1
|
Tremmel R, Zhou Y, Schwab M, Lauschke VM. Structural variation of the coding and non-coding human pharmacogenome. NPJ Genom Med 2023; 8:24. [PMID: 37684227 PMCID: PMC10491600 DOI: 10.1038/s41525-023-00371-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Genetic variants in drug targets and genes encoding factors involved in drug absorption, distribution, metabolism and excretion (ADME) can have pronounced impacts on drug pharmacokinetics, response, and toxicity. While the landscape of genetic variability at the level of single nucleotide variants (SNVs) has been extensively studied in these pharmacogenetic loci, their structural variation is only poorly understood. Thus, we systematically analyzed the genetic structural variability across 908 pharmacogenes (344 ADME genes and 564 drug targets) based on publicly available whole genome sequencing data from 10,847 unrelated individuals. Overall, we extracted 14,984 distinct structural variants (SVs) ranging in size from 50 bp to 106 Mb. Each individual harbored on average 10.3 and 1.5 SVs with putative functional effects that affected the coding regions of ADME genes and drug targets, respectively. In addition, by cross-referencing pharmacogenomic SVs with experimentally determined binding data of 224 transcription factors across 130 cell types, we identified 1276 non-coding SVs that overlapped with gene regulatory elements. Based on these data, we estimate that non-coding structural variants account for 22% of the genetically encoded pharmacogenomic variability. Combined, these analyses provide the first comprehensive map of structural variability across pharmacogenes, derive estimates for the functional impact of non-coding SVs and incentivize the incorporation of structural genomic data into personalized drug response predictions.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany
| | - Volker M Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University Tübingen, Tübingen, Germany.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Sikic M. Facilitating genome structural variation analysis. Nat Methods 2023; 20:491-492. [PMID: 36959321 DOI: 10.1038/s41592-023-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- Mile Sikic
- Laboratory of AI in Genomics, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Zhong L, Zheng M, Huang Y, Jiang T, Yang B, Huang L, Ma J. An atlas of expression quantitative trait loci of microRNA in longissimus muscle of eight-way crossbred pigs. J Genet Genomics 2023:S1673-8527(23)00046-2. [PMID: 36822265 DOI: 10.1016/j.jgg.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of myocyte development and traits, yet insight into the genetic basis of variation in miRNA expression is still limited. Here, we present a systematic analysis of expression quantitative trait loci (eQTL) for miRNA profiling in longissimus muscle of pigs from an eight-breed crossed heterogeneous population. By integrating whole-genome sequencing and miRNAomics data, we map 54 cis- and 292 trans-eQTLs at high resolution that are associated with the expression of 54 and 92 miRNAs, respectively. Twenty-three trans-acting loci are identified to affect the expression of nine myomiRs (known muscle-specific miRNAs). MiRNAs in mammalian conserved miRNA clusters are found to be subjected to regulation by shared cis-eQTLs, while the expression of mature miRNA-5p/-3p counterparts is more likely to be regulated by different cis-eQTLs. Fine mapping and bioinformatics analyses pinpoint the peak cis-eSNP of miR-4331-5p, rs344650810, which is located in its seed region, as a causal variant for the changes in expression and function of this miRNA. Additionally, rs344650810 is significantly (P < 0.01) correlated with the density and percentage of type I muscle fibers. Altogether, this study provides a comprehensive atlas of miRNA-eQTLs in porcine skeletal muscle and new insights into regulatory mechanisms of miRNA expression.
Collapse
Affiliation(s)
- Liepeng Zhong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Min Zheng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yizhong Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Tao Jiang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Junwu Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
4
|
Müller M, Eghbalian R, Boeckel JN, Frese KS, Haas J, Kayvanpour E, Sedaghat-Hamedani F, Lackner MK, Tugrul OF, Ruppert T, Tappu R, Martins Bordalo D, Kneuer JM, Piekarek A, Herch S, Schudy S, Keller A, Grammes N, Bischof C, Klinke A, Cardoso-Moreira M, Kaessmann H, Katus HA, Frey N, Steinmetz LM, Meder B. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat Commun 2022; 13:6209. [PMID: 36266340 PMCID: PMC9585074 DOI: 10.1038/s41467-022-33658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.
Collapse
Affiliation(s)
- Marion Müller
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Rose Eghbalian
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Jes-Niels Boeckel
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Karen S Frese
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Elham Kayvanpour
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Maximilian K Lackner
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Oguz F Tugrul
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at ZMBH, Heidelberg University, Heidelberg, Germany
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Rewati Tappu
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jasmin M Kneuer
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Annika Piekarek
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sabine Herch
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schudy
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Nadja Grammes
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Cornelius Bischof
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Henrik Kaessmann
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Lars M Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Benjamin Meder
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany.
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
5
|
Wang Y, Ling Y, Gong J, Zhao X, Zhou H, Xie B, Lou H, Zhuang X, Jin L, Fan S, Zhang G, Xu S. PGG.SV: a whole-genome-sequencing-based structural variant resource and data analysis platform. Nucleic Acids Res 2022; 51:D1109-D1116. [PMID: 36243989 PMCID: PMC9825616 DOI: 10.1093/nar/gkac905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 01/30/2023] Open
Abstract
Structural variations (SVs) play important roles in human evolution and diseases, but there is a lack of data resources concerning representative samples, especially for East Asians. Taking advantage of both next-generation sequencing and third-generation sequencing data at the whole-genome level, we developed the database PGG.SV to provide a practical platform for both regionally and globally representative structural variants. In its current version, PGG.SV archives 584 277 SVs obtained from whole-genome sequencing data of 6048 samples, including 1030 long-read sequencing genomes representing 177 global populations. PGG.SV provides (i) high-quality SVs with fine-scale and precise genomic locations in both GRCh37 and GRCh38, covering underrepresented SVs in existing sequencing and microarray data; (ii) hierarchical estimation of SV prevalence in geographical populations; (iii) informative annotations of SV-related genes, potential functions and clinical effects; (iv) an analysis platform to facilitate SV-based case-control association studies and (v) various visualization tools for understanding the SV structures in the human genome. Taken together, PGG.SV provides a user-friendly online interface, easy-to-use analysis tools and a detailed presentation of results. PGG.SV is freely accessible via https://www.biosino.org/pggsv.
Collapse
Affiliation(s)
| | | | | | - Xiaohan Zhao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Hanwen Zhou
- Key Laboratory of Computational Biology, National Genomics Data Center & Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Xie
- Key Laboratory of Computational Biology, National Genomics Data Center & Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyi Lou
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinhao Zhuang
- Key Laboratory of Computational Biology, National Genomics Data Center & Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | | | - Shaohua Fan
- Correspondence may also be addressed to Shaohua Fan.
| | - Guoqing Zhang
- Correspondence may also be addressed to Guoqing Zhang.
| | - Shuhua Xu
- To whom correspondence should be addressed. Tel: +86 21 31246617; Fax: +86 21 31246617;
| |
Collapse
|
6
|
Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, Celeghin R, Edwards M, Fan J, Ingles J, James CA, Jarinova O, Johnson R, Judge DP, Lahrouchi N, Lekanne Deprez RH, Lumbers RT, Mazzarotto F, Medeiros Domingo A, Miller RL, Morales A, Murray B, Peters S, Pilichou K, Protonotarios A, Semsarian C, Shah P, Syrris P, Thaxton C, van Tintelen JP, Walsh R, Wang J, Ware J, Hershberger RE. Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation 2021; 144:7-19. [PMID: 33947203 PMCID: PMC8247549 DOI: 10.1161/circulationaha.120.053033] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/13/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Each of the cardiomyopathies, classically categorized as hypertrophic cardiomyopathy, dilated cardiomyopathy (DCM), and arrhythmogenic right ventricular cardiomyopathy, has a signature genetic theme. Hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are largely understood as genetic diseases of sarcomere or desmosome proteins, respectively. In contrast, >250 genes spanning >10 gene ontologies have been implicated in DCM, representing a complex and diverse genetic architecture. To clarify this, a systematic curation of evidence to establish the relationship of genes with DCM was conducted. METHODS An international panel with clinical and scientific expertise in DCM genetics evaluated evidence supporting monogenic relationships of genes with idiopathic DCM. The panel used the Clinical Genome Resource semiquantitative gene-disease clinical validity classification framework with modifications for DCM genetics to classify genes into categories on the basis of the strength of currently available evidence. Representation of DCM genes on clinically available genetic testing panels was evaluated. RESULTS Fifty-one genes with human genetic evidence were curated. Twelve genes (23%) from 8 gene ontologies were classified as having definitive (BAG3, DES, FLNC, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN) or strong (DSP) evidence. Seven genes (14%; ACTC1, ACTN2, JPH2, NEXN, TNNI3, TPM1, VCL) including 2 additional ontologies were classified as moderate evidence; these genes are likely to emerge as strong or definitive with additional evidence. Of these 19 genes, 6 were similarly classified for hypertrophic cardiomyopathy and 3 for arrhythmogenic right ventricular cardiomyopathy. Of the remaining 32 genes (63%), 25 (49%) had limited evidence, 4 (8%) were disputed, 2 (4%) had no disease relationship, and 1 (2%) was supported by animal model data only. Of the 16 evaluated clinical genetic testing panels, most definitive genes were included, but panels also included numerous genes with minimal human evidence. CONCLUSIONS In the curation of 51 genes, 19 had high evidence (12 definitive/strong, 7 moderate). It is notable that these 19 genes explain only a minority of cases, leaving the remainder of DCM genetic architecture incompletely addressed. Clinical genetic testing panels include most high-evidence genes; however, genes lacking robust evidence are also commonly included. We recommend that high-evidence DCM genes be used for clinical practice and that caution be exercised in the interpretation of variants in variable-evidence DCM genes.
Collapse
Affiliation(s)
- Elizabeth Jordan
- Division of Human Genetics (E.J., L.P., T.A., R.E.H.), Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus
| | - Laiken Peterson
- Division of Human Genetics (E.J., L.P., T.A., R.E.H.), Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus
| | - Tomohiko Ai
- Division of Human Genetics (E.J., L.P., T.A., R.E.H.), Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus
| | - Babken Asatryan
- Department for Cardiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (B.A.)
| | - Lucas Bronicki
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Canada (L.B., O.J.)
- Department of Laboratory and Pathology Medicine, University of Ottawa, Ontario, Canada (L.B., O.J.)
| | - Emily Brown
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (E.B., C.A.J., B.M.)
| | - Rudy Celeghin
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Italy (R.C., K.P.)
| | - Matthew Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (M.E.)
| | - Judy Fan
- Department of Medicine, University of California, Los Angeles (J.F., J. Wang)
| | - Jodie Ingles
- Cardio Genomics Program at Centenary Institute, University of Sydney, Australia (J.I.)
| | - Cynthia A. James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (E.B., C.A.J., B.M.)
| | - Olga Jarinova
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Canada (L.B., O.J.)
- Department of Laboratory and Pathology Medicine, University of Ottawa, Ontario, Canada (L.B., O.J.)
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Sydney, Australia (R.J.)
- Department of Medicine, University of New South Wales, Sydney, Australia (R.J.)
| | - Daniel P. Judge
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (D.P.J.)
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, University of Amsterdam, the Netherlands (N.L., R.W.)
| | - Ronald H. Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Center location Academic Medical Center, the Netherlands (R.H.L.D.)
| | - R. Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK (R.T.L.)
- Health Data Research UK London, University College London, UK (R.T.L.)
- University College London British Heart Foundation Research Accelerator, London, United Kingdom (R.T.L.)
| | - Francesco Mazzarotto
- Cardiovascular Research Center, Royal Brompton and Harefield Hospitals, National Health Service Foundation Trust, London, United Kingdom (F.M., J. Ware)
- National Heart and Lung Institute, Imperial College London, United Kingdom (F.M., J. Ware)
- Department of Clinical and Experimental Medicine, University of Florence, Italy (F.M.)
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (F.M.)
| | | | - Rebecca L. Miller
- Cardiovascular Genomics Center, Inova Heart and Vascular Institute, Falls Church, VA (R.L.M., P. Shah)
| | | | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (E.B., C.A.J., B.M.)
| | - Stacey Peters
- Department of Cardiology and Genomic Medicine, Royal Melbourne Hospital, Australia (S.P.)
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padua, Italy (R.C., K.P.)
| | - Alexandros Protonotarios
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom (A.P., P. Syrris)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Australia (C.S.)
| | - Palak Shah
- Cardiovascular Genomics Center, Inova Heart and Vascular Institute, Falls Church, VA (R.L.M., P. Shah)
| | - Petros Syrris
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom (A.P., P. Syrris)
| | - Courtney Thaxton
- Department of Genetics, University of North Carolina, Chapel Hill (C.T.)
| | - J. Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, The Netherlands (J.P.v.T.)
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, University of Amsterdam, the Netherlands (N.L., R.W.)
| | - Jessica Wang
- Department of Medicine, University of California, Los Angeles (J.F., J. Wang)
| | - James Ware
- Cardiovascular Research Center, Royal Brompton and Harefield Hospitals, National Health Service Foundation Trust, London, United Kingdom (F.M., J. Ware)
- National Heart and Lung Institute, Imperial College London, United Kingdom (F.M., J. Ware)
- Medical Research Council London Institute for Medical Sciences, Imperial College London, United Kingdom (J. Ware)
| | - Ray E. Hershberger
- Division of Human Genetics (E.J., L.P., T.A., R.E.H.), Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus
- Division of Cardiovascular Medicine (R.E.H.), Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus
| |
Collapse
|
7
|
Tayal U, Ware JS, Lakdawala NK, Heymans S, Prasad SK. Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know. Eur Heart J 2021; 42:2384-2396. [PMID: 34153989 DOI: 10.1093/eurheartj/ehab286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is increasing understanding of the genetic basis to dilated cardiomyopathy and in this review, we offer a practical primer for the practising clinician. We aim to help all clinicians involved in the care of patients with dilated cardiomyopathy to understand the clinical relevance of the genetic basis of dilated cardiomyopathy, introduce key genetic concepts, explain which patients and families may benefit from genetic testing, which genetic tests are commonly performed, how to interpret genetic results, and the clinical applications of results. We conclude by reviewing areas for future research in this dynamic field.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| | - James S Ware
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, KU, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| | - Sanjay K Prasad
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
8
|
Li M, Lyu C, Huang M, Do C, Tycko B, Lupo PJ, MacLeod SL, Randolph CE, Liu N, Witte JS, Hobbs CA. Mapping methylation quantitative trait loci in cardiac tissues nominates risk loci and biological pathways in congenital heart disease. BMC Genom Data 2021; 22:20. [PMID: 34112112 PMCID: PMC8194170 DOI: 10.1186/s12863-021-00975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background Most congenital heart defects (CHDs) result from complex interactions among genetic susceptibilities, epigenetic modifications, and maternal environmental exposures. Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation will enhance our understanding of pathogenesis in this important type of congenital disorder. We investigated cis-acting effects of genetic single nucleotide polymorphisms (SNPs) on local DNA methylation patterns within 83 cardiac tissue samples and prioritized their contributions to CHD risk by leveraging results of CHD genome-wide association studies (GWAS) and their effects on cardiac gene expression. Results We identified 13,901 potential methylation quantitative trait loci (mQTLs) with a false discovery threshold of 5%. Further co-localization analyses and Mendelian randomization indicated that genetic variants near the HLA-DRB6 gene on chromosome 6 may contribute to CHD risk by regulating the methylation status of nearby CpG sites. Additional SNPs in genomic regions on chromosome 10 (TNKS2-AS1 gene) and chromosome 14 (LINC01629 gene) may simultaneously influence epigenetic and transcriptomic variations within cardiac tissues. Conclusions Our results support the hypothesis that genetic variants may influence the risk of CHDs through regulating the changes of DNA methylation and gene expression. Our results can serve as an important source of information that can be integrated with other genetic studies of heart diseases, especially CHDs. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00975-2.
Collapse
Affiliation(s)
- Ming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA.
| | - Chen Lyu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - Manyan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - Catherine Do
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | | | | | | | - Nianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - John S Witte
- University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| |
Collapse
|
9
|
Miyazawa K, Ito K. The Evolving Story in the Genetic Analysis for Heart Failure. Front Cardiovasc Med 2021; 8:646816. [PMID: 33928132 PMCID: PMC8076510 DOI: 10.3389/fcvm.2021.646816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Genomic studies of cardiovascular diseases have achieved great success, not only in Mendelian genetic diseases such as hereditary arrhythmias and cardiomyopathies, but also in common diseases such as ischemic heart disease and atrial fibrillation. However, only limited success has been achieved in heart failure due to the complexity of its disease background. In this paper, we will review the genetic research for heart failure to date and discuss how we can discover new aspects of heart failure from the viewpoint of genomic perspective.
Collapse
Affiliation(s)
- Kazuo Miyazawa
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
10
|
Differential Methylation in the GSTT1 Regulatory Region in Sudden Unexplained Death and Sudden Unexpected Death in Epilepsy. Int J Mol Sci 2021; 22:ijms22062790. [PMID: 33801838 PMCID: PMC7999472 DOI: 10.3390/ijms22062790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Sudden cardiac death (SCD) is a diagnostic challenge in forensic medicine. In a relatively large proportion of the SCDs, the deaths remain unexplained after autopsy. This challenge is likely caused by unknown disease mechanisms. Changes in DNA methylation have been associated with several heart diseases, but the role of DNA methylation in SCD is unknown. In this study, we investigated DNA methylation in two SCD subtypes, sudden unexplained death (SUD) and sudden unexpected death in epilepsy (SUDEP). We assessed DNA methylation of more than 850,000 positions in cardiac tissue from nine SUD and 14 SUDEP cases using the Illumina Infinium MethylationEPIC BeadChip. In total, six differently methylated regions (DMRs) between the SUD and SUDEP cases were identified. The DMRs were located in proximity to or overlapping genes encoding proteins that are a part of the glutathione S-transferase (GST) superfamily. Whole genome sequencing (WGS) showed that the DNA methylation alterations were not caused by genetic changes, while whole transcriptome sequencing (WTS) showed that DNA methylation was associated with expression levels of the GSTT1 gene. In conclusion, our results indicate that cardiac DNA methylation is similar in SUD and SUDEP, but with regional differential methylation in proximity to GST genes.
Collapse
|
11
|
Genetic variations associated with long noncoding RNAs. Essays Biochem 2020; 64:867-873. [DOI: 10.1042/ebc20200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Abstract
Genetic variations, including single nucleotide polymorphisms (SNPs) and structural variations, are widely distributed in the genome, including the long noncoding RNA (lncRNA) regions. The changes at locus might produce numerous effects in a variety of aspects. Multiple bioinformatics resources and tools were also developed for systematically dealing with genetic variations associated with lncRNAs. Moreover, correlation of the genetic variations in lncRNAs with immune disease, cancers, and other disease as well as development process were all included for discussion. In this essay, we summarized how and in what aspects these changes would affect lncRNA functions.
Collapse
|
12
|
Khomtchouk BB, Tran DT, Vand KA, Might M, Gozani O, Assimes TL. Cardioinformatics: the nexus of bioinformatics and precision cardiology. Brief Bioinform 2020; 21:2031-2051. [PMID: 31802103 PMCID: PMC7947182 DOI: 10.1093/bib/bbz119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, causing over 17 million deaths per year, which outpaces global cancer mortality rates. Despite these sobering statistics, most bioinformatics and computational biology research and funding to date has been concentrated predominantly on cancer research, with a relatively modest footprint in CVD. In this paper, we review the existing literary landscape and critically assess the unmet need to further develop an emerging field at the multidisciplinary interface of bioinformatics and precision cardiovascular medicine, which we refer to as 'cardioinformatics'.
Collapse
Affiliation(s)
- Bohdan B Khomtchouk
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, University of Chicago, Chicago, IL, USA
| | - Diem-Trang Tran
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | | | - Matthew Might
- Hugh Kaul Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Themistocles L Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
13
|
Qiu Z, Chen W, Liu Y, Jiang B, Yin L, Chen X. LncRNA AC061961.2 overexpression inhibited endoplasmic reticulum stress induced apoptosis in dilated cardiomyopathy rats and cardiomyocytes via activating wnt/β-catenin pathway. J Recept Signal Transduct Res 2020; 41:494-503. [PMID: 33092439 DOI: 10.1080/10799893.2020.1828915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Down-regulated lncRNA AC061961.2 in dilated cardiomyopathy (DCM) patients was previous reported. Whether AC061961.2 has regulatory effect on DCM still need exploration. Here, we tried to investigate the effect of AC061961.2 on DCM. After DCM model rat was established through injecting Adriamycin, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were measured by echocardiography. Histopathological changes and apoptosis were detected by hematoxylin-eosin, Masson staining, and TUNEL. After cardiomyocytes were isolated and identified by immunofluorescence, DCM cell model was established by injecting adriamycin. After transfected with overexpressed-AC061961.2 plasmids, cell apoptosis was detected by flow cytometry. The expressions of AC061961.2, β-catenin, Axin2, c-Myc, CRP78, CHOP, Caspase-3, Bcl-2, and Bax in cardiomyocytes and heart tissues were detected by RT-qPCR or western blot. LVEDD and LVESD were increased while LVEF and LVFS were decreased in DCM rats. The histopathological of heart tissues showed a typical sign of DCM. Apoptosis were increased in heart tissues of DCM rats. In DCM rats, the expressions of AC061961.2, β-catenin, Axin2, c-Myc, and Bcl-2 were decreased, the expressions of CRP78, CHOP, Caspase-3, and Bax were increased. After the overexpression of AC061961.2, levels of β-catenin, Axin2, c-Myc, and Bcl-2 were increased, while levels of CRP78, CHOP, Caspase-3, and Bax were decreased, compared with that in DCM cardiomyocytes. LncRNA AC061961.2 overexpression inhibited endoplasmic reticulum stress induced apoptosis in DCM rats and cardiomyocytes via activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Nanjing Medical University
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Nanjing Medical University
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Nanjing Medical University
| | - Ben Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Nanjing Medical University
| | - Li Yin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Nanjing Medical University
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital Nanjing Medical University
| |
Collapse
|
14
|
Fang Y, Xu Y, Wang R, Hu L, Guo D, Xue F, Guo W, Zhang D, Hu J, Li Y, Zhang W, Zhang M. Recent advances on the roles of LncRNAs in cardiovascular disease. J Cell Mol Med 2020; 24:12246-12257. [PMID: 32969576 PMCID: PMC7686979 DOI: 10.1111/jcmm.15880] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are a main cause of mortality whose prevalence continues to increase worldwide. Long non-coding RNAs (lncRNAs) regulate a variety of biological processes by modifying and regulating transcription of coding genes, directly binding to proteins and even coding proteins themselves. LncRNAs play key roles in the occurrence and development of myocardial infarction, heart failure, myocardial hypertrophy, arrhythmias and other pathological processes that significantly affect the prognosis and survival of patients with cardiovascular diseases. We here review the latest research on lncRNAs in cardiovascular diseases as a basis to formulate future research on prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Feng Xue
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wangang Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10:200088. [PMID: 32603637 PMCID: PMC7574544 DOI: 10.1098/rsob.200088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease collectively accounts for a quarter of deaths worldwide. Genome-wide association studies across a range of cardiovascular traits and pathologies have highlighted the prevalence of common non-coding genetic variants within candidate loci. Here, we review genetic, epigenomic and molecular approaches to investigate the contribution of non-coding regulatory elements in cardiovascular biology. We then discuss recent insights on the emerging role of non-coding variation in predisposition to cardiovascular disease, with a focus on novel mechanistic examples from functional genomics studies. Lastly, we consider the clinical significance of these findings at present, and some of the current challenges facing the field.
Collapse
Affiliation(s)
- Diego Villar
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie Frost
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Panos Deloukas
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Tinker
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
16
|
Gi WT, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Tappu R, Lehmann DH, Shirvani Samani O, Wisdom M, Keller A, Katus HA, Meder B. Epigenetic Regulation of Alternative mRNA Splicing in Dilated Cardiomyopathy. J Clin Med 2020; 9:jcm9051499. [PMID: 32429430 PMCID: PMC7291244 DOI: 10.3390/jcm9051499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, the genetic architecture of dilated cardiomyopathy (DCM) has been more thoroughly elucidated. However, there is still insufficient knowledge on the modifiers and regulatory principles that lead to the failure of myocardial function. The current study investigates the association of epigenome-wide DNA methylation and alternative splicing, both of which are important regulatory principles in DCM. We analyzed screening and replication cohorts of cases and controls and identified distinct transcriptomic patterns in the myocardium that differ significantly, and we identified a strong association of intronic DNA methylation and flanking exons usage (p < 2 × 10-16). By combining differential exon usage (DEU) and differential methylation regions (DMR), we found a significant change of regulation in important sarcomeric and other DCM-associated pathways. Interestingly, inverse regulation of Titin antisense non-coding RNA transcript splicing and DNA methylation of a locus reciprocal to TTN substantiate these findings and indicate an additional role for non-protein-coding transcripts. In summary, this study highlights for the first time the close interrelationship between genetic imprinting by DNA methylation and the transport of this epigenetic information towards the dynamic mRNA splicing landscape. This expands our knowledge of the genome-environment interaction in DCM besides simple gene expression regulation.
Collapse
Affiliation(s)
- Weng-Tein Gi
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Rewati Tappu
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - David Hermann Lehmann
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Omid Shirvani Samani
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Michael Wisdom
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Medical Faculty, Saarland University, 66123 Saarbrücken, Germany;
| | - Hugo A. Katus
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
17
|
Poller W, Haas J, Klingel K, Kühnisch J, Gast M, Kaya Z, Escher F, Kayvanpour E, Degener F, Opgen-Rhein B, Berger F, Mochmann HC, Skurk C, Heidecker B, Schultheiss HP, Monserrat L, Meder B, Landmesser U, Klaassen S. Familial Recurrent Myocarditis Triggered by Exercise in Patients With a Truncating Variant of the Desmoplakin Gene. J Am Heart Assoc 2020; 9:e015289. [PMID: 32410525 PMCID: PMC7660888 DOI: 10.1161/jaha.119.015289] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy‐related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany
| | - Jan Haas
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology Department of Pathology University Hospital Tübingen Germany
| | - Jirko Kühnisch
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany
| | - Martina Gast
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Felicitas Escher
- Department of Cardiology Campus Virchow Klinikum Universitätsmedizin Berlin Germany.,Institute for Clinical Diagnostics and Therapy (IKDT) Berlin Germany
| | - Elham Kayvanpour
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany
| | - Franziska Degener
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany
| | - Bernd Opgen-Rhein
- Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | - Felix Berger
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,German Heart Center (DHZB) Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| | | | - Carsten Skurk
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | - Bettina Heidecker
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany
| | | | | | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg Germany.,Department of Cardiology University Hospital Heidelberg Mannheim Germany.,Department of Genetics Stanford University School of Medicine Palo Alto CA
| | - Ulf Landmesser
- Department of Cardiology Campus Benjamin Franklin Universitätsmedizin Berlin Germany.,German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Berlin Institute of Health Berlin Germany
| | - Sabine Klaassen
- German Center for Cardiovascular Research (DZHK) partner site Berlin Germany.,Experimental and Clinical Research Center (ECRC) Universitätsmedizin Berlin Germany.,Department of Pediatric Cardiology Universitätsmedizin Berlin Germany
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Characterized by enlarged ventricle and loss of systolic function, dilated cardiomyopathy (DCM) has the highest morbidity among all the cardiomyopathies. Although it is well established that DCM is typically caused by mutations in a large number of genes, there is an emerging appreciation for the contribution of epigenetic alteration in the development of DCM. RECENT FINDINGS We present some of the recent progress in the field of epigenetics in DCM by focusing on the four major epigenetic modifications, that is, DNA methylation, histone modification, chromatin remodeling as well as the noncoding RNAs. The major players involved in these DCM-related epigenetic reprogramming will be highlighted. Finally, the diagnostic and the therapeutic implications for DCM based on new knowledge of epigenetic regulation will also be discussed. SUMMARY As a rapidly expanding field, epigenetic studies in DCM have the promise to yield both novel mechanistic insights as well as potential new avenues for more effective treatment of the disease.
Collapse
|
19
|
Liu Y, Zhang M, Sun J, Chang W, Sun M, Zhang S, Wu J. Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics 2020; 21:61. [PMID: 31959124 PMCID: PMC6972009 DOI: 10.1186/s12864-020-6455-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background Structural variations (SVs) have been reported to play an important role in genetic diversity and trait regulation. Many computer algorithms detecting SVs have recently been developed, but the use of multiple algorithms to detect high-confidence SVs has not been studied. The most suitable sequencing depth for detecting SVs in pear is also not known. Results In this study, a pipeline to detect SVs using next-generation and long-read sequencing data was constructed. The performances of seven types of SV detection software using next-generation sequencing (NGS) data and two types of software using long-read sequencing data (SVIM and Sniffles), which are based on different algorithms, were compared. Of the nine software packages evaluated, SVIM identified the most SVs, and Sniffles detected SVs with the highest accuracy (> 90%). When the results from multiple SV detection tools were combined, the SVs identified by both MetaSV and IMR/DENOM, which use NGS data, were more accurate than those identified by both SVIM and Sniffles, with mean accuracies of 98.7 and 96.5%, respectively. The software packages using long-read sequencing data required fewer CPU cores and less memory and ran faster than those using NGS data. In addition, according to the performances of assembly-based algorithms using NGS data, we found that a sequencing depth of 50× is appropriate for detecting SVs in the pear genome. Conclusion This study provides strong evidence that more than one SV detection software package, each based on a different algorithm, should be used to detect SVs with higher confidence, and that long-read sequencing data are better than NGS data for SV detection. The SV detection pipeline that we have established will facilitate the study of diversity in other crops.
Collapse
Affiliation(s)
- Yueyuan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jieying Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenjing Chang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
20
|
Jenko Bizjan B, Katsila T, Tesovnik T, Šket R, Debeljak M, Matsoukas MT, Kovač J. Challenges in identifying large germline structural variants for clinical use by long read sequencing. Comput Struct Biotechnol J 2019; 18:83-92. [PMID: 32099591 PMCID: PMC7026727 DOI: 10.1016/j.csbj.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Genomic structural variations, previously considered rare events, are widely recognized as a major source of inter-individual variability and hence, a major hurdle in optimum patient stratification and disease management. Herein, we focus on large complex germline structural variations and present challenges towards target treatment via the synergy of state-of-the-art approaches and information technology tools. A complex structural variation detection remains challenging, as there is no gold standard for identifying such genomic variations with long reads, especially when the chromosomal rearrangement in question is a few Mb in length. A clinical case with a large complex chromosomal rearrangement serves as a paradigm. We feel that functional validation and data interpretation are of outmost importance for information growth to be translated into knowledge growth and hence, new working practices are highlighted.
Collapse
Affiliation(s)
- Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Centre, Athens, Greece
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | | | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| |
Collapse
|
21
|
Tao L, Yang L, Huang X, Hua F, Yang X. Reconstruction and Analysis of the lncRNA-miRNA-mRNA Network Based on Competitive Endogenous RNA Reveal Functional lncRNAs in Dilated Cardiomyopathy. Front Genet 2019; 10:1149. [PMID: 31803236 PMCID: PMC6873784 DOI: 10.3389/fgene.2019.01149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is an important cause of sudden death and heart failure with an unknown etiology. Recent studies have suggested that long non-coding RNA (lncRNA) can interact with microRNA (miRNA) and indirectly interact with mRNA through competitive endogenous RNA (ceRNA) activities. However, the mechanism of ceRNA in DCM remains unclear. In this study, a miRNA array was first performed using heart samples from DCM patients and healthy controls. For further validation, we conducted real-time quantitative reverse transcription (RT)-PCR using samples from DCM patients and a doxorubicin-induced rodent model of cardiomyopathy, revealing that miR-144-3p and miR-451a were down-regulated, and miR-21-5p was up-regulated. Based on the ceRNA theory, we constructed a global triple network using data from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) and our miRNA array. The lncRNA-miRNA-mRNA network comprised 22 lncRNA nodes, 32 mRNA nodes, and 11 miRNA nodes. Hub nodes and the number of relationship pairs were then analyzed, and the results showed that two lncRNAs (NONHSAT001691 and NONHSAT006358) targeting miR-144/451 were highly related to DCM. Then, cluster module and random walk with restart for the ceRNA network were analyzed and identified four lncRNAs (NONHSAT026953/NONHSAT006250/NONHSAT133928/NONHSAT041662) targeting miR-21 that were significantly related to DCM. This study provides a new strategy for research on DCM or other diseases. Furthermore, lncRNA-miRNA pairs may be regarded as candidate diagnostic biomarkers or potential therapeutic targets of DCM.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
22
|
Choong OK, Chen CY, Zhang J, Lin JH, Lin PJ, Ruan SC, Kamp TJ, Hsieh PC. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Am J Cancer Res 2019; 9:6550-6567. [PMID: 31588235 PMCID: PMC6771230 DOI: 10.7150/thno.35218] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2019] [Indexed: 01/03/2023] Open
Abstract
Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.
Collapse
|
23
|
Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure. Nat Commun 2019; 10:2760. [PMID: 31235787 PMCID: PMC6591478 DOI: 10.1038/s41467-019-10591-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure. The genetic and pathogenetic basis of heart failure is incompletely understood. Here, the authors present a high-fidelity tissue collection from rapidly preserved failing and non-failing control hearts which are used for eQTL mapping and network analysis, resulting in the prioritization of PPP1R3A as a heart failure gene.
Collapse
|
24
|
Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals. Clin Res Cardiol 2019; 108:1297-1308. [PMID: 30980206 DOI: 10.1007/s00392-019-01465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Left ventricular non-compaction has been increasingly diagnosed in recent years. However, it is still debated whether non-compaction is a pathological condition or a physiological trait. In this meta-analysis and systematic review, we compare studies, which investigated these two different perspectives. Furthermore, we provide a comprehensive overview on the clinical outcome as well as genetic background of left ventricular non-compaction cardiomyopathy in adult patients. METHODS AND RESULTS We retrieved PubMed/Medline literatures in English language from 2000 to 19/09/2018 on clinical outcome and genotype of patients with non-compaction. We summarized and extensively reviewed all studies that passed selection criteria and performed a meta-analysis on key phenotypic parameters. Altogether, 35 studies with 2271 non-compaction patients were included in our meta-analysis. The mean age at diagnosis was the mid of their fifth decade. Two-thirds of patients were male. Congenital heart diseases including atrial or ventricular septum defect or Ebstein anomaly were reported in 7% of patients. Twenty-four percent presented with family history of cardiomyopathy. The mean frequency of neuromuscular diseases was 5%. Heart rhythm abnormalities were reported frequently: conduction disease in 26%, supraventricular tachycardia in 17%, and sustained or non-sustained ventricular tachycardia in 18% of patients. Three important outcome measures were reported including systemic thromboembolic events with a mean frequency of 9%, heart transplantation with 4%, and adequate ICD therapy with 15%. Nine studies investigated the genetics of non-compaction cardiomyopathy. The most frequently mutated gene was TTN with a pooled frequency of 11%. The average frequency of MYH7 mutations was 9%, for MYBPC3 mutations 5%, and for CASQ2 and LDB3 3% each. TPM1, MIB1, ACTC1, and LMNA mutations had an average frequency of 2% each. Mutations in PLN, HCN4, TAZ, DTNA, TNNT2, and RBM20 were reported with a frequency of 1% each. We also summarized the results of eight studies investigating the non-compaction in altogether 5327 athletes, pregnant women, patients with sickle cell disease, as well as individuals from population-based cohorts, in which the presence of left ventricular hypertrabeculation ranged from 1.3 to 37%. CONCLUSION The summarized data indicate that non-compaction may lead to unfavorable outcome in different cardiomyopathy entities. The presence of key features in a multimodal diagnostic approach could distinguish between benign morphological trait and manifest cardiomyopathy.
Collapse
|
25
|
|
26
|
Molecular characterization of Portuguese patients with dilated cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2018.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Sousa A, Canedo P, Azevedo O, Lopes L, Pinho T, Baixia M, Rocha-Gonçalves F, Gonçalves L, Cardoso JS, Machado JC, Martins E. Molecular characterization of Portuguese patients with dilated cardiomyopathy. Rev Port Cardiol 2019; 38:129-139. [DOI: 10.1016/j.repc.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 10/28/2018] [Indexed: 01/29/2023] Open
|
28
|
Haas J, Mester S, Lai A, Frese KS, Sedaghat-Hamedani F, Kayvanpour E, Rausch T, Nietsch R, Boeckel JN, Carstensen A, Völkers M, Dietrich C, Pils D, Amr A, Holzer DB, Martins Bordalo D, Oehler D, Weis T, Mereles D, Buss S, Riechert E, Wirsz E, Wuerstle M, Korbel JO, Keller A, Katus HA, Posch AE, Meder B. Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 2019; 10:107-120. [PMID: 29138229 PMCID: PMC5760848 DOI: 10.15252/emmm.201707838] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcriptome needs to be tightly regulated by mechanisms that include transcription factors, enhancers, and repressors as well as non‐coding RNAs. Besides this dynamic regulation, a large part of phenotypic variability of eukaryotes is expressed through changes in gene transcription caused by genetic variation. In this study, we evaluate genome‐wide structural genomic variants (SVs) and their association with gene expression in the human heart. We detected 3,898 individual SVs affecting all classes of gene transcripts (e.g., mRNA, miRNA, lncRNA) and regulatory genomic regions (e.g., enhancer or TFBS). In a cohort of patients (n = 50) with dilated cardiomyopathy (DCM), 80,635 non‐protein‐coding elements of the genome are deleted or duplicated by SVs, containing 3,758 long non‐coding RNAs and 1,756 protein‐coding transcripts. 65.3% of the SV‐eQTLs do not harbor a significant SNV‐eQTL, and for the regions with both classes of association, we find similar effect sizes. In case of deleted protein‐coding exons, we find downregulation of the associated transcripts, duplication events, however, do not show significant changes over all events. In summary, we are first to describe the genomic variability associated with SVs in heart failure due to DCM and dissect their impact on the transcriptome. Overall, SVs explain up to 7.5% of the variation of cardiac gene expression, underlining the importance to study human myocardial gene expression in the context of the individual genome. This has immediate implications for studies on basic mechanisms of cardiac maladaptation, biomarkers, and (gene) therapeutic studies alike.
Collapse
Affiliation(s)
- Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Stefan Mester
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Alan Lai
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Karen S Frese
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Elham Kayvanpour
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Tobias Rausch
- EMBL (European Molecular Biology Laboratory), Heidelberg, Germany
| | - Rouven Nietsch
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jes-Niels Boeckel
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Avisha Carstensen
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Carsten Dietrich
- Strategy and Innovation, Siemens Healthcare GmbH, Erlangen, Germany
| | - Dietmar Pils
- Siemens AG, Corporate Technology, Vienna, Austria.,Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
| | - Ali Amr
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Daniel B Holzer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Daniel Oehler
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Tanja Weis
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Derliz Mereles
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Sebastian Buss
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Eva Riechert
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Emil Wirsz
- Strategy and Innovation, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Jan O Korbel
- EMBL (European Molecular Biology Laboratory), Heidelberg, Germany
| | - Andreas Keller
- Department of Bioinformatics, University of Saarland, Saarbrücken, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Andreas E Posch
- Strategy and Innovation, Siemens Healthcare GmbH, Erlangen, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| |
Collapse
|
29
|
Zucchelli S, Fedele S, Vatta P, Calligaris R, Heutink P, Rizzu P, Itoh M, Persichetti F, Santoro C, Kawaji H, Lassmann T, Hayashizaki Y, Carninci P, Forrest ARR, Gustincich S. Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. Mol Neurobiol 2019; 56:5392-5415. [PMID: 30610612 PMCID: PMC6614138 DOI: 10.1007/s12035-018-1465-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Natural antisense transcripts are common features of mammalian genes providing additional regulatory layers of gene expression. A comprehensive description of antisense transcription in loci associated to familial neurodegenerative diseases may identify key players in gene regulation and provide tools for manipulating gene expression. We take advantage of the FANTOM5 sequencing datasets that represent the largest collection to date of genome-wide promoter usage in almost 2000 human samples. Transcription start sites (TSSs) are mapped at high resolution by the use of a modified protocol of cap analysis of gene expression (CAGE) for high-throughput single molecule next-generation sequencing with Helicos (hCAGE). Here we present the analysis of antisense transcription at 17 loci associated to hereditary Alzheimer’s disease, Frontotemporal Dementia, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s disease. We focused our analysis on libraries derived from brain tissues and primary cells. We also screened libraries from total blood and blood cell populations in the quest for peripheral biomarkers of neurodegenerative diseases. We identified 63 robust promoters in antisense orientation to genes associated to familial neurodegeneration. When applying a less stringent cutoff, this number increases to over 400. A subset of these promoters represents alternative TSSs for 24 FANTOM5 annotated long noncoding RNA (lncRNA) genes, in antisense orientation to 13 of the loci analyzed here, while the remaining contribute to the expression of additional transcript variants. Intersection with GWAS studies, sample ontology, and dynamic expression reveals association to specific genetic traits as well as cell and tissue types, not limited to neurodegenerative diseases. Antisense transcription was validated for a subset of genes, including those encoding for Microtubule-Associated Protein Tau, α-synuclein, Parkinsonism-associated deglycase DJ-1, and Leucin-Rich Repeat Kinase 2. This work provides evidence for the existence of additional regulatory mechanisms of the expression of neurodegenerative disease-causing genes by previously not-annotated and/or not-validated antisense long noncoding RNAs.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | | - Paolo Vatta
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Raffaella Calligaris
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, Clinical Neurology Unit, Cattinara University Hospital, Trieste, Italy
| | - Peter Heutink
- Section Medical Genomics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
- Genome Biology of Neurodegenerative Diseases, Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Standort, Tübingen, Germany
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
| | - Patrizia Rizzu
- Section Medical Genomics, Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
- Applied Genomics for Neurodegenerative Diseases, Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Standort, Tübingen, Germany
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wakō, Japan
| | - Francesca Persichetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wakō, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Road, Subiaco, WA 6008 Australia
- Laboratory for Applied Computational Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wakō, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alistair R. R. Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Omics Science Center, Yokohama, Japan
- Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
30
|
Rigau M, Juan D, Valencia A, Rico D. Intronic CNVs and gene expression variation in human populations. PLoS Genet 2019; 15:e1007902. [PMID: 30677042 PMCID: PMC6345438 DOI: 10.1371/journal.pgen.1007902] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Introns can be extraordinarily large and they account for the majority of the DNA sequence in human genes. However, little is known about their population patterns of structural variation and their functional implication. By combining the most extensive maps of CNVs in human populations, we have found that intronic losses are the most frequent copy number variants (CNVs) in protein-coding genes in human, with 12,986 intronic deletions, affecting 4,147 genes (including 1,154 essential genes and 1,638 disease-related genes). This intronic length variation results in dozens of genes showing extreme population variability in size, with 40 genes with 10 or more different sizes and up to 150 allelic sizes. Intronic losses are frequent in evolutionarily ancient genes that are highly conserved at the protein sequence level. This result contrasts with losses overlapping exons, which are observed less often than expected by chance and almost exclusively affect primate-specific genes. An integrated analysis of CNVs and RNA-seq data showed that intronic loss can be associated with significant differences in gene expression levels in the population (CNV-eQTLs). These intronic CNV-eQTLs regions are enriched for intronic enhancers and can be associated with expression differences of other genes showing long distance intron-promoter 3D interactions. Our data suggests that intronic structural variation of protein-coding genes makes an important contribution to the variability of gene expression and splicing in human populations.
Collapse
Affiliation(s)
- Maria Rigau
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - David Juan
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy. J Mol Med (Berl) 2018; 96:845-856. [PMID: 30008018 DOI: 10.1007/s00109-018-1666-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
|
32
|
Jiang T, Guo J, Hu Z, Zhao M, Gu Z, Miao S. Identification of Potential Prostate Cancer-Related Pseudogenes Based on Competitive Endogenous RNA Network Hypothesis. Med Sci Monit 2018; 24:4213-4239. [PMID: 29923546 PMCID: PMC6042310 DOI: 10.12659/msm.910886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been revealed to function as competing endogenous RNAs (ceRNAs), which can seclude the common microRNAs (miRNAs) and hence prevent the miRNAs from binding to their ancestral gene. Nonetheless, the role of lncRNA-mediated ceRNAs in prostate cancer has not yet been elucidated. MATERIAL AND METHODS Using The Cancer Genome Atlas (TCGA) database, lncRNA, miRNA, and mRNA profiles from 499 prostate cancer tissues and 52 normal prostate tissues were analyzed with the R package "DESeq" to identify the differentially expressed RNAs. GO and KEGG pathway analyses were performed using "DAVID6.8" and R packages "Clusterprofile." The ceRNA network in prostate cancer was constructed using miRDB, miRTarBase, and TargetScan databases. Survival analysis was performed with Kaplan-Meier analysis. RESULTS A total of 376 lncRNAs, 33 miRNAs, and 687 mRNAs were identified as significant factors in tumorigenesis. Based on the hypothesis that the ceRNA network (lncRNA-miRNA-mRNA regulatory axis) is involved in prostate cancer and forms competitive interrelations between miRNA and mRNA or lncRNA, we constructed a ceRNA network that included 23 lncRNAs, 6 miRNAs, and 2 mRNAs that were differentially expressed in prostate cancer. Only 3 lncRNAs (LINC00308, LINC00355, and OSTN-AS1) had a significant association with survival (P<0.05). The 3 prostate cancer-specific lncRNA were validated in prostate cancer cell lines PC3 and DU145 using qRT-PCR. CONCLUSIONS We demonstrated the differential lncRNA expression profiles in prostate cancer, which provides new insights for future studies of the ceRNA network and its regulatory mechanisms in prostate cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Junjie Guo
- Department of Pathogenic Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Zhongchun Hu
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Ming Zhao
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Zhenggang Gu
- Department of Urology, Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Shu Miao
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
33
|
Does nature provide the clues for future heart failure treatments? J Thorac Cardiovasc Surg 2018; 155:2029. [DOI: 10.1016/j.jtcvs.2017.12.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022]
|
34
|
|