1
|
Kliche J, Simonetti L, Krystkowiak I, Kuss H, Diallo M, Rask E, Nilsson J, Davey NE, Ivarsson Y. Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. Mol Syst Biol 2024; 20:1025-1048. [PMID: 39009827 PMCID: PMC11369174 DOI: 10.1038/s44320-024-00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Whole genome and exome sequencing are reporting on hundreds of thousands of missense mutations. Taking a pan-disease approach, we explored how mutations in intrinsically disordered regions (IDRs) break or generate protein interactions mediated by short linear motifs. We created a peptide-phage display library tiling ~57,000 peptides from the IDRs of the human proteome overlapping 12,301 single nucleotide variants associated with diverse phenotypes including cancer, metabolic diseases and neurological diseases. By screening 80 human proteins, we identified 366 mutation-modulated interactions, with half of the mutations diminishing binding, and half enhancing binding or creating novel interaction interfaces. The effects of the mutations were confirmed by affinity measurements. In cellular assays, the effects of motif-disruptive mutations were validated, including loss of a nuclear localisation signal in the cell division control protein CDC45 by a mutation associated with Meier-Gorlin syndrome. The study provides insights into how disease-associated mutations may perturb and rewire the motif-based interactome.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, Chelsea, London, UK
| | - Hanna Kuss
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, DE-48149, Münster, Germany
| | - Marcel Diallo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Emma Rask
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Norman E Davey
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, Chelsea, London, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
2
|
Sundell GN, Tao SC. Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome. Mol Cell Proteomics 2024; 23:100831. [PMID: 39168282 PMCID: PMC11417174 DOI: 10.1016/j.mcpro.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.
Collapse
Affiliation(s)
- Gustav N Sundell
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Montserrat-Gomez M, Gogl G, Carrasco K, Betzi S, Durbesson F, Cousido-Siah A, Kostmann C, Essig DJ, Strømgaard K, Østergaard S, Morelli X, Trave G, Vincentelli R, Bailly E, Borg JP. PDZome-wide and structural characterization of the PDZ-binding motif of VANGL2. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140989. [PMID: 38142947 DOI: 10.1016/j.bbapap.2023.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
VANGL2 is a core component of the non-canonical Wnt/Planar Cell Polarity signaling pathway that uses its highly conserved carboxy-terminal type 1 PDZ-binding motif (PBM) to bind a variety of PDZ proteins. In this study, we characterize and quantitatively assess the largest VANGL2 PDZome-binding profile documented so far, using orthogonal methods. The results of our holdup approach support VANGL2 interactions with a large panel of both long-recognized and unprecedented PDZ domains. Truncation and point mutation analyses of the VANGL2 PBM establish that, beyond the strict requirement of the P-0 / V521 and P-2 / T519 amino acids, upstream residues, including E518, Q516 and R514 at, respectively, P-3, P-5 and P-7 further contribute to the robustness of VANGL2 interactions with two distinct PDZ domains, SNX27 and SCRIBBLE-PDZ3. In agreement with these data, incremental amino-terminal deletions of the VANGL2 PBM causes its overall affinity to progressively decline. Moreover, the holdup data establish that the PDZome binding repertoire of VANGL2 starts to diverge significantly with the truncation of E518. A structural analysis of the SYNJ2BP-PDZ/VANGL2 interaction with truncated PBMs identifies a major conformational change in the binding direction of the PBM peptide after the P-2 position. Finally, we report that the PDZome binding profile of VANGL2 is dramatically rearranged upon phosphorylation of S517, T519 and S520. Our crystallographic approach illustrates how SYNJ2BP accommodates a S520-phosphorylated PBM peptide through the ideal positioning of two basic residues, K48 and R86. Altogether our data provides a comprehensive view of the VANGL2 PDZ network and how this network specifically responds to the post-translation modification of distinct PBM residues. These findings should prove useful in guiding future functional and molecular studies of the key PCP component VANGL2.
Collapse
Affiliation(s)
- Marta Montserrat-Gomez
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France
| | - Gergo Gogl
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Kendall Carrasco
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Stephane Betzi
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Fabien Durbesson
- Aix Marseille Université, CNRS, Architecture et fonction des macromolécules biologiques (AFMB), Marseille, France
| | - Alexandra Cousido-Siah
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Camille Kostmann
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Dominic J Essig
- Center for Biopharmaceuticals, Jagtvej 162, 2100 Copenhagen, Denmark; Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | | | - Søren Østergaard
- Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | - Xavier Morelli
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Gilles Trave
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Renaud Vincentelli
- Aix Marseille Université, CNRS, Architecture et fonction des macromolécules biologiques (AFMB), Marseille, France.
| | - Eric Bailly
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France.
| | - Jean-Paul Borg
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
4
|
Neitthoffer B, Alvarez F, Larrous F, Caillet-Saguy C, Etienne-Manneville S, Boëda B. A short sequence in the tail of SARS-CoV-2 envelope protein controls accessibility of its PDZ-binding motif to the cytoplasm. J Biol Chem 2024; 300:105575. [PMID: 38110034 PMCID: PMC10821599 DOI: 10.1016/j.jbc.2023.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.
Collapse
Affiliation(s)
- Benoit Neitthoffer
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Flavio Alvarez
- Laboratory Channel Receptors, UMR CNRS 3571, Institut Pasteur, Université Paris Cité, Paris, France
| | - Florence Larrous
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Célia Caillet-Saguy
- Laboratory Channel Receptors, UMR CNRS 3571, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
5
|
Vachharajani VT, DeJong MP, Dunn AR. PDZ Domains from the Junctional Proteins Afadin and ZO-1 Act as Mechanosensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559210. [PMID: 37961673 PMCID: PMC10634676 DOI: 10.1101/2023.09.24.559210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intercellular adhesion complexes must withstand mechanical forces to maintain tissue cohesion, while also retaining the capacity for dynamic remodeling during tissue morphogenesis and repair. Most cell-cell adhesion complexes contain at least one PSD95/Dlg/ZO-1 (PDZ) domain situated between the adhesion molecule and the actin cytoskeleton. However, PDZ-mediated interactions are characteristically nonspecific, weak, and transient, with several binding partners per PDZ domain, micromolar dissociation constants, and bond lifetimes of seconds or less. Here, we demonstrate that the bonds between the PDZ domain of the cytoskeletal adaptor protein afadin and the intracellular domains of the adhesion molecules nectin-1 and JAM-A form molecular catch bonds that reinforce in response to mechanical load. In contrast, the bond between the PDZ3-SH3-GUK (PSG) domain of the cytoskeletal adaptor ZO-1 and the JAM-A intracellular domain becomes dramatically weaker in response to ∼2 pN of load, the amount generated by single molecules of the cytoskeletal motor protein myosin II. These results suggest that PDZ domains can serve as force-responsive mechanical anchors at cell-cell adhesion complexes, and that mechanical load can enhance the selectivity of PDZ-peptide interactions. These results suggest that PDZ mechanosensitivity may help to generate the intricate molecular organization of cell-cell junctions and allow junctional complexes to dynamically remodel in response to mechanical load.
Collapse
|
6
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
7
|
Almeida SM, Ivantsiv S, Niibori R, Dunham WH, Green BA, Zhao L, Gingras AC, Cordes SP. An interaction between OTULIN and SCRIB uncovers roles for linear ubiquitination in planar cell polarity. Dis Model Mech 2023; 16:dmm049762. [PMID: 37589075 PMCID: PMC10445738 DOI: 10.1242/dmm.049762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
Planar cell polarity (PCP) plays critical roles in developmental and homeostatic processes. Membrane presentation of PCP complexes containing Van Gogh-like (VANGL) transmembrane proteins is central to PCP and can be directed by the scaffold protein scribble (SCRIB). The role atypical linear ubiquitin (Met1-Ub) chains might play in PCP is unknown. Here, HEK293 cell-based interactomic analyses of the Met1-Ub deubiquitinase OTULIN revealed that OTULIN can interact with SCRIB. Moreover, Met1-Ub chains associated with VANGL2 and PRICKLE1, but not SCRIB, can direct VANGL2 surface presentation. Mouse embryos lacking Otulin showed variable neural tube malformations, including rare open neural tubes, a deficit associated with PCP disruption in mice. In Madin-Darby canine kidney cells, in which the enrichment of VANGL2-GFP proteins at cell-cell contacts represents activated PCP complexes, endogenous OTULIN was recruited to these sites. In the human MDA-MB-231 breast cancer cell model, OTULIN loss caused deficits in Wnt5a-induced filopodia extension and trafficking of transfected HA-VANGL2. Taken together, these findings support a role for linear (de)ubiquitination in PCP signaling. The association of Met1-Ub chains with PCP complex components offers new opportunities for integrating PCP signaling with OTULIN-dependent immune and inflammatory pathways.
Collapse
Affiliation(s)
- Stephanie M. Almeida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofiia Ivantsiv
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Wade H. Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brooke A. Green
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabine P. Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Kliche J, Garvanska DH, Simonetti L, Badgujar D, Dobritzsch D, Nilsson J, Davey NE, Ivarsson Y. Large-scale phosphomimetic screening identifies phospho-modulated motif-based protein interactions. Mol Syst Biol 2023; 19:e11164. [PMID: 37219487 PMCID: PMC10333884 DOI: 10.15252/msb.202211164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | - Dimitriya Hristoforova Garvanska
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | | | - Dilip Badgujar
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | | | - Jakob Nilsson
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
9
|
Davey NE, Simonetti L, Ivarsson Y. The next wave of interactomics: Mapping the SLiM-based interactions of the intrinsically disordered proteome. Curr Opin Struct Biol 2023; 80:102593. [PMID: 37099901 DOI: 10.1016/j.sbi.2023.102593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Short linear motifs (SLiMs) are a unique and ubiquitous class of protein interaction modules that perform key regulatory functions and drive dynamic complex formation. For decades, interactions mediated by SLiMs have accumulated through detailed low-throughput experiments. Recent methodological advances have opened this previously underexplored area of the human interactome to high-throughput protein-protein interaction discovery. In this article, we discuss that SLiM-based interactions represent a significant blind spot in the current interactomics data, introduce the key methods that are illuminating the elusive SLiM-mediated interactome of the human cell on a large scale, and discuss the implications for the field.
Collapse
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
10
|
Lin J, Wang S, Wen L, Ye H, Shang S, Li J, Shu J, Zhou P. Targeting peptide-mediated interactions in omics. Proteomics 2023; 23:e2200175. [PMID: 36461811 DOI: 10.1002/pmic.202200175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Peptide-mediated interactions (PMIs) play a crucial role in cell signaling network, which are responsible for about half of cellular protein-protein associations in the human interactome and have recently been recognized as a new kind of promising druggable target for drug development and disease therapy. In this article, we give a systematic review regarding the proteome-wide discovery of PMIs and targeting druggable PMIs (dPMIs) with chemical drugs, self-inhibitory peptides (SIPs) and protein agents, particularly focusing on their implications and applications for therapeutic purpose in omics. We also introduce computational peptidology strategies used to model, analyze, and design PMI-targeted molecular entities and further extend the concepts of protein context, direct/indirect readout, and enthalpy/entropy effect involved in PMIs. Current issues and future perspective on this topic are discussed. There is still a long way to go before establishment of efficient therapeutic strategies to target PMIs on the omics scale.
Collapse
Affiliation(s)
- Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shaozhou Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
11
|
Molecular basis of Tick Born encephalitis virus NS5 mediated subversion of apico-basal cell polarity signalling. Biochem J 2022; 479:1303-1315. [PMID: 35670457 PMCID: PMC9317960 DOI: 10.1042/bcj20220037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The Scribble (Scrib) protein is a conserved cell polarity regulator with anti-tumorigenic properties. Viruses like the Tick-born encephalitis virus (TBEV) target Scribble to establish a cellular environment supporting viral replication, which is ultimately associated with poor prognosis upon infection. The TBEV NS5 protein has been reported to harbour both an internal as well as a C-terminal PDZ binding motif (PBM), however only the internal PBM was shown to be an interactor with Scribble, with the interaction being mediated via the Scribble PDZ4 domain to antagonize host interferon responses. We examined the NS5 PBM motif interactions with all Scribble PDZ domains using isothermal titration calorimetry, which revealed that the proposed internal PBM did not interact with any Scribble PDZ domains. Instead, the C-terminal PBM of NS5 interacted with Scrib PDZ3. We then established the structural basis of these interactions by determining crystal structures of Scrib PDZ3 bound to the NS5 C-terminal PBM. Our findings provide a structural basis for Scribble PDZ domain and TBEV NS5 interactions and provide a platform to dissect the pathogenesis of TBEV and the role of cell polarity signalling using structure guided approaches.
Collapse
|
12
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
13
|
Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, Ivarsson Y. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol Syst Biol 2022; 18:e10584. [PMID: 35044719 PMCID: PMC8769072 DOI: 10.15252/msb.202110584] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.
Collapse
Affiliation(s)
- Caroline Benz
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Muhammad Ali
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | | | | | - Ahmed Sayadi
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Filip Mihalic
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Johanna Kliche
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Eva Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Per Jemth
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
14
|
Hollander M, Do T, Will T, Helms V. Detecting Rewiring Events in Protein-Protein Interaction Networks Based on Transcriptomic Data. FRONTIERS IN BIOINFORMATICS 2021; 1:724297. [PMID: 36303788 PMCID: PMC9581068 DOI: 10.3389/fbinf.2021.724297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Proteins rarely carry out their cellular functions in isolation. Instead, eukaryotic proteins engage in about six interactions with other proteins on average. The aggregated protein interactome of an organism forms a “hairy ball”-type protein-protein interaction (PPI) network. Yet, in a typical human cell, only about half of all proteins are expressed at a particular time. Hence, it has become common practice to prune the full PPI network to the subset of expressed proteins. If RNAseq data is available, one can further resolve the specific protein isoforms present in a cell or tissue. Here, we review various approaches, software tools and webservices that enable users to construct context-specific or tissue-specific PPI networks and how these are rewired between two cellular conditions. We illustrate their different functionalities on the example of the interactions involving the human TNR6 protein. In an outlook, we describe how PPI networks may be integrated with epigenetic data or with data on the activity of splicing factors.
Collapse
|
15
|
Lindorff-Larsen K, Kragelund BB. On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. J Mol Biol 2021; 433:167196. [PMID: 34390736 DOI: 10.1016/j.jmb.2021.167196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) constitute a broad set of proteins with few uniting and many diverging properties. IDPs-and intrinsically disordered regions (IDRs) interspersed between folded domains-are generally characterized as having no persistent tertiary structure; instead they interconvert between a large number of different and often expanded structures. IDPs and IDRs are involved in an enormously wide range of biological functions and reveal novel mechanisms of interactions, and while they defy the common structure-function paradigm of folded proteins, their structural preferences and dynamics are important for their function. We here discuss open questions in the field of IDPs and IDRs, focusing on areas where machine learning and other computational methods play a role. We discuss computational methods aimed to predict transiently formed local and long-range structure, including methods for integrative structural biology. We discuss the many different ways in which IDPs and IDRs can bind to other molecules, both via short linear motifs, as well as in the formation of larger dynamic complexes such as biomolecular condensates. We discuss how experiments are providing insight into such complexes and may enable more accurate predictions. Finally, we discuss the role of IDPs in disease and how new methods are needed to interpret the mechanistic effects of genomic variants in IDPs.
Collapse
Affiliation(s)
- Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen. Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
16
|
Martín M, Salleron L, Peyret V, Geysels RC, Darrouzet E, Lindenthal S, Bernal Barquero CE, Masini-Repiso AM, Pourcher T, Nicola JP. The PDZ protein SCRIB regulates sodium/iodide symporter (NIS) expression at the basolateral plasma membrane. FASEB J 2021; 35:e21681. [PMID: 34196428 DOI: 10.1096/fj.202100303r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/25/2023]
Abstract
The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lisa Salleron
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Elisabeth Darrouzet
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Sabine Lindenthal
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Thierry Pourcher
- Transporteurs, Imagerie et Radiothérapie en Oncologie, Faculté de médecine, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Côte d'Azur, Institut des sciences du vivant Fréderic Joliot, Nice, France
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
17
|
Identification of PDZ Interactions by Proteomic Peptide Phage Display. Methods Mol Biol 2021. [PMID: 34014515 DOI: 10.1007/978-1-0716-1166-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PSD95-Disc large-Zonula occludens (PDZ) domains are among the most abundant modular domains in the human proteome. They typically bind short carboxy-terminal sequence motifs of their ligand proteins, which may be transmembrane proteins such as ion channels and GPCRs, as well as soluble proteins. The identity of the endogenous ligands of many PDZ domains remains unclear despite more than two decades of PDZ research. Combinatorial peptide phage display and bioinformatics predictions have contributed to shed light on PDZ-mediated interactions. However, the efficiency of these methods for the identification of interactions of potential biological relevance is hampered by different biases. Proteomic peptide-phage display (ProP-PD) was developed to overcome these limitations. Here we describe a ProP-PD protocol for the identification of C-terminal PDZ domain ligands. The method efficiently identifies peptide ligands within a proteome of interest, and pinpoint targets of potential biological relevance.
Collapse
|
18
|
Maddumage JC, Stewart BZ, Humbert PO, Kvansakul M. Crystallographic Studies of PDZ Domain-Peptide Interactions of the Scribble Polarity Module. Methods Mol Biol 2021; 2256:125-135. [PMID: 34014519 DOI: 10.1007/978-1-0716-1166-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The determination of high-resolution crystal structures of cell polarity regulatory proteins bound to their functional interactors has proven to be invaluable for deciphering the underlying molecular mechanisms. Here we describe methods to identify suitable complexes of cell polarity protein domains bound to interacting ligands with subsequent preparation of such complexes for X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Janesha C Maddumage
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Bryce Z Stewart
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
19
|
Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood 2021; 136:1824-1836. [PMID: 32483624 DOI: 10.1182/blood.2019004113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Yap1 and its paralogue Taz largely control epithelial tissue growth. We have identified that hematopoietic stem cell (HSC) fitness response to stress depends on Yap1 and Taz. Deletion of Yap1 and Taz induces a loss of HSC quiescence, symmetric self-renewal ability, and renders HSC more vulnerable to serial myeloablative 5-fluorouracil treatment. This effect depends on the predominant cytosolic polarization of Yap1 through a PDZ domain-mediated interaction with the scaffold Scribble. Scribble and Yap1 coordinate to control cytoplasmic Cdc42 activity and HSC fate determination in vivo. Deletion of Scribble disrupts Yap1 copolarization with Cdc42 and decreases Cdc42 activity, resulting in increased self-renewing HSC with competitive reconstitution advantages. These data suggest that Scribble/Yap1 copolarization is indispensable for Cdc42-dependent activity on HSC asymmetric division and fate. The combined loss of Scribble, Yap1, and Taz results in transcriptional upregulation of Rac-specific guanine nucleotide exchange factors, Rac activation, and HSC fitness restoration. Scribble links Cdc42 and the cytosolic functions of the Hippo signaling cascade in HSC fate determination.
Collapse
|
20
|
Baumert R, Ji H, Paulucci-Holthauzen A, Wolfe A, Sagum C, Hodgson L, Arikkath J, Chen X, Bedford MT, Waxham MN, McCrea PD. Novel phospho-switch function of delta-catenin in dendrite development. J Cell Biol 2021; 219:152151. [PMID: 33007084 PMCID: PMC7534926 DOI: 10.1083/jcb.201909166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/27/2019] [Accepted: 08/21/2020] [Indexed: 11/22/2022] Open
Abstract
In neurons, dendrites form the major sites of information receipt and integration. It is thus vital that, during development, the dendritic arbor is adequately formed to enable proper neural circuit formation and function. While several known processes shape the arbor, little is known of those that govern dendrite branching versus extension. Here, we report a new mechanism instructing dendrites to branch versus extend. In it, glutamate signaling activates mGluR5 receptors to promote Ckd5-mediated phosphorylation of the C-terminal PDZ-binding motif of delta-catenin. The phosphorylation state of this motif determines delta-catenin's ability to bind either Pdlim5 or Magi1. Whereas the delta:Pdlim5 complex enhances dendrite branching at the expense of elongation, the delta:Magi1 complex instead promotes lengthening. Our data suggest that these complexes affect dendrite development by differentially regulating the small-GTPase RhoA and actin-associated protein Cortactin. We thus reveal a "phospho-switch" within delta-catenin, subject to a glutamate-mediated signaling pathway, that assists in balancing the branching versus extension of dendrites during neural development.
Collapse
Affiliation(s)
- Ryan Baumert
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - Hong Ji
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Aaron Wolfe
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | | | - Xiaojiang Chen
- Computational Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| | - M Neal Waxham
- Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX
| | - Pierre D McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Science, Houston, TX.,Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Science, Houston, TX
| |
Collapse
|
21
|
Ali M, Simonetti L, Ivarsson Y. Screening Intrinsically Disordered Regions for Short Linear Binding Motifs. Methods Mol Biol 2021; 2141:529-552. [PMID: 32696376 DOI: 10.1007/978-1-0716-0524-0_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsically disordered regions of the proteome are enriched in short linear motifs (SLiMs) that serve as binding sites for peptide binding proteins. These interactions are often of low-to-mid micromolar affinities and are challenging to screen for experimentally. However, a range of dedicated methods have been developed recently, which open for screening of SLiM-based interactions on large scale. A variant of phage display, termed proteomic peptide phage display (ProP-PD), has proven particularly useful for the purpose. Here, we describe a complete high-throughput ProP-PD protocol for screening intrinsically disordered regions for SLiMs. The protocol requires some basic bioinformatics skills for the design of the library and for data analysis but can be performed in a standard biochemistry lab. The protocol starts from the construction of a library, followed by the high-throughput expression and purification of bait proteins, the phage selection, and the analysis of the binding-enriched phage pools using next-generation sequencing. As the protocol generates rather large data sets, we also emphasize the importance of data management and storage.
Collapse
|
22
|
Jurásek M, Kumar J, Paclíková P, Kumari A, Tripsianes K, Bryja V, Vácha R. Phosphorylation-induced changes in the PDZ domain of Dishevelled 3. Sci Rep 2021; 11:1484. [PMID: 33452274 PMCID: PMC7810883 DOI: 10.1038/s41598-020-79398-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
The PDZ domain of Dishevelled 3 protein belongs to a highly abundant protein recognition motif which typically binds short C-terminal peptides. The affinity of the PDZ towards the peptides could be fine-tuned by a variety of post-translation modifications including phosphorylation. However, how phosphorylations affect the PDZ structure and its interactions with ligands remains elusive. Combining molecular dynamics simulations, NMR titration, and biological experiments, we explored the role of previously reported phosphorylation sites and their mimetics in the Dishevelled PDZ domain. Our observations suggest three major roles for phosphorylations: (1) acting as an on/off PDZ binding switch, (2) allosterically affecting the binding groove, and (3) influencing the secondary binding site. Our simulations indicated that mimetics had similar but weaker effects, and the effects of distinct sites were non-additive. This study provides insight into the Dishevelled regulation by PDZ phosphorylation. Furthermore, the observed effects could be used to elucidate the regulation mechanisms in other PDZ domains.
Collapse
Affiliation(s)
- Miroslav Jurásek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Alka Kumari
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, 612 65, Czech Republic
| | - Robert Vácha
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Ali M, McAuley MM, Lüchow S, Knapp S, Joerger AC, Ivarsson Y. Integrated analysis of Shank1 PDZ interactions with C-terminal and internal binding motifs. Curr Res Struct Biol 2021; 3:41-50. [PMID: 34235485 PMCID: PMC8244488 DOI: 10.1016/j.crstbi.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
PDZ domains constitute a large family of modular domains that are well-known for binding C-terminal motifs of target proteins. Some of them also bind to internal PDZ binding motifs (PDZbms), but this aspect of the PDZ interactome is poorly studied. Here we explored internal PDZbm-mediated interactions using the PDZ domain of Shank1 as a model. We identified a series of human Shank1 ligands with C-terminal or internal PDZbms using proteomic peptide-phage display, and established that while the consensus sequence of C-terminal ligands is x-T-x-(L/F)-COOH, the consensus of internal PDZbm is exclusively x-T-x-F-x, where x is any amino acid. We found that the affinities of PDZbm interactions are in the low micromolar range. The crystal structure of the complex between Shank1 PDZ and an internal PDZbm revealed that the binding mode of internal PDZbms was similar to that of C-terminal ligands. Pull-down experiments confirmed that both C-terminal and internal PDZbm interactions can occur in the context of full-length proteins. Our study expands the interactome of Shank1 and hints at a largely unexplored interaction space of PDZ domains.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Mishal Mariam McAuley
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Susanne Lüchow
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Andreas C. Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| |
Collapse
|
24
|
Laursen L, Čalyševa J, Gibson TJ, Jemth P. Divergent Evolution of a Protein-Protein Interaction Revealed through Ancestral Sequence Reconstruction and Resurrection. Mol Biol Evol 2021; 38:152-167. [PMID: 32750125 PMCID: PMC7782867 DOI: 10.1093/molbev/msaa198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The postsynaptic density extends across the postsynaptic dendritic spine with discs large (DLG) as the most abundant scaffolding protein. DLG dynamically alters the structure of the postsynaptic density, thus controlling the function and distribution of specific receptors at the synapse. DLG contains three PDZ domains and one important interaction governing postsynaptic architecture is that between the PDZ3 domain from DLG and a protein called cysteine-rich interactor of PDZ3 (CRIPT). However, little is known regarding functional evolution of the PDZ3:CRIPT interaction. Here, we subjected PDZ3 and CRIPT to ancestral sequence reconstruction, resurrection, and biophysical experiments. We show that the PDZ3:CRIPT interaction is an ancient interaction, which was likely present in the last common ancestor of Eukaryotes, and that high affinity is maintained in most extant animal phyla. However, affinity is low in nematodes and insects, raising questions about the physiological function of the interaction in species from these animal groups. Our findings demonstrate how an apparently established protein-protein interaction involved in cellular scaffolding in bilaterians can suddenly be subject to dynamic evolution including possible loss of function.
Collapse
Affiliation(s)
- Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Abstract
Over the past decades, peptide-based drugs have gained increasing interest in a wide range of treatment applications, primarily because of high potency and selectivity, as well as good efficacy, tolerability, and safety often achieved with peptides. Attempts to target postsynaptic density protein of 95 (PSD-95) PSD-95/Discs large/Zonula occludens-1 (PDZ) domains, which mediate the formation of a ternary complex with the N-methyl-D-aspartate (NMDA) receptor and neuronal nitric oxide synthase (nNOS) responsible for excitotoxicity in ischemic stroke, by high-affinity small molecules have failed in the past. In this chapter, we focus on the discovery of peptide-based drugs targeting PSD-95, using AVLX-144 as an example, from the synthesis, over binding assays to its target, to further in vitro experiments based on the development of AVLX-144, a potential stroke treatment, which is planned to enter clinical trials in 2020.
Collapse
Affiliation(s)
- Dominik J Essig
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk A/S, Research Chemistry 3, Måløv, Denmark
| | - Javier R Balboa
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk A/S, Research Chemistry 3, Måløv, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Abstract
The dynamic regulation of protein-protein interactions (PPIs) involves phosphorylation of short liner motifs in disordered protein regions modulating binding affinities. The ribosomal-S6-kinase 1 is capable of binding to scaffold proteins containing PDZ domains through a PDZ-binding motif (PBM) located at the disordered C-terminus of the kinase. Phosphorylation of the PBM dramatically changes the interactome of RSK1 with PDZ domains exerting a fine-tuning mechanism to regulate PPIs. Here we present in detail highly effective biophysical (fluorescence polarization, isothermal calorimetry) and cellular (protein-fragment complementation) methods to study the effect of phosphorylation on RSK1-PDZ interactions that can be also applied to investigate phosphoregulation of other PPIs in signaling pathways.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
27
|
Jané P, Gógl G, Kostmann C, Bich G, Girault V, Caillet-Saguy C, Eberling P, Vincentelli R, Wolff N, Travé G, Nominé Y. Interactomic affinity profiling by holdup assay: Acetylation and distal residues impact the PDZome-binding specificity of PTEN phosphatase. PLoS One 2020; 15:e0244613. [PMID: 33382810 PMCID: PMC7774954 DOI: 10.1371/journal.pone.0244613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Protein domains often recognize short linear protein motifs composed of a core conserved consensus sequence surrounded by less critical, modulatory positions. PTEN, a lipid phosphatase involved in phosphatidylinositol 3-kinase (PI3K) pathway, contains such a short motif located at the extreme C-terminus capable to recognize PDZ domains. It has been shown that the acetylation of this motif could modulate the interaction with several PDZ domains. Here we used an accurate experimental approach combining high-throughput holdup chromatographic assay and competitive fluorescence polarization technique to measure quantitative binding affinity profiles of the PDZ domain-binding motif (PBM) of PTEN. We substantially extended the previous knowledge towards the 266 known human PDZ domains, generating the full PDZome-binding profile of the PTEN PBM. We confirmed that inclusion of N-terminal flanking residues, acetylation or mutation of a lysine at a modulatory position significantly altered the PDZome-binding profile. A numerical specificity index is also introduced as an attempt to quantify the specificity of a given PBM over the complete PDZome. Our results highlight the impact of modulatory residues and post-translational modifications on PBM interactomes and their specificity.
Collapse
Affiliation(s)
- Pau Jané
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergő Gógl
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Camille Kostmann
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Goran Bich
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Virginie Girault
- Unité Récepteurs-canaux, Institut Pasteur, UMR 3571/CNRS, Paris, France
| | | | - Pascal Eberling
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS/Aix-Marseille Université, Marseille, France
| | - Nicolas Wolff
- Unité Récepteurs-canaux, Institut Pasteur, UMR 3571/CNRS, Paris, France
| | - Gilles Travé
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- (Equipe labelisée Ligue, 2015) Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| |
Collapse
|
28
|
Teyra J, Kelil A, Jain S, Helmy M, Jajodia R, Hooda Y, Gu J, D’Cruz AA, Nicholson SE, Min J, Sudol M, Kim PM, Bader GD, Sidhu SS. Large-scale survey and database of high affinity ligands for peptide recognition modules. Mol Syst Biol 2020; 16:e9310. [PMID: 33438817 PMCID: PMC7724964 DOI: 10.15252/msb.20199310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins involved in signal transduction contain peptide recognition modules (PRMs) that recognize short linear motifs (SLiMs) within their interaction partners. Here, we used large-scale peptide-phage display methods to derive optimal ligands for 163 unique PRMs representing 79 distinct structural families. We combined the new data with previous data that we collected for the large SH3, PDZ, and WW domain families to assemble a database containing 7,984 unique peptide ligands for 500 PRMs representing 82 structural families. For 74 PRMs, we acquired enough new data to map the specificity profiles in detail and derived position weight matrices and binding specificity logos based on multiple peptide ligands. These analyses showed that optimal peptide ligands resembled peptides observed in existing structures of PRM-ligand complexes, indicating that a large majority of the phage-derived peptides are likely to target natural peptide-binding sites and could thus act as inhibitors of natural protein-protein interactions. The complete dataset has been assembled in an online database (http://www.prm-db.org) that will enable many structural, functional, and biological studies of PRMs and SLiMs.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | - Shobhit Jain
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
| | - Mohamed Helmy
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
Singapore Institute of Food and Biotechnology Innovation (SIFBI)Agency for ScienceTechnology and Research (A*STAR)Singapore CitySingapore
| | - Raghav Jajodia
- Indian Institute of Engineering Science and TechnologyShibpurIndia
| | - Yogesh Hooda
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Jun Gu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Akshay A D’Cruz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Marius Sudol
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Philip M Kim
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Gary D Bader
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sachdev S Sidhu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
29
|
Dual Specificity PDZ- and 14-3-3-Binding Motifs: A Structural and Interactomics Study. Structure 2020; 28:747-759.e3. [DOI: 10.1016/j.str.2020.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
|
30
|
Genovese I, Carotti A, Ilari A, Fiorillo A, Battista T, Colotti G, Ivarsson Y. Profiling calcium-dependent interactions between Sorcin and intrinsically disordered regions of human proteome. Biochim Biophys Acta Gen Subj 2020; 1864:129618. [PMID: 32305337 DOI: 10.1016/j.bbagen.2020.129618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 04/12/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Sorcin is a calcium sensor that exerts many calcium-related functions in the cells, e.g. it regulates calcium concentration in the cytoplasm, endoplasmic reticulum (ER) and mitochondria, by interacting with calcium pumps, exchangers and channels. Albeit Sorcin is an interesting potential cancer target, little is known about its interactors upon calcium-mediated activation. Our previous study suggested that Sorcin may recognize short linear binding motifs as the crystal structure revealed a self-interaction with a GYYPGG stretch in its N-terminus, and combinatorial peptide-phage display provided support for peptide-mediated interactions. METHODS In this study we screened for motif-based interactions between Sorcin and intrinsically disordered regions of the human proteome using proteomic peptide phage display (ProP-PD). We identified a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a potential novel interactor and confirm the interaction through biophysical and cell-based approaches, and provide structural information through molecular dynamics simulations. RESULTS Altogether, we identify a preferred motif in the enriched pool of binders and a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a preferred ligand. CONCLUSION Through this study we gain information on a new Sorcin binding partner and profile Sorcin's motif-based interaction. GENERAL SIGNIFICANCE The interaction between Sorcin and PPP1R3G may suggest a close dependence between glucose homeostasis and calcium concentration in the different cell compartments, opening a completely new and interesting scenery yet to be fully disclosed.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy; Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Theo Battista
- Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| |
Collapse
|
31
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
32
|
Santoni MJ, Kashyap R, Camoin L, Borg JP. The Scribble family in cancer: twentieth anniversary. Oncogene 2020; 39:7019-7033. [PMID: 32999444 PMCID: PMC7527152 DOI: 10.1038/s41388-020-01478-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Among the more than 160 PDZ containing proteins described in humans, the cytoplasmic scaffold Scribble stands out because of its essential role in many steps of cancer development and dissemination. Its fame has somehow blurred the importance of homologous proteins, Erbin and Lano, all belonging to the LRR and PDZ (LAP) protein family first described twenty years ago. In this review, we will retrace the history of LAP family protein research and draw attention to their contribution in cancer by detailing the features of its members at the structural and functional levels, and highlighting their shared-but also different-implication in the tumoral process.
Collapse
Affiliation(s)
- Marie-Josée Santoni
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Rudra Kashyap
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.5596.f0000 0001 0668 7884Cellular and Molecular Medicine, Katholisch University of Leuven, Leuven, Belgium
| | - Luc Camoin
- grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
33
|
Abstract
OTULIN (OTU Deubiquitinase With Linear Linkage Specificity) specifically hydrolyzes methionine1 (Met1)-linked ubiquitin chains conjugated by LUBAC (linear ubiquitin chain assembly complex). Here we report on the mass spectrometric identification of the OTULIN interactor SNX27 (sorting nexin 27), an adaptor of the endosomal retromer complex responsible for protein recycling to the cell surface. The C-terminal PDZ-binding motif (PDZbm) in OTULIN associates with the cargo-binding site in the PDZ domain of SNX27. By solving the structure of the OTU domain in complex with the PDZ domain, we demonstrate that a second interface contributes to the selective, high affinity interaction of OTULIN and SNX27. SNX27 does not affect OTULIN catalytic activity, OTULIN-LUBAC binding or Met1-linked ubiquitin chain homeostasis. However, via association, OTULIN antagonizes SNX27-dependent cargo loading, binding of SNX27 to the VPS26A-retromer subunit and endosome-to-plasma membrane trafficking. Thus, we define an additional, non-catalytic function of OTULIN in the regulation of SNX27-retromer assembly and recycling to the cell surface. OTULIN is a linear ubiquitin hydrolase that regulates ubiquitin homeostasis. Here the authors identify the adaptor of the endosomal retromer complex sorting nexin 27 (SNX27) as a binding partner of OTULIN and determine the structure of the OTULIN-SNX27 complex, which reveals a secondary interface through which OTULIN non-catalytically antagonizes SNX27 retromer assembly and cargo loading.
Collapse
|
34
|
Caria S, Stewart BZ, Jin R, Smith BJ, Humbert PO, Kvansakul M. Structural analysis of phosphorylation‐associated interactions of human MCC with Scribble PDZ domains. FEBS J 2019; 286:4910-4925. [DOI: 10.1111/febs.15002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/30/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sofia Caria
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
- SAXS/WAXS Australian Synchrotron Clayton Victoria Australia
| | - Bryce Z. Stewart
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
| | - Ruitao Jin
- Department of Chemistry and Physics La Trobe Institute for Molecular Sciences La Trobe University Melbourne Victoria Australia
| | - Brian J. Smith
- Department of Chemistry and Physics La Trobe Institute for Molecular Sciences La Trobe University Melbourne Victoria Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
- Research Centre for Molecular Cancer Prevention La Trobe University Melbourne Victoria Australia
- Department of Biochemistry & Molecular Biology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Pathology University of Melbourne Melbourne Victoria Australia
| | - Marc Kvansakul
- Department of Biochemistry & Genetics La Trobe Institute for Molecular Science La Trobe University Melbourne Victoria Australia
- Research Centre for Molecular Cancer Prevention La Trobe University Melbourne Victoria Australia
| |
Collapse
|
35
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
36
|
Ichikawa DM, Corbi-Verge C, Shen MJ, Snider J, Wong V, Stagljar I, Kim PM, Noyes MB. A Multireporter Bacterial 2-Hybrid Assay for the High-Throughput and Dynamic Assay of PDZ Domain-Peptide Interactions. ACS Synth Biol 2019; 8:918-928. [PMID: 30969105 DOI: 10.1021/acssynbio.8b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate determination of protein-protein interactions has been an important focus of molecular biology toward which much progress has been made due to the continuous development of existing and new technologies. However, current methods can have limitations, including scale and restriction to high affinity interactions, limiting our understanding of a large subset of these interactions. Here, we describe a modified bacterial-hybrid assay that employs combined selectable and scalable reporters that enable the sensitive screening of large peptide libraries followed by the sorting of positive interactions by the level of reporter output. We have applied this tool to characterize a set of human and E. coli PDZ domains. Our results are consistent with prior characterization of these proteins, and the improved sensitivity increases our ability to predict known and novel in vivo binding partners. This approach allows for the recovery of a wide range of affinities with a high throughput method that does not sacrifice the scale of the screen.
Collapse
Affiliation(s)
- David M. Ichikawa
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael J. Shen
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Jamie Snider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Philip M. Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Marcus B. Noyes
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
37
|
Predicted amino acid motif repeats in proteins potentially encode extensive multivalent macromolecular assemblies in the human proteome. Curr Opin Struct Biol 2019; 54:171-178. [PMID: 30978654 DOI: 10.1016/j.sbi.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/31/2023]
Abstract
There are emerging interests in understanding higher order assemblies of biopolymers within and between cells, such as protein-protein and protein-RNA biomolecular condensates. These biomolecular condensates are thought to assemble/disassemble via multivalent interactions, including those mediated particularly by unique repeated amino acid motifs (URM). We asked how common are proteins with such URMs, their incidence and abundance, by exhaustively enumerating repeating motifs of length 3-10 in the human proteome. We found that URMs are very common and widely distributed across the human proteome. Moreover, the number of repetitions and intervals between them do not correlate with their lengths, which suggests that the number of repeats among proteins in the proteome is independent of length, contrary to the notion that short motifs are more abundant then long motifs. Finally, we describe two examples of URMs in proteins known to form higher order biopolymer assemblies: multi-PDZ domain-containing proteins and the FUS family of RNA binding proteins. For the FUS family, we predicted a known sequence 'grammar', specific motifs and interval sequence compositions that are essential to phase separation and material properties of condensates formed by this family of proteins. In PDZ domain-containing proteins we found a novel repeated motif that was surprisingly both within and between individual PDZ domains. We speculate that these motifs could be binding sites for multivalent interactions, a residual result of the mechanism by which PDZ-domain duplications occurred or that the linker sequences between PDZ domains may encode cryptic PDZ domains.
Collapse
|
38
|
Gógl G, Biri-Kovács B, Durbesson F, Jane P, Nomine Y, Kostmann C, Bilics V, Simon M, Reményi A, Vincentelli R, Trave G, Nyitray L. Rewiring of RSK-PDZ Interactome by Linear Motif Phosphorylation. J Mol Biol 2019; 431:1234-1249. [PMID: 30726710 PMCID: PMC6424611 DOI: 10.1016/j.jmb.2019.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Phosphorylation of short linear peptide motifs is a widespread process for the dynamic regulation of protein-protein interactions. However, the global impact of phosphorylation events on the protein-protein interactome is rarely addressed. The disordered C-terminal tail of ribosomal S6 kinase 1 (RSK1) binds to PDZ domain-containing scaffold proteins, and it harbors a phosphorylatable PDZ-binding motif (PBM) responsive to epidermal growth factor stimulation. Here, we examined binding of two versions of the RSK1 PBM, either phosphorylated or unphosphorylated at position -3, to almost all (95%) of the 266 PDZ domains of the human proteome. PBM phosphorylation dramatically altered the PDZ domain-binding landscape of RSK1, by strengthening or weakening numerous interactions to various degrees. The RSK-PDZome interactome analyzed in this study reveals how linear motif-based phospho-switches convey stimulus-dependent changes in the context of related network components.
Collapse
Affiliation(s)
- Gergő Gógl
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Fabien Durbesson
- Unite Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Universite, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Pau Jane
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yves Nomine
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Camille Kostmann
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Viktória Bilics
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Márton Simon
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Reményi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Renaud Vincentelli
- Unite Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Universite, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France.
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
39
|
Crystal structure of the human Scribble
PDZ
1 domain bound to the
PDZ
‐binding motif of
APC. FEBS Lett 2019; 593:533-542. [DOI: 10.1002/1873-3468.13329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 02/01/2023]
|
40
|
Bonello TT, Peifer M. Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol 2018; 218:742-756. [PMID: 30598480 PMCID: PMC6400555 DOI: 10.1083/jcb.201810103] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical-basal polarity and epithelial integrity in Drosophila melanogaster It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
41
|
Abstract
The widespread application of sequencing technologies, used for example to obtain data from healthy individuals or patient cohorts, has led to the identification of numerous mutations, the effect of which remains largely unclear. Therefore, developing approaches allowing accurate in‐silico prediction of mutation effects is becoming increasingly important. In their recent study, Beltrao and colleagues (Wagih et al , 2018 ) describe an integrative approach for determining the effects of mutations from the perspective of protein structure, conservation and transcription factor binding. This allows for predicting the mechanisms underlying the most impactful variants rather than just identifying these variants.
Collapse
|
42
|
Ivarsson Y, Jemth P. Affinity and specificity of motif-based protein-protein interactions. Curr Opin Struct Biol 2018; 54:26-33. [PMID: 30368054 DOI: 10.1016/j.sbi.2018.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023]
Abstract
It is becoming increasingly clear that eukaryotic cell physiology is largely controlled by protein-protein interactions involving disordered protein regions, which usually interact with globular domains in a coupled binding and folding reaction. Several protein recognition domains are part of large families where members can interact with similar peptide ligands. Because of this, much research has been devoted to understanding how specificity can be achieved. A combination of interface complementarity, interactions outside of the core binding site, avidity from multidomain architecture and spatial and temporal regulation of expression resolves the conundrum. Here, we review recent advances in molecular aspects of affinity and specificity in such protein-protein interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|