1
|
Wiriyakulsit N, Keawsomnuk P, Thongin S, Ketsawatsomkron P, Muta K. A model of hepatic steatosis with declined viability and function in a liver-organ-on-a-chip. Sci Rep 2023; 13:17019. [PMID: 37813918 PMCID: PMC10562420 DOI: 10.1038/s41598-023-44198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) begins with benign steatosis caused by ectopic storage of triacylglycerols in the liver. Persistent steatosis, in combination with other genetic and environmental factors, leads to nonalcoholic steatohepatitis (NASH) characterized by functional impairment, inflammation, and fibrosis. However, it remains unclear how persistent steatosis directly contributes to the progression of NAFLD, which may represent a therapeutic target. The organ-on-a-chip (OOC) has emerged as a new culture platform to recapitulate human pathological conditions under which drug candidates can be screened. Here, we developed a simple OOC steatosis model using the Mimetas OrganoPlate with a human liver cell line, HepG2. Treating the HepG2 OOCs with fatty acid overload induced steatosis within 24 h. Moreover, persistent steatosis for 6 days impaired OOC viability and hepatic function, as measured by a WST-8 assay and albumin production, respectively. Lastly, the HepG2 OOCs were exposed to drugs being tested in clinical trials for NAFLD/NASH during the 6-day period. Pioglitazone improved the OOC viability while elafibranor reduced the steatosis in association with reduced viability and albumin production. In conclusion, we show that the HepG2 steatosis OOC model is a useful tool on which the efficacy and toxicity of various therapeutic candidates can be tested.
Collapse
Affiliation(s)
- Natsupa Wiriyakulsit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Ploychanok Keawsomnuk
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Saowarose Thongin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand
| | - Kenjiro Muta
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| |
Collapse
|
2
|
Panwar A, Das P, Tan LP. 3D Hepatic Organoid-Based Advancements in LIVER Tissue Engineering. Bioengineering (Basel) 2021; 8:185. [PMID: 34821751 PMCID: PMC8615121 DOI: 10.3390/bioengineering8110185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Liver-associated diseases and tissue engineering approaches based on in vitro culture of functional Primary human hepatocytes (PHH) had been restricted by the rapid de-differentiation in 2D culture conditions which restricted their usability. It was proven that cells growing in 3D format can better mimic the in vivo microenvironment, and thus help in maintaining metabolic activity, phenotypic properties, and longevity of the in vitro cultures. Again, the culture method and type of cell population are also recognized as important parameters for functional maintenance of primary hepatocytes. Hepatic organoids formed by self-assembly of hepatic cells are microtissues, and were able to show long-term in vitro maintenance of hepato-specific characteristics. Thus, hepatic organoids were recognized as an effective tool for screening potential cures and modeling liver diseases effectively. The current review summarizes the importance of 3D hepatic organoid culture over other conventional 2D and 3D culture models and its applicability in Liver tissue engineering.
Collapse
Affiliation(s)
- Amit Panwar
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Faculty of Biotechnology, Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road Barabanki, Uttar Pradesh 225003, India
| | - Prativa Das
- The Henry Samueli School of Engineering, University of California, Irvine, CA 92617, USA;
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for 3D Printing (SC3DP), Singapore 639798, Singapore
| |
Collapse
|
3
|
Janani G, Mandal BB. Mimicking Physiologically Relevant Hepatocyte Zonation Using Immunomodulatory Silk Liver Extracellular Matrix Scaffolds toward a Bioartificial Liver Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24401-24421. [PMID: 34019382 DOI: 10.1021/acsami.1c00719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mimicking nativelike metabolic zonation is indispensable to develop an efficient bioartificial liver model, as it facilitates physiological cues, hepatocyte polarity, and phenotypic functions. The present study shows the first evidence of hepatocyte metabolic heterogeneity in an in vitro liver model encompassing liver extracellular matrix (ECM)-functionalized silk scaffolds (LECM-SF) by altering ECM proportion. Upon static culture, individual LECM-SF scaffold supports differential synthetic and metabolic functions of cultured primary neonatal rat hepatocytes (PNRHs), owing to discrete biophysical attributes. A single in vitro liver system comprising PNRHs seeded LECM-SF scaffolds assisting periportal to pericentral gradient functions is stacked and matured in a perfusion bioreactor to simulate oxygen gradient. The scaffold with high ECM supports periportal-specific albumin synthesis, urea secretion, and bile duct formation, albeit scaffold with low ECM supports pericentral-specific cytochrome P450 activity. Extensive physicochemical characterizations confirmed the stability and interconnected porous network of scaffolds, signifying cellular infiltration and bidirectional nutrient diffusion. Furthermore, scaffolds demonstrate minimal thrombogenicity, reduced foreign-body response, and enhanced pro-remodeling macrophage activation, supporting constructive tissue remodeling. The developed liver model with zone-specific functions would be a promising avenue in bioartificial liver and drug screening.
Collapse
Affiliation(s)
- G Janani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Ha DH, Thi PM, Chaudhary P, Jeong JH. Efficient Formation of Three Dimensional Spheroids of Primary Hepatocytes Using Micropatterned Multi-Well Plates. Macromol Res 2019. [DOI: 10.1007/s13233-019-7103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Sun M, Wong JY, Nugraha B, Ananthanarayanan A, Liu Z, Lee F, Gupta K, Fong EL, Huang X, Yu H. Cleavable cellulosic sponge for functional hepatic cell culture and retrieval. Biomaterials 2019; 201:16-32. [DOI: 10.1016/j.biomaterials.2019.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
|
7
|
Chen X, Jiang W, Ahmed A, Mahon CS, Müllner M, Cao B, Xia T. Engineering Protective Polymer Coatings for Liver Microtissues. Chem Res Toxicol 2018; 32:49-56. [PMID: 30499291 DOI: 10.1021/acs.chemrestox.8b00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three-dimensional (3D) hepatocyte microtissues (MT), also known as spheroids, have proven to be advantageous in providing more accurate information and physiologically relevant and predictive data for liver-related in vivo tests; therefore, spheroids have increasingly been used to study hepatotoxicity, drug delivery to the liver, and tissue engineering. However, variabilities in the generation of 3D MT remain a major challenge. Methods that encapsulate and protect hepatocytes offer a promising pathway in prolonging cell survival, as well as maintaining its liver cell functions. Herein, we studied the encapsulation and resultant protective effects of hydrogen bonded, biocompatible polymer coatings for hepatocyte MT in 3D cell culture. We exposed the MT to hepatotoxic nanomaterials (NMs), such as graphene oxide (GO) and cobalt oxide (Co3O4), to assess the protective effects of poly(vinylpyrrolidone) (PVPON) and tannic acid (TA) coatings. The polymer coating allowed the MT to maintain its morphology. More significantly, it increased the viability of hepatocyte-composed MT by hampering the cellular interaction between hostile NMs and hepatocytes. Based on alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, the liver cell function was maintained throughout the coating process, including after NM treatment. The study provides a straightforward and safe methodology for maintaining the morphology as well as cellular function of hepatocyte MT in vitro.
Collapse
Affiliation(s)
- Xi Chen
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Wen Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Ayman Ahmed
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States
| | - Clare S Mahon
- Key Centre for Polymers and Colloids, School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia.,The University of Sydney Nano Institute (Sydney Nano) , Sydney , New South Wales 2006 , Australia
| | - Bocheng Cao
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States.,Division of NanoMedicine, Department of Medicine , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
8
|
Liaw CY, Ji S, Guvendiren M. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Adv Healthc Mater 2018; 7. [PMID: 29345429 DOI: 10.1002/adhm.201701165] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 01/17/2023]
Abstract
There is a growing interest in engineering hydrogels for 3D tissue and disease models. The major motivation is to better mimic the physiological microenvironment of the disease and human condition. 3D tissue models derived from patients' own cells can potentially revolutionize the way treatment and diagnostic alternatives are developed. This requires development of tissue mimetic hydrogels with user defined and tunable properties. In this review article, a recent summary of 3D hydrogel platforms for in vitro tissue and disease modeling is given. Hydrogel design considerations and available hydrogel systems are summarized, followed by the types of currently available hydrogel models, such as bulk hydrogels, porous scaffolds, fibrous scaffolds, hydrogel microspheres, hydrogel sandwich systems, microwells, and 3D bioprinted constructs. Although hydrogels are utilized for a wide range of tissue models, this article focuses on liver and cancer models. This article also provides a detailed section on current challenges and future perspectives of hydrogel-based tissue models.
Collapse
Affiliation(s)
- Chya-Yan Liaw
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Shen Ji
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| |
Collapse
|
9
|
Calitz C, Hamman JH, Fey SJ, Wrzesinski K, Gouws C. Recent advances in three-dimensional cell culturing to assess liver function and dysfunction: from a drug biotransformation and toxicity perspective. Toxicol Mech Methods 2018; 28:369-385. [PMID: 29297242 DOI: 10.1080/15376516.2017.1422580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlemi Calitz
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Josias H. Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Stephen J. Fey
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Krzysztof Wrzesinski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017; 32:266-277. [PMID: 28615311 PMCID: PMC5545611 DOI: 10.1152/physiol.00036.2016] [Citation(s) in RCA: 982] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.
Collapse
Affiliation(s)
- Kayla Duval
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Hannah Grover
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Li-Hsin Han
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Yongchao Mou
- Department of Bioengineering, University of Illinois-Chicago, Rockford, Illinois
| | - Adrian F Pegoraro
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts; and
| | - Jeffery Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire;
| |
Collapse
|
11
|
Nakamura K, Aizawa K, Aung KH, Yamauchi J, Tanoue A. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells. Sci Rep 2017; 7:41093. [PMID: 28112215 PMCID: PMC5253741 DOI: 10.1038/srep41093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kazuko Aizawa
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kyaw Htet Aung
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
12
|
Improved human endometrial stem cells differentiation into functional hepatocyte-like cells on a glycosaminoglycan/collagen-grafted polyethersulfone nanofibrous scaffold. J Biomed Mater Res B Appl Biomater 2016; 105:2516-2529. [DOI: 10.1002/jbm.b.33758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
|
13
|
Toivonen S, Malinen MM, Küblbeck J, Petsalo A, Urtti A, Honkakoski P, Otonkoski T. Regulation of Human Pluripotent Stem Cell-Derived Hepatic Cell Phenotype by Three-Dimensional Hydrogel Models. Tissue Eng Part A 2016; 22:971-84. [PMID: 27329070 DOI: 10.1089/ten.tea.2016.0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes are anticipated as important surrogates for primary human hepatocytes in applications ranging from basic research to drug discovery and regenerative medicine. Although methods for differentiating hepatocyte-like cells (HLCs) from hiPSCs have developed remarkably, the limited yield of fully functional HLCs is still a major obstacle to their utility. A three-dimensional (3D) culture environment could improve the in vitro hepatic maturation of HLCs. Here we compare 3D hydrogel models of hiPSC-derived HLCs in agarose microwells (3D Petri Dish; 3DPD), nanofibrillar cellulose hydrogels (Growdex; 3DNFC), or animal extracellular matrix-based hydrogels (3D Matrigel; 3DMG). In all the tested 3D biomaterial systems, HLCs formed aggregates. In comparison with two-dimensional monolayer culture, 3DPD and 3DMG models showed both phenotypic and functional enhancement in HLCs over 2.5 weeks of 3D culture. Specifically, we found higher hepatocyte-specific gene expression levels and enhanced cytochrome P450 functions. Our work suggests that transferring HLCs into 3D hydrogel systems can expedite the hepatic maturation of HLCs irrespective of the biochemical nature of the 3D hydrogel. Both plant-based nonembedding and animal-based embedding 3D hydrogel models enhanced the maturation.
Collapse
Affiliation(s)
- Sanna Toivonen
- 1 Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki , Helsinki, Finland
| | - Melina M Malinen
- 2 Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki , Helsinki, Finland
| | - Jenni Küblbeck
- 3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Aleksanteri Petsalo
- 3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Arto Urtti
- 2 Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki , Helsinki, Finland .,3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Paavo Honkakoski
- 3 School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland & Biocenter Kuopio , Kuopio, Finland
| | - Timo Otonkoski
- 1 Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki , Helsinki, Finland .,4 Children's Hospital, Helsinki University Central Hospital , Helsinki, Finland
| |
Collapse
|
14
|
Constrained spheroids for prolonged hepatocyte culture. Biomaterials 2016; 80:106-120. [DOI: 10.1016/j.biomaterials.2015.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
|
15
|
Human hepatoma cell lines on gas foaming templated alginate scaffolds for in vitro drug-drug interaction and metabolism studies. Toxicol In Vitro 2015; 30:331-40. [DOI: 10.1016/j.tiv.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 09/09/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022]
|
16
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|