1
|
Lee Y, Han J, Hwang SB, Kang SS, Son HB, Jin C, Kim JE, Lee BH, Kang E. Selection of iPSCs without mtDNA deletion for autologous cell therapy in a patient with Pearson syndrome. BMB Rep 2023; 56:463-468. [PMID: 37156631 PMCID: PMC10471463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation. The iPSC clones derived from skin fibroblasts (9% deletion) and blood mononuclear cells (24% deletion) were measured for mtDNA deletion levels. Of the 13 skin-derived iPSC clones, only 3 were found to be free of mtDNA deletions, whereas all blood-derived iPSC clones were found to be free of deletions. The iPSC clones with (27%) and without mtDNA deletion (0%) were selected and performed in vitro and in vivo differentiation, such as embryonic body (EB) and teratoma formation. After differentiation, the level of deletion was retained or increased in EBs (24%) or teratoma (45%) from deletion iPSC clone, while, the absence of deletions showed in all EBs and teratomas from deletion-free iPSC clones. These results demonstrated that non-deletion in iPSCs was maintained during in vitro and in vivo differentiation, even in the presence of nuclear mutations, suggesting that deletion-free iPSC clones could be candidates for autologous cell therapy in patients. [BMB Reports 2023; 56(8): 463-468].
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Sae-Byeok Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Soon-Suk Kang
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Hyeoung-Bin Son
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Chaeyeon Jin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Jae Eun Kim
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| |
Collapse
|
2
|
Soeda S, Saito R, Fujii A, Tojo S, Tokumura Y, Taniura H. Abnormal DNA methylation in pluripotent stem cells from a patient with Prader-Willi syndrome results in neuronal differentiation defects. Stem Cell Res 2021; 53:102351. [PMID: 33895503 DOI: 10.1016/j.scr.2021.102351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
DNA methylation is a common method of gene expression regulation, and this form of regulation occurs in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Gene expression regulation via methylation is important for humans, although there is little understanding of the role of methylation in neuronal differentiation. We characterized the cellular differentiation potential of iPS cells derived from a patient with PWS with abnormal methylation (M-iPWS cells). A comparative genomic hybridization (CGH) array revealed that, unlike iPWS cells (deletion genes type), the abnormally methylated M-iPWS cells had no deletion in the15q11.2-q13 chromosome region. In addition, methylation-specific PCR showed that M-iPWS cells had strong methylation in CpG island of the small nuclear ribonucleoprotein polypeptide N (SNRPN) on both alleles. To assess the effect of abnormal methylation on cell differentiation, the M-iPWS and iPWS cells were induced to differentiate into embryoid bodies (EBs). The results suggest that iPWS and M-iPWS cells are defective at differentiation into ectoderm. Neural stem cells (NSCs) and neurons derived from M-iPWS cells had fewer NSCs and mature neurons with low expression of NSCs and neuronal markers. We conclude that expression of the downstream of genes in the PWS region regulated by methylation is involved in neuronal differentiation.
Collapse
Affiliation(s)
- Shuhei Soeda
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan.
| | - Ryo Saito
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kanagawa 215-0026, Japan; Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Ai Fujii
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shusei Tojo
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuka Tokumura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hideo Taniura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Choi NY, Bang JS, Park YS, Lee M, Hwang HS, Ko K, Myung SC, Tapia N, Schöler HR, Kim GJ, Ko K. Generation of human androgenetic induced pluripotent stem cells. Sci Rep 2020; 10:3614. [PMID: 32109236 PMCID: PMC7046633 DOI: 10.1038/s41598-020-60363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited. CHM are inherited from only the paternal genome. In this study, we generated human androgenetic induced pluripotent stem cells (AgHiPSCs) from primary androgenetic fibroblasts derived from CHM. To investigate the pluripotency state of AgHiPSCs, we analyzed their cellular and molecular characteristics. We tested the DNA methylation status of imprinted genes using bisulfite sequencing and demonstrated the androgenetic identity of AgHiPSCs. AgHiPSCs might be an attractive alternative source of human androgenetic embryonic stem cells. Furthermore, AgHiPSCs can be used in regenerative medicine, for analysis of genomic imprinting, to study imprinting-related development, and for disease modeling in humans.
Collapse
Affiliation(s)
- Na Young Choi
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Seok Bang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yo Seph Park
- Department of Stem Cell Research, TJC Life Research and Development Center, TJC Life, Seoul, 06698, Republic of Korea
| | - Minseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010, Valencia, Spain
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Medical Faculty, University of Münster, 48149, Münster, Germany
| | - Gwang Jun Kim
- Department of Obstetrics and Gynecology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 05029, Republic of Korea.
- Research Institute of Medical Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Genome imprinting in stem cells: A mini-review. Gene Expr Patterns 2019; 34:119063. [PMID: 31279979 DOI: 10.1016/j.gep.2019.119063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is an epigenetic process result in silencing of one of the two alleles (maternal or paternal) based on the parent of origin. Dysregulation of imprinted genes results in detectable developmental and differential abnormalities. Epigenetics erasure is required for resetting the cell identity to a ground state during the production of induced pluripotent stem (iPS) cells from somatic cells. There are some contradictory reports regarding the status of the imprinting marks in the genome of iPS cells. Additionally, many studies highlighted the existence of subtle differences in the imprinting loci between different types of iPS cells and embryonic stem (ES) cells. These observations could ultimately undermine the use of patient-derived iPS cells for regenerative medicine.
Collapse
|