1
|
Liu L, Zhang DS, Zhang XJ, Zheng ZZ, Wang SB. A case of acute lung injury in a peripheral blood stem cell donor mobilized with pegylated recombinant human granulocyte colony-stimulating factor. Int J Hematol 2024; 120:262-266. [PMID: 38730189 DOI: 10.1007/s12185-024-03779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) has been introduced for the mobilization of peripheral blood stem cells (PBSCs). However, no cases of acute lung injury (ALI) in healthy donors have been reported, and the underlying mechanisms remain poorly understood. We first reported a case of ALI caused by PEG-rhG-CSF in a healthy Chinese donor, characterized by hemoptysis, hypoxemia, and patchy shadows. Ultimately, hormone administration, planned PBSC collection, leukocyte debridement, and planned PBSC collection resulted in active control of the donor's ALI. The donor's symptoms improved without any adverse effects, and the PBSC collection proceeded without incident. Over time, the lung lesion was gradually absorbed and eventually returned to normal. PEG-rhG-CSF may contribute to ALI in healthy donors via mechanisms involving neutrophil aggregation, adhesion, and the release of inflammatory mediators in the lung. This case report examines the clinical manifestations, treatment, and mechanism of lung injury induced by PEG-rhG-CSF-mobilized PBSCs.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The 920 Hospital of PLA Joint Logistics Support Force, No. 212, Daguan Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Ding-Song Zhang
- Department of Hematology, The 920 Hospital of PLA Joint Logistics Support Force, No. 212, Daguan Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Xue-Juan Zhang
- Department of Hematology, The 920 Hospital of PLA Joint Logistics Support Force, No. 212, Daguan Road, Xishan District, Kunming, 650032, Yunnan Province, China
| | - Zhong-Zheng Zheng
- Shanghai Tissuebank Biotechnology Co., Ltd, No. 908. Ziping Road, #21 Building, Pudong New District, Shanghai, 201318, China.
| | - San-Bin Wang
- Department of Hematology, The 920 Hospital of PLA Joint Logistics Support Force, No. 212, Daguan Road, Xishan District, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
2
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
4
|
Skulimowska I, Sosniak J, Gonka M, Szade A, Jozkowicz A, Szade K. The biology of hematopoietic stem cells and its clinical implications. FEBS J 2022; 289:7740-7759. [PMID: 34496144 DOI: 10.1111/febs.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Fang PH, Lai YY, Chen CL, Wang HY, Chang YN, Lin YC, Yan YT, Lai CH, Cheng B. Cobalt protoporphyrin promotes human keratinocyte migration under hyperglycemic conditions. Mol Med 2022; 28:71. [PMID: 35739477 PMCID: PMC9219158 DOI: 10.1186/s10020-022-00499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Complete healing of diabetic wounds continues to be a clinically unmet need. Although robust therapies such as stem cell therapy and growth factor treatment are clinically applied, these treatments are costly for most diabetic wound patients. Therefore, a cheaper alternative is needed. Cobalt protoporphyrin (CoPP) has recently been demonstrated to promote tissue regeneration. In this study, the therapeutic benefits of CoPP in diabetic wound healing were examined. Methods An in vitro wound healing model that mimics re-epithelialization was established to examine the effect of CoPP on the migratory capability of human keratinocytes (HaCaT) in either normal glucose (NG) or high glucose (HG) media, as well as in the presence of either H2O2 or lipopolysaccharide (LPS). At the end of the migration assays, cells were collected and subjected to Western blotting analysis and immunostaining. Results HaCaT were found to migrate significantly more slowly in the HG media compared to the NG media. CoPP treatment was found to enhance cell migration in HG media, but was found to decrease cell migration and proliferation when HaCaT were cultured in NG media. CoPP treatment induced high levels of expression of Nrf-2/HO-1 and FoxO1 in HaCaT cultured in either glucose concentration, although the FoxO1 expression was found to be significantly higher in HaCaT that underwent the migration assay in NG media compared to those in HG media. The higher level of FoxO1 expression seen in CoPP-treated HaCaT cultured in NG media resulted in upregulation of CCL20 and downregulation of TGFβ1. In contrast, HaCaT migrated in HG media were found to have high levels of expression of TGFβ1, and low levels of expression of CCL20. Interestingly, in the presence of H2O2, CoPP-pretreated HaCaT cultured in either NG or HG media had similar expression level of Nrf-2/HO-1 and FoxO1 to each other. Moreover, the anti-apoptotic effect of CoPP pretreatment was noticed in HaCaT cultured in either glucose concentration. Additionally, CoPP pretreatment was shown to promote tight junction formation in HaCaT suffering from LPS-induced damage. Conclusions CoPP enhances cell migratory capacity under hyperglycemic conditions, and protects cells from oxidative and LPS-induced cellular damage in HG media containing either H2O2 or LPS. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00499-0.
Collapse
Affiliation(s)
- Peng-Hsiang Fang
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Ying-Ying Lai
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chih-Ling Chen
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Hsin-Yu Wang
- Bachelor Program of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Ning Chang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Yung-Chang Lin
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Cheng-Hung Lai
- Department of Veterinary Medicine, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan.
| | - Bill Cheng
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, No.145, Xing Da Road, 402, Taichung, Taiwan.
| |
Collapse
|
6
|
Schaefer REM, Callahan RC, Atif SM, Orlicky DJ, Cartwright IM, Fontenot AP, Colgan SP, Onyiah JC. Disruption of monocyte-macrophage differentiation and trafficking by a heme analog during active inflammation. Mucosal Immunol 2022; 15:244-256. [PMID: 34916594 PMCID: PMC8881314 DOI: 10.1038/s41385-021-00474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
Heme metabolism is a key regulator of inflammatory responses. Cobalt protoporphyrin IX (CoPP) is a heme analog and mimic that potently activates the NRF2/heme oxygenase-1 (HO-1) pathway, especially in monocytes and macrophages. We investigated the influence of CoPP on inflammatory responses using a murine model of colitis. Surprisingly, conditional deletion of myeloid HO-1 did not impact the colonic inflammatory response or the protective influence of CoPP in the setting of dextran sodium sulfate-induced colitis. Rather, we reveal that CoPP elicits a contradictory shift in blood myeloid populations relative to the colon during active intestinal inflammation. Major population changes include markedly diminished trafficking of CCR2+Ly6Chi monocytes to the inflamed colon, despite significant mobilization of this population into circulation. This resulted in significantly diminished colonic expansion of monocyte-derived macrophages and inflammatory cytokine expression. These findings were linked with significant induction of systemic CCL2 leading to a disrupted CCL2 chemoattractant gradient toward the colon and concentration-dependent suppression of circulating monocyte CCR2 expression. Administration of CoPP also induced macrophage differentiation toward a MarcohiHmox1hi anti-inflammatory erythrophagocytic phenotype, contributing to an overall decreased inflammatory profile. Such findings redefine protective influences of heme metabolism during inflammation, and highlight previously unreported immunosuppressive mechanisms of endogenous CCL2 induction.
Collapse
Affiliation(s)
- Rachel E. M. Schaefer
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Rosemary C. Callahan
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Shaikh M. Atif
- Division of Allergy, Asthma and Clinical Immunology, University of Colorado School of Medicine, Aurora, CO
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Andrew P. Fontenot
- Division of Allergy, Asthma and Clinical Immunology, University of Colorado School of Medicine, Aurora, CO
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Joseph C. Onyiah
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, Corresponding author: Joseph C. Onyiah, M.D., University of Colorado School of Medicine, Rocky Mountain Regional VA Medical Center, 12700 East 19th Ave. MS B-146, Aurora, CO 80045,
| |
Collapse
|
7
|
Basoglu H, Degirmencioglu I, Eyupoglu FC. Synthesis and photodynamic efficacy of water-soluble protoporphyrin IX homologue with mPEG550. Photodiagnosis Photodyn Ther 2021; 36:102615. [PMID: 34740838 DOI: 10.1016/j.pdpdt.2021.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022]
Abstract
Protoporphyrin IX (PpIX), which is an efficient photosensitive agent, cannot be used directly in photodynamic therapy due to its aggregation in physiological environment. If PpIX is made water-soluble without losing its photosensitive properties, it can be used in many medical fields, including cancer treatment. Here we report synthesis of PpIX homologue with mPEG550 (Porfipeg) and its photodynamic effects on both in-vitro and in-vivo environment. Porfipeg is synthesized to give PpIX the ability to dissolve in water. Spectrometric (FT-IR, NMR, MS, UV-vis and Fluorescence) measurements were performed. Porfipeg can penetrate into the cells and indicates no cytotoxicity in the dark whereas cell viability significantly reduced with light irradiation. The cells can be visualized by fluorescence microscope. In-vivo experiment revealed that intravenous injection of Porfipeg is more efficient than intraperitoneal injection for the acute photodynamic effects within 30 min. Moreover it is excreted by the kidneys. In conclusion, Porfipeg has remarkable potentials to be used in both fluorescence guidance in surgeries and photodynamic therapy for cancer treatment.
Collapse
Affiliation(s)
- Harun Basoglu
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey.
| | - Ismail Degirmencioglu
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Figen Celep Eyupoglu
- Faculty of Medicine, Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
The Effects of Physical Activity on the Aging of Circulating Immune Cells in Humans: A Systematic Review. IMMUNO 2021. [DOI: 10.3390/immuno1030009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-induced cellular senescence leads to a decline in efficacy of immune response and an increase in morbidity and mortality. Physical activity may be an intervention to slow down or reverse this process for elderly individuals or even delay it via enhanced activity over their lifespan. The aim of this systematic review was to analyze and discuss the current evidence of the effects of physical activity on senescence in leukocyte subpopulations. Two electronic databases (PubMed, Web of Science) were scanned in July 2020. Studies performing endurance or resistance exercise programs and investigating leukocytes of healthy, particularly elderly subjects were included. Nine human studies were identified, including a total of 440 participants, of which two studies examined different types of exercise training retrospectively, three conducted resistance exercise, three endurance exercise, and one endurance vs. resistance training. Results revealed that exercise training increased the naïve subsets of peripheral T-helper cells and cytotoxic T-cells, whereas the senescent and effector memory T-cells re-expresses CD45RA (TEMRA) subsets decreased. Moreover, the percentage of T-helper- compared to cytotoxic T-cells increased. The results suggest that physical activity reduces or slows down cellular immunosenescence. Endurance exercise seems to affect cellular senescence in a more positive way than resistance training. However, training contents and sex also influence senescent cells. Explicit mechanisms need to be clarified.
Collapse
|
9
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
10
|
Szade A, Szade K, Mahdi M, Józkowicz A. The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cell Mol Life Sci 2021; 78:4639-4651. [PMID: 33787980 PMCID: PMC8195762 DOI: 10.1007/s00018-021-03803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Mahdi Mahdi
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
11
|
Role of Heme-Oxygenase-1 in Biology of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Cells 2021; 10:cells10030522. [PMID: 33804563 PMCID: PMC8000937 DOI: 10.3390/cells10030522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1, encoded by HMOX1) is a cytoprotective enzyme degrading heme into CO, Fe2+, and biliverdin. HO-1 was demonstrated to affect cardiac differentiation of murine pluripotent stem cells (PSCs), regulate the metabolism of murine adult cardiomyocytes, and influence regeneration of infarcted myocardium in mice. However, the enzyme’s effect on human cardiogenesis and human cardiomyocytes’ electromechanical properties has not been described so far. Thus, this study aimed to investigate the role of HO-1 in the differentiation of human induced pluripotent stem cells (hiPSCs) into hiPSC-derived cardiomyocytes (hiPSC-CMs). hiPSCs were generated from human fibroblasts and peripheral blood mononuclear cells using Sendai vectors and subjected to CRISPR/Cas9-mediated HMOX1 knock-out. After confirming lack of HO-1 expression on the protein level, isogenic control and HO-1-deficient hiPSCs were differentiated into hiPSC-CMs. No differences in differentiation efficiency and hiPSC-CMs metabolism were observed in both cell types. The global transcriptomic analysis revealed, on the other hand, alterations in electrophysiological pathways in hiPSC-CMs devoid of HO-1, which also demonstrated increased size. Functional consequences in changes in expression of ion channels genes were then confirmed by patch-clamp analysis. To the best of our knowledge, this is the first report demonstrating the link between HO-1 and electrophysiology in human cardiomyocytes.
Collapse
|
12
|
Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: From physiology to therapeutics. Stem Cells 2020; 38:1241-1253. [PMID: 32526037 DOI: 10.1002/stem.3242] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Stem cell homing is a multistep endogenous physiologic process that is also used by exogenously administered hematopoietic stem and progenitor cells (HSPCs). This multistep process involves cell migration and is essential for hematopoietic stem cell transplantation. The process can be manipulated to enhance ultimate engraftment potential, and understanding stem cell homing is also important to the understanding of stem cell mobilization. Homing is also of potential importance in the recruitment of marrow mesenchymal stem and stromal cells (MSCs) to sites of injury and regeneration. This process is less understood but assumes importance when these cells are used for repair purposes. In this review, the process of HSPC and MSC homing is examined, as are methods to enhance this process.
Collapse
Affiliation(s)
- Jane L Liesveld
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Naman Sharma
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Omar S Aljitawi
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
13
|
The p53/MDM2/MDMX-targeted therapies-a clinical synopsis. Cell Death Dis 2020; 11:237. [PMID: 32303678 PMCID: PMC7165174 DOI: 10.1038/s41419-020-2445-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 02/02/2023]
|
14
|
Szade A, Szade K, Nowak WN, Bukowska-Strakova K, Muchova L, Gońka M, Żukowska M, Cieśla M, Kachamakova-Trojanowska N, Rams-Baron M, Ratuszna A, Dulak J, Józkowicz A. Cobalt protoporphyrin IX increases endogenous G-CSF and mobilizes HSC and granulocytes to the blood. EMBO Mol Med 2019; 11:e09571. [PMID: 31709729 PMCID: PMC6895613 DOI: 10.15252/emmm.201809571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Granulocyte colony‐stimulating factor (G‐CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G‐CSF, IL‐6, and MCP‐1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G‐CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G‐CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP‐mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G‐CSF. Although CoPP is used to activate Nrf2/HO‐1 axis, the observed effects are Nrf2/HO‐1 independent. Concluding, CoPP increases expression of mobilization‐related cytokines and has superior mobilizing efficiency compared with recombinant G‐CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Lucie Muchova
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Monika Gońka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Żukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Cieśla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Rams-Baron
- A. Chelkowski Institute of Physics, University of Silesia, Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, Chorzow, Poland
| | - Alicja Ratuszna
- A. Chelkowski Institute of Physics, University of Silesia, Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research, Chorzow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|