
According to current paradigms, various risk factors, such as genetic mutations, oxidative stress, neural network dysfunction, and abnormal protein degradation, contribute to the progression of brain disorders. Through the cooperation of gene transcripts in biological processes, the study of noncoding RNAs can lead to insights into the cause and treatment of brain disorders. Recently, long noncoding RNAs (lncRNAs) which are longer than 200 nucleotides in length have been suggested as key factors in various brain disorders. Accumulating evidence suggests the potential of lncRNAs as diagnostic or prognostic biomarkers and therapeutic targets. High-throughput screening-based sequencing has been instrumental in identification of lncRNAs that demand new approaches to understanding the progression of brain disorders. In this review, we discuss the recent progress in the study of lncRNAs, and addresses the pathogenesis of brain disorders that involve lncRNAs and describes the associations of lncRNAs with neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), and neurodevelopmental disorders. We also discuss potential targets of lncRNAs and their promise as novel therapeutics and biomarkers in brain disorders.
Collapse
Affiliation(s)
- Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
30
|
Mou L, Liao L, Zhang Y, Ming D, Jiang J. Ursolic acid ameliorates Nthy-ori 3-1 cells injury induced by IL-1β through limiting MALAT1/miR-206/PTGS1 ceRNA network and NF-κB signaling pathway. Psychopharmacology (Berl) 2021; 238:1141-1156. [PMID: 33452572 DOI: 10.1007/s00213-021-05761-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Ursolic acid (UA) has exhibited anti-inflammatory and anti-oxidative drug effects. OBJECTIVES In the research, we assessed the effects of UA on Nthy-ori 3-1 cells stimulated by IL-1β and attempted to elucidate the mechanisms underlying the effects. METHODS Autoimmune thyroiditis (AIT) was simulated using Nthy-ori 3-1 cells by IL-1β (10 μM) treatment. UA (20 μM) was applied to ameliorate the injury of Nthy-ori 3-1 cells. The target of UA was predicted by TCMSP, BATMAN, and GEO database. Targeted relationship between lncRNA MALAT1 and miR-206, as well as miR-206 and PTGS1, was predicted by bioinformatics software and identified by dual luciferase assays. Cytokines in the cell supernatant and the apoptosis of cells were detected by ELISAs and flow cytometry assays, respectively. Expression levels of NF-κB signaling pathway-related proteins were estimated by western blot. RESULTS By enquiring TCMSP, BATMAN, and GEO database, PTGS1 was identified as a target of UA. Afterward, a ceRNA network among MALAT1, miR-206, and PTGS1 was constructed. The expression levels of MALAT1 and PTGS1 in AIT tissues were obviously enhanced. Moreover, the ceRNA network formed by MALAT1/miR-206/PTGS1 contributed to the damage of Nthy-ori 3-1 cells induced by IL-1β. However, UA ameliorated the Nthy-ori 3-1 cells injury induced by IL-1β through mediating the MALAT1/miR-206/PTGS1 ceRNA network and NF-κB signaling pathway. CONCLUSIONS UA treatment significantly relieved the injury of Nthy-ori 3-1 cells via inhibiting the ceRNA mechanism of MALAT1/miR-206/PTGS1 and inflammatory pathways, insinuating that UA may be helpful for the treatment of AIT.
Collapse
Affiliation(s)
- Lunpan Mou
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250, Dongjie, Quanzhou, 362000, Fujian, China
| | - Liyan Liao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250, Dongjie, Quanzhou, 362000, Fujian, China
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jianjia Jiang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250, Dongjie, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
31
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
32
|
Rossin EJ, Sobrin L, Kim LA. Single-cell RNA sequencing: An overview for the ophthalmologist. Semin Ophthalmol 2021; 36:191-197. [PMID: 33635751 DOI: 10.1080/08820538.2021.1889615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Understanding the molecular composition of pathogenic tissues is a critical step in understanding the pathophysiology of disease and designing therapeutics. First described in 2009, single cell RNA sequencing (scRNAseq) is a methodology whereby thousands of cells are simultaneously isolated into individual micro-environments that can be altered experimentally and the genome-wide RNA expression of each cell is captured. It has undergone significant technological improvement over the last decade and gained tremendous popularity. scRNAseq is an improvement over prior pooled RNA analyses which cannot identify the cellular composition and heterogeneity of a tissue of interest. This new approach offers new opportunity for new discovery, as tissue samples can now be sub-categorized into groups of cell types based on genome-wide gene expression in an unbiased fashion. As ophthalmologists, we are uniquely positioned to obtain pathologic samples from the eye for further study. ScRNAseq has already been applied in ophthalmology to characterize retinal tissue, and it may offer the key to understanding various pathological processes in the future.
Collapse
Affiliation(s)
- Elizabeth J Rossin
- Massachusetts Eye and Ear, Harvard Medical School Department of Ophthalmology, Boston, MA, USA
| | - Lucia Sobrin
- Massachusetts Eye and Ear, Harvard Medical School Department of Ophthalmology, Boston, MA, USA
| | - Leo A Kim
- Massachusetts Eye and Ear, Harvard Medical School Department of Ophthalmology, Boston, MA, USA
| |
Collapse
|
33
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Abdi E, Latifi-Navid S, Latifi-Navid H, Safaralizadeh R. LncRNA polymorphisms and upper gastrointestinal cancer risk. Pathol Res Pract 2021; 218:153324. [DOI: 10.1016/j.prp.2020.153324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
|
35
|
Carrella S, Banfi S, Karali M. Sophisticated Gene Regulation for a Complex Physiological System: The Role of Non-coding RNAs in Photoreceptor Cells. Front Cell Dev Biol 2021; 8:629158. [PMID: 33537317 PMCID: PMC7848107 DOI: 10.3389/fcell.2020.629158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Photoreceptors (PRs) are specialized neuroepithelial cells of the retina responsible for sensory transduction of light stimuli. In the highly structured vertebrate retina, PRs have a highly polarized modular structure to accommodate the demanding processes of phototransduction and the visual cycle. Because of their function, PRs are exposed to continuous cellular stress. PRs are therefore under pressure to maintain their function in defiance of constant environmental perturbation, besides being part of a highly sophisticated developmental process. All this translates into the need for tightly regulated and responsive molecular mechanisms that can reinforce transcriptional programs. It is commonly accepted that regulatory non-coding RNAs (ncRNAs), and in particular microRNAs (miRNAs), are not only involved but indeed central in conferring robustness and accuracy to developmental and physiological processes. Here we integrate recent findings on the role of regulatory ncRNAs (e.g., miRNAs, lncRNAs, circular RNAs, and antisense RNAs), and of their contribution to PR pathophysiology. We also outline the therapeutic implications of translational studies that harness ncRNAs to prevent PR degeneration and promote their survival and function.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
36
|
Byrne M, Vathipadiekal V, Apponi L, Iwamoto N, Kandasamy P, Longo K, Liu F, Looby R, Norwood L, Shah A, Shelke JD, Shivalila C, Yang H, Yin Y, Guo L, Bowman K, Vargeese C. Stereochemistry Enhances Potency, Efficacy, and Durability of Malat1 Antisense Oligonucleotides In Vitro and In Vivo in Multiple Species. Transl Vis Sci Technol 2021; 10:23. [PMID: 33510962 PMCID: PMC7804567 DOI: 10.1167/tvst.10.1.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/15/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose Antisense oligonucleotides have been under investigation as potential therapeutics for many diseases, including inherited retinal diseases. Chemical modifications, such as chiral phosphorothioate (PS) backbone modification, are often used to improve stability and pharmacokinetic properties of these molecules. We aimed to generate a stereopure MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) antisense oligonucleotide as a tool to assess the impact stereochemistry has on potency, efficacy, and durability of oligonucleotide activity when delivered by intravitreal injection to eye. Methods We generated a stereopure oligonucleotide (MALAT1-200) and assessed the potency, efficacy, and durability of its MALAT1 RNA-depleting activity compared with a stereorandom mixture, MALAT1-181, and other controls in in vitro assays, in vivo mouse and nonhuman primate (NHP) eyes, and ex vivo human retina cultures. Results The activity of the stereopure oligonucleotide is superior to its stereorandom mixture counterpart with the same sequence and chemical modification pattern in in vitro assays, in vivo mouse and NHP eyes, and ex vivo human retina cultures. Findings in NHPs showed durable activity of the stereopure oligonucleotide in the retina, with nearly 95% reduction of MALAT1 RNA maintained for 4 months postinjection. Conclusions An optimized, stereopure antisense oligonucleotide shows enhanced potency, efficacy, and durability of MALAT1 RNA depletion in the eye compared with its stereorandom counterpart in multiple preclinical models. Translational Relevance As novel therapeutics, stereopure oligonucleotides have the potential to enable infrequent administration and low-dose regimens for patients with genetic diseases of the eye.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anee Shah
- Wave Life Sciences, Cambridge, MA, USA
| | | | | | | | - Yuan Yin
- Wave Life Sciences, Cambridge, MA, USA
| | | | | | | |
Collapse
|
37
|
Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z. LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson's Disease. J Cell Biochem 2020; 121:4838-4848. [PMID: 32277510 DOI: 10.1002/jcb.29711] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/13/2020] [Indexed: 02/03/2023]
Abstract
Death associated protein kinase 1 (DAPK1) was initially discovered in the progress of gamma-interferon induced programmed cell death, it is a key factor in the central nervous system, including Parkinson's disease (PD). However, the underlying mechanisms of DAPK1 in PD remain unclear and this research work aims to explore the potential mechanisms of DAPK1 in PD. In the study, we exposed SH-SY5Y cells to MPP+ and treated mice with MPTP to investigate the roles of DAPK1 in PD and the underlying mechanisms. The results indicated that the expression of DAPK1 is significantly upregulated and negatively correlated with miR-124-3p levels in SH-SY5Y cells treated by MPP+ , and miR-124-3p mimics could effectively inhibit DAPK1 expressions and alleviate MPP+ -induced cell apoptosis. In addition, knockdown MALAT1 reduces the levels of DAPK1 and the ratio of SH-SY5Y cell apoptosis, which is reversed via miR-124-3p inhibitor in vitro. Similarly, knockdown MALAT1 could improve behavioral changes and reduce apoptosis by miR-124-3p upregulation and DAPK1 downregulation in MPTP induced PD mice. Taken together, our data showed that lncRNA MALAT1 positively regulates DAPK1 expression by targeting miR-124-3p, and mediates cell apoptosis and motor disorders in PD. In summary, these results suggest that MALAT1/miR-124-3p /DAPK1 signaling cascade mediates cell apoptosis in vitro and in vivo, which may provide experimental evidence of developing potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yi Lu
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaojie Jin
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Peng Zhao
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yuting Zhang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
38
|
Paronetto MP, Dimauro I, Grazioli E, Palombo R, Guidotti F, Fantini C, Sgrò P, De Francesco D, Di Luigi L, Capranica L, Caporossi D. Exercise-mediated downregulation of MALAT1 expression and implications in primary and secondary cancer prevention. Free Radic Biol Med 2020; 160:28-39. [PMID: 32768573 DOI: 10.1016/j.freeradbiomed.2020.06.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in various biological functions and disease processes including cancer. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was initially identified as a lncRNA with elevated expression in primary human non-small cell lung tumors with high propensity to metastasize, and subsequently shown to be highly expressed in numerous other human cancers including breast, ovarian, prostate, cervical, endometrial, gastric, pancreatic, sarcoma, colorectal, bladder, brain, multiple myeloma, and lymphoma. MALAT1 is deeply involved in several physiological processes, including alternative splicing, epigenetic modification of gene expression, cellular senescence, healthy aging, and redox homeostasis. The aim of this work was to investigate the modulation exerted by a single bout of endurance exercise on the level of MALAT1 expression in peripheral blood mononuclear cells (PBMCs) from healthy male donors displaying different training status and redox homeostasis features. Our findings show that MALAT1 is downregulated after acute endurance exercise in subjects whose fitness level guarantee a high expression of SOD1 and SOD2 antioxidant genes and low levels of endogenous oxidative damage. In vitro protocols in Jurkat lymphoblastoid cells exposed to pro-oxidant environment confirmed the link between MALAT1 expression and antioxidant gene modulation, documenting p53 phosphorylation and its recruitment to MALAT1 promoter. Remarkably, analyses of Microarray-Based Gene Expression Profiling revealed high MALAT1 expression in leukemia patients in comparison to healthy control and a significant negative correlation between MALAT1 and SOD1 expression. Collectively our results highlight the beneficial effect of a physically active lifestyle in counteracting aberrant cancer-related gene expression programs by improving the redox buffering capacity.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Elisa Grazioli
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Ramona Palombo
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Flavia Guidotti
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Cristina Fantini
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Dario De Francesco
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Laura Capranica
- Sport Performance Laboratory, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
39
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
40
|
Wang R, Lu X, Yu R. lncRNA MALAT1 Promotes EMT Process and Cisplatin Resistance of Oral Squamous Cell Carcinoma via PI3K/AKT/m-TOR Signal Pathway. Onco Targets Ther 2020; 13:4049-4061. [PMID: 32494159 PMCID: PMC7231756 DOI: 10.2147/ott.s251518] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Background Cisplatin (DDP) is the first-line chemotherapy agent for the treatment of oral squamous cell carcinoma (OSCC). The emergence of DDP resistance leads to diminished drug efficacy and survival benefit. lncRNA MALAT1 has been considered as one of the most important factors in OSCC. It has also been reported to enhance chemo-resistance in other kinds of carcinomas. However, little is known about the role of lncRNA MALAT1 in DDP resistance of OSCC. Materials and Methods Two kinds of human DDP-resistant cell lines (CAL-27R and SCC-9R) were developed from cisplatin-naïve cell lines (CAL-27 and SCC-9, respectively) as in vitro cell models. Cell transfection was performed to overexpress or knockdown MALAT1 in these cells. Mouse xenograft models were also established. The following measurements were performed: cell proliferation, colony formation, wound healing, transwell, and TUNEL assays, as well as Western blot and immunofluorescence staining. Results DDP-resistant cells showed higher expression level of MALAT1 compared to cisplatin-naïve cells. The overexpression of MALAT1 in cisplatin-naïve cells enhanced DDP resistance and suppressed apoptosis in OSCC cells. However, the knockdown of MALAT1 in DDP-resistance cells induced apoptotic cell death and restored the sensitivity to DDP. Further analyses suggested that MALAT1 might promote DDP resistance via regulating P-glycoprotein expression, epithelial–mesenchymal transition process, and the activation of PI3K/AKT/m-TOR signaling pathway. Conclusion MALAT1 might be a potential therapeutic target for the treatment of DDP-resistant OSCC.
Collapse
Affiliation(s)
- Ran Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinxing Lu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Riyue Yu
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
41
|
Donato L, Scimone C, Alibrandi S, Rinaldi C, Sidoti A, D’Angelo R. Transcriptome Analyses of lncRNAs in A2E-Stressed Retinal Epithelial Cells Unveil Advanced Links between Metabolic Impairments Related to Oxidative Stress and Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:E318. [PMID: 32326576 PMCID: PMC7222347 DOI: 10.3390/antiox9040318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
: Long non-coding RNAs (lncRNAs) are untranslated transcripts which regulate many biological processes. Changes in lncRNA expression pattern are well-known related to various human disorders, such as ocular diseases. Among them, retinitis pigmentosa, one of the most heterogeneous inherited disorder, is strictly related to oxidative stress. However, little is known about regulative aspects able to link oxidative stress to etiopathogenesis of retinitis. Thus, we realized a total RNA-Seq experiment, analyzing human retinal pigment epithelium cells treated by the oxidant agent N-retinylidene-N-retinylethanolamine (A2E), considering three independent experimental groups (untreated control cells, cells treated for 3 h and cells treated for 6 h). Differentially expressed lncRNAs were filtered out, explored with specific tools and databases, and finally subjected to pathway analysis. We detected 3,3'-overlapping ncRNAs, 107 antisense, 24 sense-intronic, four sense-overlapping and 227 lincRNAs very differentially expressed throughout all considered time points. Analyzed lncRNAs could be involved in several biochemical pathways related to compromised response to oxidative stress, carbohydrate and lipid metabolism impairment, melanin biosynthetic process alteration, deficiency in cellular response to amino acid starvation, unbalanced regulation of cofactor metabolic process, all leading to retinal cell death. The explored lncRNAs could play a relevant role in retinitis pigmentosa etiopathogenesis, and seem to be the ideal candidate for novel molecular markers and therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
42
|
Cardamone G, Paraboschi EM, Soldà G, Cantoni C, Supino D, Piccio L, Duga S, Asselta R. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet 2020; 28:1414-1428. [PMID: 30566690 DOI: 10.1093/hmg/ddy438] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are post-transcriptional and epigenetic regulators, whose implication in neurodegenerative and autoimmune diseases remains poorly understood. We analyzed publicly available microarray data sets to identify dysregulated lncRNAs in multiple sclerosis (MS), a neuroinflammatory autoimmune disease. We found a consistent upregulation in MS of the lncRNA MALAT1 (2.7-fold increase; meta-analysis, P = 1.3 × 10-8; 190 cases, 182 controls), known to regulate alternative splicing (AS). We confirmed MALAT1 upregulation in two independent MS cohorts (1.5-fold increase; P < 0.01; 59 cases, 50 controls). We hence performed MALAT1 overexpression/knockdown in cell lines, demonstrating that its modulation impacts on endogenous expression of splicing factors (HNRNPF and HNRNPH1) and on AS of MS-associated genes (IL7R and SP140). Minigene-based splicing assays upon MALAT1 modulation recapitulated IL7R and SP140 isoform unbalances observed in patients. RNA-sequencing of MALAT1-knockdown Jurkat cells further highlighted MALAT1 role in splicing (approximately 1100 significantly-modulated AS events) and revealed its contribution to backsplicing (approximately 50 differentially expressed circular RNAs). Our study proposes a possible novel role for MALAT1 dysregulation and the consequent AS alteration in MS pathogenesis, based on anomalous splicing/backsplicing profiles of MS-relevant genes.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Domenico Supino
- Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| |
Collapse
|
43
|
Liu J, Xu L, Zhan X. LncRNA MALAT1 regulates diabetic cardiac fibroblasts through the Hippo-YAP signaling pathway. Biochem Cell Biol 2020; 98:537-547. [PMID: 32069074 DOI: 10.1139/bcb-2019-0434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major diabetes-related microvascular disease. LncRNA MALAT1 is widely expressed in cardiomyocytes responding to hypoxia and high levels of glucose (high glucose). In this study, cardiac fibroblasts (CFs) were transfected with si-MALAT1 and exposed to high glucose. CFs in the high glucose groups were treated with 30 mmol/L glucose, and the control CFs were treated with 5.5 mmol/L glucose. The expression of MALAT1 in the nucleus and cytoplasm of CFs was detected. The biological behavior of CFs, as well as collagen production, activity of the Hippo-YAP pathway, and nuclear localization of YAP were measured. Mouse models of DCM were established to observe the pathological changes to myocardium and determine the levels of collagen I, Bax, and Bcl-2. The interaction between MALAT1 and YAP was analyzed, and CREB expression in the high-glucose treated CFs was detected. MALAT1 was upregulated in high-glucose CFs and located in the nucleus. High-glucose increased collagen production, inflammation, cell proliferation, cell invasiveness, and phosphorylation of MST1 and LATS1, and also promoted nuclear translocation of YAP. These trends in high-glucose treated CFs and the DCM mice were reversed by transfection with si-MALAT1. MALAT1 positively regulated the nuclear translocation of YAP by binding to CREB. CREB levels were increased in the high-glucose CFs, but decreased after silencing MALAT1. These results indicate that si-MALAT1 reduces inflammation and collagen accumulation in high-glucose CFs and DCM mice via the Hippo-YAP pathway and CREB.
Collapse
Affiliation(s)
- Jiangwen Liu
- Endocrine and Metabolic Diseases, Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| | - Liang Xu
- Department of Cardiology, The First Hospital of Harbin, Harbin 150001, Heilongjiang, P.R. China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
44
|
Ge Y, Zhang R, Feng Y, Li H. Mbd2 Mediates Retinal Cell Apoptosis by Targeting the lncRNA Mbd2-AL1/miR-188-3p/Traf3 Axis in Ischemia/Reperfusion Injury. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1250-1265. [PMID: 32074940 PMCID: PMC7025978 DOI: 10.1016/j.omtn.2020.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Abstract
Recent studies reported that DNA methylation was involved in retinal cell death. Methyl-CpG binding domain protein 2 (Mbd2) is one of the DNA methylation readers. Its role and mechanism of regulation remain unclear. The ischemia/reperfusion (I/R) model in mice primary culture retinal ganglion cells (RGCs) and Mbd2 knockout (Mbd2-KO) mice was used in the current study. We demonstrated that Mbd2 mediates RGC apoptosis caused by I/R injury. Mechanistically, the data suggested that Mbd2 upregulated Mbd2-associated long noncoding RNA 1 (Mbd2-AL1) via demethylation of its promoter. Furthermore, Mbd2-AL1 sponged microRNA (miR)-188-3p, thus preventing tumor necrosis factor (TNF) receptor-associated factor 3 (Traf3) downregulation and inducing RGC apoptosis. This was further demonstrated by the fact that inhibition of miR-188-3p diminished the anti-apoptosis role of Mbd2-AL1 small interfering RNA (siRNA). Finally, it showed that the apoptosis of retinal cells was attenuated, and the visual function was preserved in Mbd2-KO mice, which were associated with the Mbd2-AL1/miR-188-3p/Traf3 axis. Our present study revealed the role of Mbd2 in RGC apoptosis, which may provide a novel therapeutic strategy for retinal ischemic diseases.
Collapse
Affiliation(s)
- Yanni Ge
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China
| | - Ran Zhang
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China
| | - Yuqing Feng
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China
| | - Huiling Li
- Department of Ophthalmology in the Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011 Hunan, China.
| |
Collapse
|
45
|
Doxtater K, Tripathi MK, Khan MM. Recent advances on the role of long non-coding RNAs in Alzheimer's disease. Neural Regen Res 2020; 15:2253-2254. [PMID: 32594043 PMCID: PMC7749474 DOI: 10.4103/1673-5374.284990] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kyle Doxtater
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Manish K Tripathi
- Department of immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine; Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
46
|
Zheng M, Zheng Y, Gao M, Ma H, Zhang X, Li Y, Wang F, Huang H. Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients. Exp Ther Med 2019; 19:1329-1335. [PMID: 32010306 PMCID: PMC6966187 DOI: 10.3892/etm.2019.8345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/30/2019] [Indexed: 01/03/2023] Open
Abstract
Expression and clinical value of long non-coding RNA (lncRNA) MALAT1 and lncRNA ANRIL in glaucoma patients were investigated. Altogether 86 glaucoma patients who were diagnosed (study group) and 86 people who underwent physical examinations and were confirmed to be healthy (control group) in the Hospital of Chengdu University of Traditional Chinese Medicine from January 2016 to June 2018 were enrolled. Expression of the serum lncRNA MALAT1, lncRNA ANRIL, pigment epithelium-derived factor (PEDF), homocysteine (Hcy), and inflammatory cytokines [interleukin-12 (IL-12), interleukin-4 (IL-4) and interferon-γ (IFN-γ)] was detected. The clinical significance of lncRNA MALAT1 and lncRNA ANRIL was analyzed. Compared with those in the control group, patients in the study group had significantly lower expression of serum lncRNA MALAT1 and lncRNA ANRIL (P<0.05), significantly lower expression of serum PEDF and IL-12 (P<0.05), and significantly higher expression of serum Hcy and IL-4 (P<0.05), without significant difference in the expression of serum IFN-γ between the two groups (P>0.05). Serum lncRNA MALAT1 and lncRNA ANRIL were positively correlated with PEDF and IL-12 (P<0.05), but negatively correlated with Hcy and IL-4 (P<0.05). The diagnostic value of the combined detection of lncRNA MALAT1 and lncRNA ANRIL was higher than that of lncRNA MALAT1 alone and lncRNA ANRIL alone. The expression of lncRNA MALAT1 and lncRNA ANRIL was significantly related to the pathological staging of the patients (P<0.05), not the sex, age, body mass index (BMI), types, and presence or absence of myopia (P>0.05). lncRNA MALAT1 and lncRNA ANRIL are poorly expressed in the serum of glaucoma patients and related to the patients' conditions. Their combined detection has high diagnostic value for the disease. Therefore, they may be used as new molecular targets for the diagnosis and severity evaluation of glaucoma patients.
Collapse
Affiliation(s)
- Miao Zheng
- College of Ophthalmology, Chengdu University of Traditional Chinese Madicine, Chengdu, Sichuan 610072, P.R. China
| | - Yanlin Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Mingmin Gao
- Henan Provincial People's Hospital, Henan Eye Hospital and Henan Eye Institute, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Hongjie Ma
- Zhengzhou BoAi Eye, Pharyngeal, Ear, Nose and Throat Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xinyue Zhang
- College of Ophthalmology, Chengdu University of Traditional Chinese Madicine, Chengdu, Sichuan 610072, P.R. China
| | - Yuanyuan Li
- College of Ophthalmology, Chengdu University of Traditional Chinese Madicine, Chengdu, Sichuan 610072, P.R. China
| | - Fang Wang
- College of Ophthalmology, Chengdu University of Traditional Chinese Madicine, Chengdu, Sichuan 610072, P.R. China
| | - Hui Huang
- College of Ophthalmology, Chengdu University of Traditional Chinese Madicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
47
|
Khani-Habibabadi F, Askari S, Zahiri J, Javan M, Behmanesh M. Novel BDNF-regulatory microRNAs in neurodegenerative disorders pathogenesis: An in silico study. Comput Biol Chem 2019; 83:107153. [PMID: 31751881 DOI: 10.1016/j.compbiolchem.2019.107153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor with various roles in the central nervous system neurogenesis, neuroprotection, and axonal guide. By attaching to Tropomyosin receptor kinase B (TrkB) receptor, this protein triggers downstream signaling pathways which lead to cellular growth, proliferation, survival, and neuroplasticity. Deregulation at mRNA level is involved in various central nervous system disorders including, Huntington, Alzheimer's, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis diseases. Considering the importance of BDNF functions, deciphering the regulatory mechanisms controlling BDNF expression level could pave the way to develop more accurate and efficient treatments for neurological diseases. Among different regulatory systems, microRNAs (miRNAs) play prominent roles by targeting genes 3' untranslated regions. In this study, 127 validated and bioinformatic-predicted miRNAs with potentially regulatory roles in BDNF expression were analyzed. Various aspects of miRNAsö possible functions were assessed by bioinformatic online tools to find their potential regulatory functions in signaling pathways, neurological disorders, expression of transcription factors and miRNAs sponge. Analyzed data led to introduce 5 newly reported miRNAs that could regulate BDNF expression level. Finally, high throughput sequencing data from different brain regions and neurological disorders were analyzed to measure correlation of candidate miRNAs with BDNF level in experimental studies. In this study, a list of novel miRNAs with possible regulatory roles in BDNF expression level involving in different neurological disorders was introduced.
Collapse
Affiliation(s)
- Fatemeh Khani-Habibabadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahrzad Askari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
48
|
Expansion processes for cell-based therapies. Biotechnol Adv 2019; 37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Living cells are emerging as therapeutic entities for the treatment of patients affected with severe and chronic diseases where no conventional drug can provide a definitive cure. At the same time, the promise of cell-based therapies comes with several biological, regulatory, economic, logistical, safety and engineering challenges that need to be addressed before translating into clinical practice. Among the complex operations required for their manufacturing, cell expansion occupies a significant part of the entire process and largely determines the number, the phenotype and several other critical quality attributes of the final cell therapy products (CTPs). This review aims at characterizing the main culture systems and expansion processes used for CTP production, highlighting the need to implement scalable, cost-efficient technologies together with process optimization strategies to bridge the gap between basic scientific research and commercially available therapies.
Collapse
|
49
|
Wan Y, Liu X, Zheng D, Wang Y, Chen H, Zhao X, Liang G, Yu D, Gan L. Systematic identification of intergenic long-noncoding RNAs in mouse retinas using full-length isoform sequencing. BMC Genomics 2019; 20:559. [PMID: 31286854 PMCID: PMC6615288 DOI: 10.1186/s12864-019-5903-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background A great mass of long noncoding RNAs (lncRNAs) have been identified in mouse genome and increasing evidences in the last decades have revealed their crucial roles in diverse biological processes. Nevertheless, the biological roles of lncRNAs in the mouse retina remains largely unknown due to the lack of a comprehensive annotation of lncRNAs expressed in the retina. Results In this study, we applied the long-reads sequencing strategy to unravel the transcriptomes of developing mouse retinas and identified a total of 940 intergenic lncRNAs (lincRNAs) in embryonic and neonatal retinas, including about 13% of them were transcribed from unannotated gene loci. Subsequent analysis revealed that function of lincRNAs expressed in mouse retinas were closely related to the physiological roles of this tissue, including 90 lincRNAs that were differentially expressed after the functional loss of key regulators of retinal ganglion cell (RGC) differentiation. In situ hybridization results demonstrated the enrichment of three class IV POU-homeobox genes adjacent lincRNAs (linc-3a, linc-3b and linc-3c) in ganglion cell layer and indicated they were potentially RGC-specific. Conclusions In summary, this study systematically annotated the lincRNAs expressed in embryonic and neonatal mouse retinas and implied their crucial regulatory roles in retinal development such as RGC differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5903-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | | | - Yuying Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Huan Chen
- Key Laboratory of microbiological technology and Bioinformatics in Zhejiang Province, Hangzhou, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China. .,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China.
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
50
|
Li Z, Han K, Zhang D, Chen J, Xu Z, Hou L. The role of long noncoding RNA in traumatic brain injury. Neuropsychiatr Dis Treat 2019; 15:1671-1677. [PMID: 31303755 PMCID: PMC6605043 DOI: 10.2147/ndt.s206624] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI), a mainly lethal and highly debilitating condition, is increasing worldwide. However, the underlying mechanism has not been fully elucidated and effective therapy is needed. Long noncoding RNAs (lncRNAs), which form a major class of noncoding RNAs, have emerged as novel targets for regulating physiological functions and mediating numerous neurological diseases. Notably, gene expression profile analyses have demonstrated aberrant changes in lncRNA expression in the cerebral cortex and hippocampus of rats, mice and human after TBI. lncRNAs may be associated with multiple pathophysiological processes following TBI and might play a crucial role in complications of TBI, such as traumatic optic neuropathy due to the regulation of specific signaling pathways. Some lncRNAs have also been found to be therapeutic targets for motor and cognitive recovery after TBI. lncRNAs may be promising biomarkers for TBI diagnosis, treatment, and prognosis prediction. However, further research isneeded to clarify the underlying mechanisms and therapeutic effects of lncRNAs on TBI. We review the current progress of studies on lncRNAs in TBI to draw more attention to their roles in this debilitating condition.
Collapse
Affiliation(s)
- Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zheng Xu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|