1
|
Sedláková V, Mourcos S, Pupkaitė J, Lunn Y, Visintini S, Guzman-Soto I, Ruel M, Suuronen E, Alarcon EI. Biomaterials for direct cardiac repair-A rapid scoping review 2012-2022. Acta Biomater 2024; 180:61-81. [PMID: 38588997 DOI: 10.1016/j.actbio.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czechia.
| | - Sophia Mourcos
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biomedical Science, Faculty of Science, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, Ontario K1N 9A7, Canada
| | - Justina Pupkaitė
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Yvonne Lunn
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Irene Guzman-Soto
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Erik Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
2
|
Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. NPJ Regen Med 2021; 6:72. [PMID: 34725374 PMCID: PMC8560749 DOI: 10.1038/s41536-021-00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
The translation of laboratory-scale bioprocess protocols and technologies to industrial scales and the application of human induced pluripotent stem cell (hiPSC) derivatives in clinical trials globally presents optimism for the future of stem-cell products to impact healthcare. However, while many promising therapeutic approaches are being tested in pre-clinical studies, hiPSC-derived products currently account for a small fraction of active clinical trials. The complexity and volatility of hiPSCs present several bioprocessing challenges, where the goal is to generate a sufficiently large, high-quality, homogeneous population for downstream differentiation-the derivatives of which must retain functional efficacy and meet regulatory safety criteria in application. It is argued herein that one of the major challenges currently faced in improving the robustness of routine stem-cell biomanufacturing is in utilizing continuous, meaningful assessments of molecular and cellular characteristics from process to application. This includes integrating process data with biological characteristic and functional assessment data to model the interplay between variables in the search for global optimization strategies. Coupling complete datasets with relevant computational methods will contribute significantly to model development and automation in achieving process robustness. This overarching approach is thus crucially important in realizing the potential of hiPSC biomanufacturing for transformation of regenerative medicine and the healthcare industry.
Collapse
|
3
|
Dong H, Li X, Chen K, Li N, Kagami H. Cryopreserved Spontaneous Spheroids from Compact Bone-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Eng Part C Methods 2021; 27:253-263. [PMID: 33798009 PMCID: PMC8064946 DOI: 10.1089/ten.tec.2021.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneously formed spheroids from mouse compact bone-derived mesenchymal stromal cells (CB-MSCs) possess enhanced stemness and superior plasticity. In this study, the effect of cryopreservation on viability, stemness, and osteogenic differentiation capability of spontaneous CB-MSC spheroids were investigated. CB-MSCs were isolated from mouse femur and tibia. Spheroids were cryopreserved with various concentrations of dimethyl sulfoxide (DMSO). After thawing, the number of living and dead cells was measured. The expression levels of stem cell markers and osteogenic marker genes were analyzed. The cryopreserved and noncryopreserved spheroids were transplanted in mice with a beta-tricalcium phosphate as a scaffold to evaluate the in vivo bone-forming capability. The percentage of living cells was highest when 5% DMSO was used as a cryoprotectant, confirmed by the number of dead cells. The expression of stem cell marker genes and osteogenic differentiation capability were maintained after cryopreservation with 5% DMSO. The cryopreserved spontaneous CB-MSC spheroids showed remarkable new bone formation in vivo, identical to that of the noncryopreserved spheroids even without osteogenic induction. The cryopreserved spontaneous CB-MSC spheroids retained stemness and osteogenic differentiation capability and highlight the utility of spontaneous CB-MSC spheroids as ready-to-use tissue-engineered products for bone tissue engineering.
Collapse
Affiliation(s)
- Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations. Curr Stem Cell Res Ther 2020; 15:102-110. [PMID: 31441732 DOI: 10.2174/1574888x14666190823142911] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are progressive and uncontrolled gradual loss of motor neurons function or death of neuron cells in the central nervous system (CNS) and the mechanisms underlying their progressive nature remain elusive. There is urgent need to investigate therapeutic strategies and novel treatments for neural regeneration in disorders like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Currently, the development and identification of pluripotent stem cells enabling the acquisition of a large number of neural cells in order to improve cell recovery after neurodegenerative disorders. Pluripotent stem cells which consist of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their ability to indefinitely self-renew and the capacity to differentiate into different types of cells. The first human ESC lines were established from donated human embryos; while, because of a limited supply of donor embryos, human ESCs derivation remains ethically and politically controversial. Hence, hiPSCs-based therapies have been shown as an effective replacement for human ESCs without embryo destruction. Compared to the invasive methods for derivation of human ESCs, human iPSCs has opened possible to reprogram patient-specific cells by defined factors and with minimally invasive procedures. Human pluripotent stem cells are a good source for cell-based research, cell replacement therapies and disease modeling. To date, hundreds of human ESC and human iPSC lines have been generated with the aim of treating various neurodegenerative diseases. In this review, we have highlighted the recent potentials, advances, and limitations of human pluripotent stem cells for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Tannaz Akbari Kolagar
- Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Negin Nikkar
- Department of Biology, Faculty of Sciences, Alzahra University, Tehran, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Wallner K, Pedroza RG, Awotwe I, Piret JM, Senior PA, Shapiro AMJ, McCabe C. Stem cells and beta cell replacement therapy: a prospective health technology assessment study. BMC Endocr Disord 2018; 18:6. [PMID: 29382312 PMCID: PMC5791348 DOI: 10.1186/s12902-018-0233-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although current beta cell replacement therapy is effective in stabilizing glycemic control in highly selected patients with refractory type 1 diabetes, many hurdles are inherent to this and other donor-based transplantation methods. One solution could be moving to stem cell-derived transplant tissue. This study investigates a novel stem cell-derived graft and implant technology and explores the circumstances of its cost-effectiveness compared to intensive insulin therapy. METHODS We used a manufacturing optimization model based on work by Simaria et al. to model cost of the stem cell-based transplant doses and integrated its results into a cost-effectiveness model of diabetes treatments. The disease model simulated marginal differences in clinical effects and costs between the new technology and our comparator intensive insulin therapy. The form of beta cell replacement therapy was as a series of retrievable subcutaneous implant devices which protect the enclosed pancreatic progenitors cells from the immune system. This approach was presumed to be as effective as state of the art islet transplantation, aside from immunosuppression drawbacks. We investigated two different cell culture methods and several production and delivery scenarios. RESULTS We found the likely range of treatment costs for this form of graft tissue for beta cell replacement therapy. Additionally our results show this technology could be cost-effective compared to intensive insulin therapy, at a willingness-to-pay threshold of $100,000 per quality-adjusted life year. However, results also indicate that mass production has by far the best chance of providing affordable graft tissue, while overall there seems to be considerable room for cost reductions. CONCLUSIONS Such a technology can improve treatment access and quality of life for patients through increased graft supply and protection. Stem cell-based implants can be a feasible way of treating a wide range of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Klemens Wallner
- Department of Emergency Medicine Research Group, Department of Emergency Medicine, University of Alberta, 8303 - 112 Street, Edmonton, AB T6G 2T4 Canada
| | - Rene G. Pedroza
- Michael Smith Laboratories and Department of Chemical & Biological Engineering, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Isaac Awotwe
- Department of Emergency Medicine Research Group, Department of Emergency Medicine, University of Alberta, 8303 - 112 Street, Edmonton, AB T6G 2T4 Canada
| | - James M. Piret
- Michael Smith Laboratories and Department of Chemical & Biological Engineering, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada
| | - Peter A. Senior
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, 2000 College Plaza, 8215 - 112 Street, Edmonton, AB T6G 2C8 Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - A. M. James Shapiro
- Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, 2000 College Plaza, 8215 - 112 Street, Edmonton, AB T6G 2C8 Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Surgery, University of Alberta, Edmonton, AB Canada
| | - Christopher McCabe
- Department of Emergency Medicine Research Group, Department of Emergency Medicine, University of Alberta, 8303 - 112 Street, Edmonton, AB T6G 2T4 Canada
| |
Collapse
|
6
|
Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:1-12. [PMID: 27837550 DOI: 10.1007/978-3-319-45457-3_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation and biobanking of stem cells are becoming increasingly important as stem cell technology and application attract the interest of industry, academic research, healthcare and patient organisations. Stem cell are already being used in the treatment of some diseases and it is anticipated that stem cell therapy will play a central role in future medicine. Similarly, the discovery of both hematopoietic and solid tumor stem cells and their clinical relevance have profoundly altered paradigms for cancer research as the cancer stem cells are considered promising new targets against cancer. Consequently, long-term cryopreservation and banking of normal and malignant stem cells is crucial and will inevitably become a routine procedure that requires highly regulated and safe methods of specimen storage. There is, however, an increasing amount of evidence showing contradictory results on the impact of cryopreservation and thawing of stem cells, including extensive physical and biological stresses, apoptosis and necrosis, mitochondrial injuries, changes to basal respiration and ATP production, cellular structural damage, telomere shortening and cellular senescence, and DNA damage and oxidative stress. Notably, cell surface proteins that play a major role in stem cell fate and are used as the biomarkers of stem cells are more vulnerable to cold stress than other proteins. There are also data supporting the alteration in some biological features and genetic integrity at the molecular level of the post-thawed stem cells. This article reviews the current and future challenges of cryopreservation of stem cells and stresses the need for further rigorous research on the methodologies for freezing and utilizing cancer stem cells following long-term storage.
Collapse
|
7
|
Yuan Y, Yang Y, Tian Y, Park J, Dai A, Roberts RM, Liu Y, Han X. Efficient long-term cryopreservation of pluripotent stem cells at -80 °C. Sci Rep 2016; 6:34476. [PMID: 27694817 PMCID: PMC5046093 DOI: 10.1038/srep34476] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
Current long term cryopreservation of cell stocks routinely requires the use of liquid nitrogen (LN2), because commonly used cryopreservation media containing cell membrane permeating cryoprotectants are thermally unstable when frozen at higher storage temperatures, e.g. -80 °C. This instability leads to ice recrystallization, causing progressive loss of cell viability over time under the storage conditions provided by most laboratory deep freezers. The dependency on LN2 for cell storage significantly increases operational expense and raises issues related to impaired working efficiency and safety. Here we demonstrate that addition of Ficoll 70 to cryoprotectant solutions significantly improves system thermal stability at the working temperature (~-80 °C) of laboratory deep freezers. Moreover, a medium comprised of Ficoll 70 and dimethyl sulfoxide (DMSO) in presence or absence of fetal bovine serum (FBS) can provide reliable cryopreservation of various kinds of human and porcine pluripotent stem cells at -80 °C for periods that extend up to at least one year, with the post-thaw viability, plating efficiency, and full retention of pluripotent phenotype comparable to that achieved with LN2 storage. These results illustrate the practicability of a promising long-term cryopreservation method that completely eliminates the need for LN2.
Collapse
Affiliation(s)
- Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri, Columbia, MO 65211, USA
| | - Ying Yang
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri, Columbia, MO 65211, USA
| | - Yuchen Tian
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri, Columbia, MO 65211, USA
| | - Jinkyu Park
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri, Columbia, MO 65211, USA
| | - Aihua Dai
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri, Columbia, MO 65211, USA
| | - R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center; University of Missouri, Columbia, MO 65211, USA
| | - Yang Liu
- Department of Mechanical &Aerospace Engineering; University of Missouri, Columbia, MO 65211, USA
| | - Xu Han
- Department of Mechanical &Aerospace Engineering; University of Missouri, Columbia, MO 65211, USA.,Comparative Medicine Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|
9
|
Yu W, Niu W, Wang S, Chen X, Sun BO, Wang F, Sun Y. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells. Exp Ther Med 2015; 10:43-50. [PMID: 26170910 DOI: 10.3892/etm.2015.2490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/08/2015] [Indexed: 11/06/2022] Open
Abstract
In vitro differentiation of human embryonic stem cells (hESCs) into endometrium-like cells may provide a useful tool for clinical treatment. The aim of the present study was to investigate the differentiation potential of hESCs into endometrium-like cells using three methods, which included induction by feeder cells, co-culture with endometrial stromal cells and induction with embryoid bodies. Following differentiation, the majority of cells positively expressed cytokeratin and epithelial cell adhesion molecule (EPCAM). Factors associated with endometrium cell function, namely the estrogen and progesterone receptors (ER and PR), were also detected. At day 21 following the induction of differentiation, the expression levels of cytokeratin, EPCAM, ER and PR were significantly increased in the co-culture method group, as compared with the other two methods. Furthermore, these cells became decidualized in response to progesterone and prolactin. In addition, the number of cytokeratin-positive or EPCAM-positive cells significantly increased following the induction of differentiation using the co-culture method, as compared with the other two methods. The mRNA expression levels of Wnt members that are associated with endometrial development were subsequently examined, and Wnt5a was found to be significantly upregulated in the differentiated cells induced by feeder cells and co-culture with endometrial stromal cells; however, Wnt4 and Wnt7a expression levels were unaffected. Additionally, the mRNA expression levels of Wnt5a in the differentiated cells co-cultured with endometrial stromal cells were higher when compared with those induced by feeder cells. In conclusion, the present findings indicated that the co-culture system is the optimal protocol for the induction of hESC differentiation into endometrium-like cells, and Wnt5a signaling may be involved in this process.
Collapse
Affiliation(s)
- Wenzhu Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuna Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - B O Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
11
|
Orellana MD, De Santis GC, Abraham KJ, Fontes AM, Magalhães DAR, Oliveira VDC, Costa EDBO, Palma PVB, Covas DT. Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology 2015; 71:151-60. [PMID: 25641609 DOI: 10.1016/j.cryobiol.2015.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. METHODS Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium, Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. RESULTS We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF, respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF, respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium, for two cryopreservation systems (P<0.05). CONCLUSION We developed an in house protocol using the combination of Me2SO/HES/SR medium and ultra-slow programmable freezing system which resulted in hESC colonies that remain undifferentiated, maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies.
Collapse
Affiliation(s)
- Maristela Delgado Orellana
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - Gil Cunha De Santis
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | | | | | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Dimas Tadeu Covas
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
12
|
Medium composition for effective slow freezing of embryonic cell lines derived from marine medaka (Oryzias dancena). Cytotechnology 2014; 68:9-17. [PMID: 24916563 DOI: 10.1007/s10616-014-9749-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to identify optimal medium composition for freezing Oryzias dancena embryonic cell lines. Different freezing media consisting of various concentration of dimethyl sulfoxide (DMSO), fetal bovine serum (FBS), and trehalose were prepared and long-term cultured embryonic cell line was frozen in each freezing medium by conventional slow freezing program for 7 days. Through measurement of viability and growth of post-thaw cells frozen in each freezing medium, it was determined that optimal composition of three components was 10 % DMSO, 20 % FBS, and 0.1 M trehalose. The post-thaw cells frozen in optimal freezing medium showed similar morphology and growth rate with non-frozen cells. Next, this condition was applied to two different sets of experiment; (1) freezing of the same cells during expanded period (57 days) and (2) freezing of short-term cultured cells from other batches for 7 days. The viability of post-thaw cells was significantly low and comparable in set 1 and 2, respectively, when compared with the result of long term-cultured cells frozen in optimal freezing medium for 7 days and similar morphology and growth rate with non-frozen counterparts were detected in the post-thaw cells from both sets. In conclusion, this study first reports the optimal medium composition for freezing O. dancena embryonic cells, which can contribute to fish species preservation as well as improvement of cell-based biotechnology by providing stable cell storage.
Collapse
|