1
|
Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, Sharp PA. Single-cell nascent RNA sequencing unveils coordinated global transcription. Nature 2024; 631:216-223. [PMID: 38839954 PMCID: PMC11222150 DOI: 10.1038/s41586-024-07517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1,2. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations3. However, fundamental questions about the temporal regulation of transcription and enhancer-gene coordination remain unanswered, primarily because of the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq-a new single-cell nascent RNA sequencing assay that uses click chemistry-and unveil coordinated transcription throughout the genome. We demonstrate the episodic nature of transcription and the co-transcription of functionally related genes. scGRO-seq can estimate burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells and can leverage replication-dependent non-polyadenylated histone gene transcription to elucidate cell cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq enables the identification of networks of enhancers and genes. Our results suggest that the bursting of transcription at super-enhancers precedes bursting from associated genes. By imparting insights into the dynamic nature of global transcription and the origin and propagation of transcription signals, we demonstrate the ability of scGRO-seq to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathaniel D Tippens
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sean K Waterton
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Sarah E Blatt
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Exact Sciences, Madison, WI, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Hunt G, Vaid R, Pirogov S, Pfab A, Ziegenhain C, Sandberg R, Reimegård J, Mannervik M. Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network. Genome Biol 2024; 25:2. [PMID: 38166964 PMCID: PMC10763363 DOI: 10.1186/s13059-023-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.
Collapse
Affiliation(s)
- George Hunt
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roshan Vaid
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergei Pirogov
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander Pfab
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Rickard Sandberg
- Department Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Mannervik
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Ramalingam V, Yu X, Slaughter BD, Unruh JR, Brennan KJ, Onyshchenko A, Lange JJ, Natarajan M, Buck M, Zeitlinger J. Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development. Nat Commun 2023; 14:5862. [PMID: 37735176 PMCID: PMC10514308 DOI: 10.1038/s41467-023-41408-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Michael Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA.
| |
Collapse
|
4
|
Hodkinson LJ, Smith C, Comstra HS, Ajani BA, Albanese EH, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo N, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals hox and chromatin remodeling factors at the Drosophila histone locus. BMC Genom Data 2023; 24:54. [PMID: 37735352 PMCID: PMC10515271 DOI: 10.1186/s12863-023-01147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. RESULTS To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets of 27 unique factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax (Ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B), suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other factors that target the histone gene array: JIL-1, hormone-like receptor 78 (Hr78), the long isoform of female sterile homeotic (1) (fs(1)h) as well as the general transcription factors TBP associated factor 1 (TAF-1), Transcription Factor IIB (TFIIB), and Transcription Factor IIF (TFIIF). CONCLUSIONS Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA, 30322, USA
| | - Connor Smith
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - H Skye Comstra
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Bukola A Ajani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Eric H Albanese
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kawsar Arsalan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Alvaro Perez Daisson
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katherine B Forrest
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Elijah H Fox
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Matthew R Guerette
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Samia Khan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Madeleine P Koenig
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Shivani Lam
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Ava S Lewandowski
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Lauren J Mahoney
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nasserallah Manai
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - JonCarlo Miglay
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Blake A Miller
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Olivia Milloway
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nhi Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Vu D Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nicole F Oey
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Tanya A Punjani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - HaoMin SiMa
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Hollis Zeng
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Leila E Rieder
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Mahat DB, Tippens ND, Martin-Rufino JD, Waterton SK, Fu J, Blatt SE, Sharp PA. Single-cell nascent RNA sequencing using click-chemistry unveils coordinated transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.558015. [PMID: 37745427 PMCID: PMC10516050 DOI: 10.1101/2023.09.15.558015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Transcription is the primary regulatory step in gene expression. Divergent transcription initiation from promoters and enhancers produces stable RNAs from genes and unstable RNAs from enhancers1-5. Nascent RNA capture and sequencing assays simultaneously measure gene and enhancer activity in cell populations6-9. However, fundamental questions in the temporal regulation of transcription and enhancer-gene synchrony remain unanswered primarily due to the absence of a single-cell perspective on active transcription. In this study, we present scGRO-seq - a novel single-cell nascent RNA sequencing assay using click-chemistry - and unveil the coordinated transcription throughout the genome. scGRO-seq demonstrates the episodic nature of transcription, and estimates burst size and frequency by directly quantifying transcribing RNA polymerases in individual cells. It reveals the co-transcription of functionally related genes and leverages the replication-dependent non-polyadenylated histone genes transcription to elucidate cell-cycle dynamics. The single-nucleotide spatial and temporal resolution of scGRO-seq identifies networks of enhancers and genes and indicates that the bursting of transcription at super-enhancers precedes the burst from associated genes. By imparting insights into the dynamic nature of transcription and the origin and propagation of transcription signals, scGRO-seq demonstrates its unique ability to investigate the mechanisms of transcription regulation and the role of enhancers in gene expression.
Collapse
Affiliation(s)
- Dig B. Mahat
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathaniel D. Tippens
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Sean K. Waterton
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Department of Biology, Stanford University, Stanford, CA 94305
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208
| | - Sarah E. Blatt
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Current address: Exact Sciences Corporation, Madison, WI 53719
| | - Phillip A. Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Lead Contact
| |
Collapse
|
6
|
Huynh K, Smith BR, Macdonald SJ, Long AD. Genetic variation in chromatin state across multiple tissues in Drosophila melanogaster. PLoS Genet 2023; 19:e1010439. [PMID: 37146087 PMCID: PMC10191298 DOI: 10.1371/journal.pgen.1010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
We use ATAC-seq to examine chromatin accessibility for four different tissues in Drosophila melanogaster: adult female brain, ovaries, and both wing and eye-antennal imaginal discs from males. Each tissue is assayed in eight different inbred strain genetic backgrounds, seven associated with a reference quality genome assembly. We develop a method for the quantile normalization of ATAC-seq fragments and test for differences in coverage among genotypes, tissues, and their interaction at 44099 peaks throughout the euchromatic genome. For the strains with reference quality genome assemblies, we correct ATAC-seq profiles for read mis-mapping due to nearby polymorphic structural variants (SVs). Comparing coverage among genotypes without accounting for SVs results in a highly elevated rate (55%) of identifying false positive differences in chromatin state between genotypes. After SV correction, we identify 1050, 30383, and 4508 regions whose peak heights are polymorphic among genotypes, among tissues, or exhibit genotype-by-tissue interactions, respectively. Finally, we identify 3988 candidate causative variants that explain at least 80% of the variance in chromatin state at nearby ATAC-seq peaks.
Collapse
Affiliation(s)
- Khoi Huynh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Anthony D. Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
7
|
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Löser E, Schächtle MA, Mazina M, Loubiere V, Iovino N. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. SCIENCE ADVANCES 2023; 9:eadf2687. [PMID: 37083536 PMCID: PMC10121174 DOI: 10.1126/sciadv.adf2687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Leily Rabbani
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Francesco Cardamone
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- University of Freiburg, Faculty of Biology, Freiburg im Breisgau, Germany
| | - Fides Zenk
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Eva Löser
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Melanie A. Schächtle
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Marina Mazina
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Luo S, Wang Z, Zhang Z, Zhou T, Zhang J. Genome-wide inference reveals that feedback regulations constrain promoter-dependent transcriptional burst kinetics. Nucleic Acids Res 2022; 51:68-83. [PMID: 36583343 PMCID: PMC9874261 DOI: 10.1093/nar/gkac1204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Gene expression in mammalian cells is highly variable and episodic, resulting in a series of discontinuous bursts of mRNAs. A challenge is to understand how static promoter architecture and dynamic feedback regulations dictate bursting on a genome-wide scale. Although single-cell RNA sequencing (scRNA-seq) provides an opportunity to address this challenge, effective analytical methods are scarce. We developed an interpretable and scalable inference framework, which combined experimental data with a mechanistic model to infer transcriptional burst kinetics (sizes and frequencies) and feedback regulations. Applying this framework to scRNA-seq data generated from embryonic mouse fibroblast cells, we found Simpson's paradoxes, i.e. genome-wide burst kinetics exhibit different characteristics in two cases without and with distinguishing feedback regulations. We also showed that feedbacks differently modulate burst frequencies and sizes and conceal the effects of transcription start site distributions on burst kinetics. Notably, only in the presence of positive feedback, TATA genes are expressed with high burst frequencies and enhancer-promoter interactions mainly modulate burst frequencies. The developed inference method provided a flexible and efficient way to investigate transcriptional burst kinetics and the obtained results would be helpful for understanding cell development and fate decision.
Collapse
Affiliation(s)
| | | | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China,School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, P. R. China
| | - Tianshou Zhou
- Correspondence may also be addressed to Tianshou Zhou. Tel: +86 20 84134958;
| | - Jiajun Zhang
- To whom correspondence should be addressed. Tel: +86 20 84111829;
| |
Collapse
|
9
|
Wang H, Umer MJ, Liu F, Cai X, Zheng J, Xu Y, Hou Y, Zhou Z. Genome-Wide Identification and Characterization of CPR5 Genes in Gossypium Reveals Their Potential Role in Trichome Development. Front Genet 2022; 13:921096. [PMID: 35754813 PMCID: PMC9213653 DOI: 10.3389/fgene.2022.921096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|
10
|
Disciglio V, Sanese P, Fasano C, Lotesoriere C, Valentini AM, Forte G, Lepore Signorile M, De Marco K, Grossi V, Lolli I, Cariola F, Simone C. Identification and Somatic Characterization of the Germline PTEN Promoter Variant rs34149102 in a Family with Gastrointestinal and Breast Tumors. Genes (Basel) 2022; 13:644. [PMID: 35456450 PMCID: PMC9025445 DOI: 10.3390/genes13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the PTEN gene have been previously identified in patients with PTEN hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a PTEN promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer. In order to investigate the putative functional role of the rs34149102 A allele variant, we evaluated the status of PTEN alterations at the somatic level. We found that PTEN protein expression was absent in the GEJ adenocarcinoma tissue of the index case. Moreover, we detected the occurrence of copy number loss involving the PTEN rs34149102 major C allele in tumor tissue, revealing that the second allele was somatically inactivated. This variant is located within an active regulatory region of the PTEN core promoter, and in silico analysis suggests that it may affect the binding of the nuclear transcription factor MAZ and hence PTEN expression. Overall, these results reveal the functional role of the PTEN promoter rs34149102 A allele variant in the modulation of PTEN protein expression and highlight its contribution to hereditary cancer risk.
Collapse
Affiliation(s)
- Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Claudio Lotesoriere
- Oncology Unit, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (C.L.); (I.L.)
| | - Anna Maria Valentini
- Department of Pathology, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Ivan Lolli
- Oncology Unit, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (C.L.); (I.L.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
11
|
Li L, Waymack R, Gad M, Wunderlich Z. Two promoters integrate multiple enhancer inputs to drive wild-type knirps expression in the Drosophila melanogaster embryo. Genetics 2021; 219:iyab154. [PMID: 34849867 PMCID: PMC8664596 DOI: 10.1093/genetics/iyab154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/12/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development depends on precise spatiotemporal gene expression patterns. Most developmental genes are regulated by multiple enhancers and often by multiple core promoters that generate similar transcripts. We hypothesize that multiple promoters may be required either because enhancers prefer a specific promoter or because multiple promoters serve as a redundancy mechanism. To test these hypotheses, we studied the expression of the knirps locus in the early Drosophila melanogaster embryo, which is mediated by multiple enhancers and core promoters. We found that one of these promoters resembles a typical "sharp" developmental promoter, while the other resembles a "broad" promoter usually associated with housekeeping genes. Using synthetic reporter constructs, we found that some, but not all, enhancers in the locus show a preference for one promoter, indicating that promoters provide both redundancy and specificity. By analyzing the reporter dynamics, we identified specific burst properties during the transcription process, namely burst size and frequency, that are most strongly tuned by the combination of promoter and enhancer. Using locus-sized reporters, we discovered that enhancers with no promoter preference in a synthetic setting have a preference in the locus context. Our results suggest that the presence of multiple promoters in a locus is due both to enhancer preference and a need for redundancy and that "broad" promoters with dispersed transcription start sites are common among developmental genes. They also imply that it can be difficult to extrapolate expression measurements from synthetic reporters to the locus context, where other variables shape a gene's overall expression pattern.
Collapse
Affiliation(s)
- Lily Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel Waymack
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Mario Gad
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
12
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
13
|
Garrido V, Piñero‐Lambea C, Rodriguez‐Arce I, Paetzold B, Ferrar T, Weber M, Garcia‐Ramallo E, Gallo C, Collantes M, Peñuelas I, Serrano L, Grilló M, Lluch‐Senar M. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol Syst Biol 2021; 17:e10145. [PMID: 34612607 PMCID: PMC8493563 DOI: 10.15252/msb.202010145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome-reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm-associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome-reduced bacterium that can fight against clinically relevant biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Victoria Garrido
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Irene Rodriguez‐Arce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - Bernhard Paetzold
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- S‐Biomedic N.V.BeerseBelgium
| | - Tony Ferrar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Garcia‐Ramallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - María Collantes
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Iván Peñuelas
- RADIOMIN Research GroupClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - María‐Jesús Grilló
- Institute of Agrobiotechnology (IdAB; CSIC‐Navarra Government)MutilvaSpain
| | - María Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Pulmobiotics LtdBarcelonaSpain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del VallèsSpain
| |
Collapse
|
14
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
15
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|