1
|
van Santvoort M, Eduati F. An algorithmic perspective on deciphering cell-cell interactions with spatial omics data. Brief Bioinform 2025; 26:bbaf236. [PMID: 40413871 DOI: 10.1093/bib/bbaf236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
The advent of technologies to measure molecule information from a tissue that retains spatial information paved the way for the development of cell-cell interaction (CCI) methods. Even though these spatial technologies are still in their relative infancy, the developed methods promise more accurate analysis of CCIs due to the inclusion of spatial data. In this review, we outline these methods and provide a high-level view of the algorithms they employ. Moreover, we investigate how they deal with the spatial nature of the data they use and what types of downstream analyses they execute. We show that spatial CCI methods can broadly be classified into supervised learning, statistical correlation, and optimization methods that are used for either refinement of CCI networks, spatial clustering, differential expression analysis, or analysis of signal propagation through a tissue. In the end, we highlight some avenues for the development of complementary CCI methods that exploit advances in spatial data or alleviate certain downsides of the current methods.
Collapse
Affiliation(s)
- Mike van Santvoort
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Groene Loper 3, 5612AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612AE Eindhoven, The Netherlands
| | - Federica Eduati
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 3, 5612AE Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612AE Eindhoven, The Netherlands
| |
Collapse
|
2
|
Wu G, Liang Y, Xi Q, Zuo Y. New Insights and Implications of Cell-Cell Interactions in Developmental Biology. Int J Mol Sci 2025; 26:3997. [PMID: 40362237 PMCID: PMC12072105 DOI: 10.3390/ijms26093997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The dynamic and meticulously regulated networks established the foundation for embryonic development, where the intercellular interactions and signal transduction assumed a pivotal role. In recent years, high-throughput technologies such as single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have advanced dramatically, empowering the systematic dissection of cell-to-cell regulatory networks. The emergence of comprehensive databases and analytical frameworks has further provided unprecedented insights into embryonic development and cell-cell interactions (CCIs). This paper reviewed the exponential increased CCIs works related to developmental biology from 2008 to 2023, comprehensively collected and categorized 93 analytical tools and 39 databases, and demonstrated its practical utility through illustrative case studies. In parallel, the article critically scrutinized the persistent challenges within this field, such as the intricacies of spatial localization and transmembrane state validation at single-cell resolution, and underscored the interpretative limitations inherent in current analytical frameworks. The development of CCIs' analysis tools with harmonizing multi-omics data and the construction of cross-species dynamically updated CCIs databases will be the main direction of future research. Future investigations into CCIs are poised to expeditiously drive the application and clinical translation within developmental biology, unlocking novel dimensions for exploration and progress.
Collapse
Affiliation(s)
| | | | | | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; (G.W.); (Y.L.); (Q.X.)
| |
Collapse
|
3
|
Defard T, Desrentes A, Fouillade C, Mueller F. Homebuilt Imaging-Based Spatial Transcriptomics: Tertiary Lymphoid Structures as a Case Example. Methods Mol Biol 2025; 2864:77-105. [PMID: 39527218 DOI: 10.1007/978-1-0716-4184-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Spatial transcriptomics methods provide insight into the cellular heterogeneity and spatial architecture of complex, multicellular systems. Combining molecular and spatial information provides important clues to study tissue architecture in development and disease. Here, we present a comprehensive do-it-yourself (DIY) guide to perform such experiments at reduced costs leveraging open-source approaches. This guide spans the entire life cycle of a project, from its initial definition to experimental choices, wet lab approaches, instrumentation, and analysis. As a concrete example, we focus on tertiary lymphoid structures (TLS), which we use to develop typical questions that can be addressed by these approaches.
Collapse
Affiliation(s)
- Thomas Defard
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France
- Centre for Computational Biology (CBIO), Mines Paris, PSL University, Paris, France
- Institut Curie, PSL University, Paris, France
- INSERM, U900, Paris, France
| | - Auxence Desrentes
- UMRS1135 Sorbonne University, Paris, France
- INSERM U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre for Immunology and Microbial Infections (CIMI), Paris, France
| | - Charles Fouillade
- Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| | - Florian Mueller
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Paris, France.
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, Paris, France.
| |
Collapse
|
4
|
Agrawal A, Thomann S, Basu S, Grün D. NiCo identifies extrinsic drivers of cell state modulation by niche covariation analysis. Nat Commun 2024; 15:10628. [PMID: 39639035 PMCID: PMC11621405 DOI: 10.1038/s41467-024-54973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Cell states are modulated by intrinsic driving forces such as gene expression noise and extrinsic signals from the tissue microenvironment. The distinction between intrinsic and extrinsic cell state determinants is essential for understanding the regulation of cell fate in tissues during development, homeostasis and disease. The rapidly growing availability of single-cell resolution spatial transcriptomics makes it possible to meet this challenge. However, available computational methods to infer topological tissue domains, spatially variable genes, or ligand-receptor interactions are limited in their capacity to capture cell state changes driven by crosstalk between individual cell types within the same niche. We present NiCo, a computational framework for integrating single-cell resolution spatial transcriptomics with matched single-cell RNA-sequencing reference data to infer the influence of the spatial niche on the cell state. By applying NiCo to mouse embryogenesis, adult small intestine and liver data, we demonstrate the ability to predict novel niche interactions that govern cell state variation underlying tissue development and homeostasis. In particular, NiCo predicts a feedback mechanism between Kupffer cells and neighboring stellate cells dampening stellate cell activation in the normal liver. NiCo provides a powerful tool to elucidate tissue architecture and to identify drivers of cellular states in local niches.
Collapse
Affiliation(s)
- Ankit Agrawal
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Stefan Thomann
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sukanya Basu
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- CAIDAS - Center for Artificial Intelligence and Data Science, Würzburg, Germany.
| |
Collapse
|
5
|
Gottschalk RA, Germain RN. Linking signal input, cell state, and spatial context to inflammatory responses. Curr Opin Immunol 2024; 91:102462. [PMID: 39265520 DOI: 10.1016/j.coi.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024]
Abstract
Signal integration is central to a causal understanding of appropriately scaled inflammatory responses. Here, we discuss recent progress in our understanding of the stimulus-response linkages downstream of pro-inflammatory inputs, with special attention to (1) the impact of cell state on the specificity of evoked gene expression and (2) the critical role of the spatial context of stimulus exposure. Advances in these directions are emerging from new tools for inferring cell-cell interactions and the activities of cytokines and transcription factors in complex microenvironments, enabling analysis of signal integration in tissue settings. Building on data-driven elucidation of factors driving inflammatory outcomes, mechanistic modeling can then contribute to a quantitative understanding of regulatory events that balance protective versus pathological inflammation.
Collapse
Affiliation(s)
- Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
6
|
Kim H, Kim KE, Madan E, Martin P, Gogna R, Rhee HW, Won KJ. Unveiling contact-mediated cellular crosstalk. Trends Genet 2024; 40:868-879. [PMID: 38906738 DOI: 10.1016/j.tig.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Cell-cell interactions orchestrate complex functions in multicellular organisms, forming a regulatory network for diverse biological processes. Their disruption leads to disease states. Recent advancements - including single-cell sequencing and spatial transcriptomics, coupled with powerful bioengineering and molecular tools - have revolutionized our understanding of how cells respond to each other. Notably, spatial transcriptomics allows us to analyze gene expression changes based on cell proximity, offering a unique window into the impact of cell-cell contact. Additionally, computational approaches are being developed to decipher how cell contact governs the symphony of cellular responses. This review explores these cutting-edge approaches, providing valuable insights into deciphering the intricate cellular changes influenced by cell-cell communication.
Collapse
Affiliation(s)
- Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA
| | - Kwang-Eun Kim
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Esha Madan
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; School of Medicine, Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA
| | - Rajan Gogna
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; School of Medicine, Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, South Korea.
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA.
| |
Collapse
|
7
|
Mo J, Bae J, Saqib J, Hwang D, Jin Y, Park B, Park J, Kim J. Current computational methods for spatial transcriptomics in cancer biology. Adv Cancer Res 2024; 163:71-106. [PMID: 39271268 DOI: 10.1016/bs.acr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cells in multicellular organisms constitute a self-organizing society by interacting with their neighbors. Cancer originates from malfunction of cellular behavior in the context of such a self-organizing system. The identities or characteristics of individual tumor cells can be represented by the hallmark of gene expression or transcriptome, which can be addressed using single-cell dissociation followed by RNA sequencing. However, the dissociation process of single cells results in losing the cellular address in tissue or neighbor information of each tumor cell, which is critical to understanding the malfunctioning cellular behavior in the microenvironment. Spatial transcriptomics technology enables measuring the transcriptome which is tagged by the address within a tissue. However, to understand cellular behavior in a self-organizing society, we need to apply mathematical or statistical methods. Here, we provide a review on current computational methods for spatial transcriptomics in cancer biology.
Collapse
Affiliation(s)
- Jaewoo Mo
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Junseong Bae
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea; Graduate School of Medical AI, Pusan National University, Yangsan, Republic of Korea
| | - Jahanzeb Saqib
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Dohyun Hwang
- Department of Information Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Yunjung Jin
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Beomsu Park
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jeongbin Park
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea; Department of Information Convergence Engineering, Pusan National University, Yangsan, Republic of Korea; School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, Dongjak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Maurya R, Chug I, Vudatha V, Palma AM. Applications of spatial transcriptomics and artificial intelligence to develop integrated management of pancreatic cancer. Adv Cancer Res 2024; 163:107-136. [PMID: 39271261 DOI: 10.1016/bs.acr.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer is a complex disease intrinsically associated with cellular processes and gene expression. With the development of techniques such as single-cell sequencing and sequential fluorescence in situ hybridization (seqFISH), it was possible to map the location of cells based on their gene expression with more precision. Moreover, in recent years, many tools have been developed to analyze these extensive datasets by integrating machine learning and artificial intelligence in a comprehensive manner. Since these tools analyze sequencing data, they offer the chance to analyze any tissue regardless of its origin. By applying this to cancer settings, spatial transcriptomic analysis based on artificial intelligence may help us understand cell-cell communications within the tumor microenvironment. Another advantage of this analysis is the identification of new biomarkers and therapeutic targets. The integration of such analysis with other omics data and with routine exams such as magnetic resonance imaging can help physicians with the earlier diagnosis of tumors as well as establish a more personalized treatment for pancreatic cancer patients. In this review, we give an overview description of pancreatic cancer, describe how spatial transcriptomics and artificial intelligence have been used to study pancreatic cancer and provide examples of how integrating these tools may help physicians manage pancreatic cancer in a more personalized approach.
Collapse
Affiliation(s)
- Rishabh Maurya
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Isha Chug
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - António M Palma
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
9
|
Liao L, Martin PCN, Kim H, Panahandeh S, Won KJ. Data enhancement in the age of spatial biology. Adv Cancer Res 2024; 163:39-70. [PMID: 39271267 DOI: 10.1016/bs.acr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Unveiling the intricate interplay of cells in their native environment lies at the heart of understanding fundamental biological processes and unraveling disease mechanisms, particularly in complex diseases like cancer. Spatial transcriptomics (ST) offers a revolutionary lens into the spatial organization of gene expression within tissues, empowering researchers to study both cell heterogeneity and microenvironments in health and disease. However, current ST technologies often face limitations in either resolution or the number of genes profiled simultaneously. Integrating ST data with complementary sources, such as single-cell transcriptomics and detailed tissue staining images, presents a powerful solution to overcome these limitations. This review delves into the computational approaches driving the integration of spatial transcriptomics with other data types. By illuminating the key challenges and outlining the current algorithmic solutions, we aim to highlight the immense potential of these methods to revolutionize our understanding of cancer biology.
Collapse
Affiliation(s)
- Linbu Liao
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark; Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patrick C N Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sanaz Panahandeh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kyoung Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
10
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|