1
|
Wang Z, Li F, Liu W. Extracellular vesicles in endometrial-related diseases: role, potential and challenges. PeerJ 2025; 13:e19041. [PMID: 40093416 PMCID: PMC11910146 DOI: 10.7717/peerj.19041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Endometrial dysfunction underlies many common gynecologic disorders, such as endometriosis, endometrial cancer, intrauterine adhesions, and endometritis, which affect many women around the world. Extracellular vesicles play an important role in the pathophysiologic process of endometrial-related diseases. Extracellular vesicles are released by cells, which usually act as a form of intercellular communication, affecting biological processes such as fibrosis, angiogenesis, cell proliferation, and inflammatory responses by transferring their own proteins, lipids, RNA transcripts, and DNA for messaging, and play a key role in physiological dynamic homeostasis and disease development. This review combines the studies of the last decade, using the sub-description method to introduce the application of different sources of extracellular vesicles in the diagnosis and treatment of related diseases, and discusses the challenges faced by extracellular vesicles in the diagnostic and therapeutic application of endometriosis-related diseases, with the aim of contributing to our understanding of the mechanism of action of extracellular vesicles and their therapeutic roles, so as to provide a reference for the development of endometriosis-related diseases, as well as their prognosis and treatment.
Collapse
Affiliation(s)
- Zilu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqiong Liu
- Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
3
|
Li YX, Wei SQ, Li S, Zheng PS. Strategies and Challenges of Mesenchymal Stem Cells-Derived Extracellular Vesicles in Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:385-403. [PMID: 38009217 DOI: 10.1089/ten.teb.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Having genetically related offspring remains an unattainable dream for couples with reproductive failure. Mesenchymal stem cells (MSCs) are multipotent stromal cells derived from various human tissues and organs. As critical paracrine effectors of MSCs, extracellular vesicles (EVs) can carry and deliver bioactive content, thereby participating in intercellular communication and determining cell fate. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promising therapeutic effects, including repairing injured endometria, restoration of ovarian functions, and improving sperm quantity, morphology, and motility, owing to their regenerative potential, abundant sources, high proliferation rates, low immunogenicity, and lack of ethical issues. However, limited knowledge on purification and isolation of MSC-EVs, therapeutic effects, and unpredictable safety have caused challenges in overcoming female and male infertility. To overcome them, future studies should focus on modification/engineering of MSC-EVs with therapeutic biomolecules and combining attractive biomaterials and MSC-EVs. This review highlights the latest studies on MSC-EVs therapies in infertility and the major challenges that must be overcome before clinical translation.
Collapse
Affiliation(s)
- Yuan-Xing Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Si-Qi Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shan Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
4
|
Song M, Ma L, Zhu Y, Gao H, Hu R. Umbilical cord mesenchymal stem cell-derived exosomes inhibits fibrosis in human endometrial stromal cells via miR-140-3p/FOXP1/Smad axis. Sci Rep 2024; 14:8321. [PMID: 38594471 PMCID: PMC11004014 DOI: 10.1038/s41598-024-59093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
Endometrial fibrosis is the histologic appearance of intrauterine adhesion (IUA). Emerging evidences demonstrated umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exo) could alleviate endometrial fibrosis. But the specific mechanism is not clear. In this study, we explored the effect of UCMSC-exo on endometrial fibrosis, and investigated the possible role of miR-140-3p/FOXP1/Smad axis in anti-fibrotic properties of UCMSC-exo. UCMSC-exo were isolated and identified. Transforming growth factor-β (TGF-β) was used to induce human endometrial stromal cell (HESC) fibrosis. Dual luciferase assay was performed to verify the relationship between miR-140-3p and FOXP1. The expressions of fibrotic markers, SIP1, and p-Smad2/p-Smad3 in HESCs stimulated with UCMSC-exo were detected by western blot. In addition, the effects of miR-140-3p mimic, miR-140-3p inhibitor and FOXP1 over-expression on endometrial fibrosis were assessed. The isolated UCMSC-exo had a typical cup-shaped morphology and could be internalized into HESCs. The expressions of fibrotic markers were significantly increased by TGF-β, which was reversed by UCMSC-exo. MiR-140-3p in UCMSC-exo ameliorated TGf-β-induced HESCs fibrosis. FOXP1 was identified as the direct target of miR-140-3p, which could inversely regulate miR-140-3p's function on HESCs fibrosis. Furthermore, we demonstrated that miR-140-3p in UCMSC-exo regulated Smad signal pathway to exert the anti-fibrotic effect in HESCs. The anti-fibrotic effect of UCMSC-derived exosomes against HESC fibrosis was at least partially achieved by miR-140-3p/FOXP1/Smad axis.
Collapse
Affiliation(s)
- Mengling Song
- Department of Reproductive Medicine, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 804 Shengli Street, Xingqing Square, Yinchuan, 750004, Ningxia, China.
| | - Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yongzhao Zhu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Huimin Gao
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Department of Reproductive Medicine, General Hospital of Ningxia Medical University (The First Clinical Medical College of Ningxia Medical University), 804 Shengli Street, Xingqing Square, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
5
|
Xiong Z, Hu Y, Jiang M, Liu B, Jin W, Chen H, Yang L, Han X. Hypoxic bone marrow mesenchymal stem cell exosomes promote angiogenesis and enhance endometrial injury repair through the miR-424-5p-mediated DLL4/Notch signaling pathway. PeerJ 2024; 12:e16953. [PMID: 38406291 PMCID: PMC10894593 DOI: 10.7717/peerj.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background Currently, bone marrow mesenchymal stem cells (BMSCs) have been reported to promote endometrial regeneration in rat models of mechanically injury-induced uterine adhesions (IUAs), but the therapeutic effects and mechanisms of hypoxic BMSC-derived exosomes on IUAs have not been elucidated. Objective To investigate the potential mechanism by which the BMSCS-derived exosomal miR-424-5p regulates IUA angiogenesis through the DLL4/Notch signaling pathway under hypoxic conditions and promotes endometrial injury repair. Methods The morphology of the exosomes was observed via transmission electron microscopy, and the expression of exosome markers (CD9, CD63, CD81, and HSP70) was detected via flow cytometry and Western blotting. The expression of angiogenesis-related genes (Ang1, Flk1, Vash1, and TSP1) was detected via RT‒qPCR, and the expression of DLL4/Notch signaling pathway-related proteins (DLL4, Notch1, and Notch2) was detected via Western blotting. Cell proliferation was detected by a CCK-8 assay, and angiogenesis was assessed via an angiogenesis assay. The expression of CD3 was detected by immunofluorescence. The endometrial lesions of IUA rats were observed via HE staining, and the expression of CD3 and VEGFA was detected via immunohistochemistry. Results Compared with those in exosomes from normoxic conditions, miR-424-5p was more highly expressed in the exosomes from hypoxic BMSCs. Compared with those in normoxic BMSC-derived exosomes, the proliferation and angiogenesis of HUVECs were significantly enhanced after treatment with hypoxic BMSC-derived exosomes, and these effects were weakened after inhibition of miR-424-5p. miR-424-5p can target and negatively regulate the expression of DLL4, promote the expression of the proangiogenic genes Ang1 and Flk1, and inhibit the expression of the antiangiogenic genes Vash1 and TSP1. The effect of miR-424-5p can be reversed by overexpression of DLL4. In IUA rats, treatment with hypoxic BMSC exosomes and the miR-424-5p mimic promoted angiogenesis and improved endometrial damage. Conclusion The hypoxic BMSC-derived exosomal miR-424-5p promoted angiogenesis and improved endometrial injury repair by regulating the DLL4/Notch signaling pathway, which provides a new idea for the treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Yong Hu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Jiang
- Department of Gynecology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Beibei Liu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjiao Jin
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Huiqin Chen
- Department of Gynecology, Chuxiong Hospital of Traditional Chinese Medicine, Chuxiong, Yunnan, China
| | - Linjuan Yang
- Department of Gynecology and Obstetrics, Baoshan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| |
Collapse
|
6
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
7
|
Liu H, Zhang X, Zhang M, Zhang S, Li J, Zhang Y, Wang Q, Cai JP, Cheng K, Wang S. Mesenchymal Stem Cell Derived Exosomes Repair Uterine Injury by Targeting Transforming Growth Factor-β Signaling. ACS NANO 2024; 18:3509-3519. [PMID: 38241636 DOI: 10.1021/acsnano.3c10884] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Intrauterine adhesions (IUA) refer to adhesions within the uterine cavity and cervix caused by injuries from uterine surgery. They are a significant cause of female infertility. Exosomes derived from mesenchymal stem cells (MSCs) play an active role in the treatment of IUA. However, the mechanism by which they reduce fibrosis in the damaged endometrium remains unclear. In this paper, we demonstrate that exosomes derived from placental mesenchymal stem cells (PMSCs) can restore uterine functions and improve the fertility rate of injured animals. This is achieved by promoting cell proliferation, increasing endometrial thickness, and reversing fibrosis. Regarding the molecular mechanism behind these therapeutic effects, we identify three specific miRNAs, namely, miR-125b-5p, miR-30c-5p, and miR-23a-3p, enriched in PMSC-exosomes, as the key players in the treatment of IUA. Specifically, miR-125b-5p/miR-30c-5p and miR-23a-3p inhibit the expression of smad2 and smad3 by targeting their 3'-untranslated regions, resulting in the downregulation of the transforming growth factor-β (TGF-β)/smad signaling pathway and the reversal of fibrosis. Notably, the safety of PMSC-exosomes in intrauterine treatment was also been confirmed. In conclusion, we illustrate that exosomes derived from PMSCs possess the capability to repair endometrial damage and enhance fertility in injured animals by regulating the TGF-β/smad pathway via miR-125b-5p, miR-30c-5p, and miR-23a-3p. This provides insights into the precision treatment of IUA through exosome-based cell-free therapy.
Collapse
Affiliation(s)
- Huidong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences &Peking Union Medical College,Beijing 100005, China
| | - Xiao Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences &Peking Union Medical College,Beijing 100005, China
| | - Mengtong Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences &Peking Union Medical College,Beijing 100005, China
| | - Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences &Peking Union Medical College,Beijing 100005, China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yingmin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jian Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10032,United States
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences &Peking Union Medical College,Beijing 100005, China
| |
Collapse
|
8
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
9
|
Lin SQ, Wang K, Pan XH, Ruan GP. Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases. Curr Stem Cell Res Ther 2024; 19:1415-1428. [PMID: 38311916 DOI: 10.2174/011574888x271344231129053003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/06/2024]
Abstract
Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.
Collapse
Affiliation(s)
- Shu-Qian Lin
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Kai Wang
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| | - Guang-Ping Ruan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| |
Collapse
|
10
|
Chen WH, Chen SR, Hu XX, Huang QY, Chen JM, Lin S, Shi QY. Effects of treatment with stem cell-derived extracellular vesicles in preclinical rodent models of intrauterine adhesion: A meta-analysis. Heliyon 2023; 9:e22902. [PMID: 38144338 PMCID: PMC10746437 DOI: 10.1016/j.heliyon.2023.e22902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Background Intrauterine adhesion (IUA) results from serious complications of intrauterine surgery or infection and mostly remains incurable. Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have emerged as a potential new approach for the treatment of IUA; however, their impact is not fully understood. Here, we performed a meta-analysis summarizing the effects of sEVs on IUA in preclinical rodent models. Methods This meta-analysis included searches of PubMed, EMBASE, Cochrane, and the Web of Science databases from January 1, 1997, to April 1, 2022, to identify studies reporting the therapeutic effect of sEVs on rodent preclinical animal models of IUA. We compared improvements in endometrial thickness, endometrial gland number, fibrosis area, embryo number, vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGFβ1), and leukemia inhibitory factor (LIF) levels after treatment. Results Our search included 100 citations, of which 7 met the inclusion criteria, representing 231 animals. Compared with that in the control group, the fibrosis area in the sEV-treated group was significantly reduced (standardized mean difference (SMD) = -6.87,95 % confidence interval (CI) = -9.67 to -4.07). The number of glands increased after the intervention (95 % CI, 3.72-7.68; P = 0.000). Endometrial thickness was significantly improved in the sEV-treated group (SMD = 2.57, 95 % CI, 1.62-3.52). Conclusions This meta-analysis is highlighting that sEV treatment can improve the area of endometrial fibrosis, as well as VEGF, and LIF level, in a mouse IUA model. This knowledge of these findings will provide new insights into future preclinical research.
Collapse
Affiliation(s)
- Wei-hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shao-rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xin-xin Hu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Qiao-yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jia-ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia
| | - Qi-yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
11
|
Xiong Z, Ma Y, He J, Li Q, Liu L, Yang C, Chen J, Shen Y, Han X. Apoptotic bodies of bone marrow mesenchymal stem cells inhibit endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway. Heliyon 2023; 9:e20716. [PMID: 37885720 PMCID: PMC10598495 DOI: 10.1016/j.heliyon.2023.e20716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Background Intrauterine adhesions (IUAs) are a common illness of the uterine cavity. Endometrial fibrosis is the main pathological feature. In addition to a high recurrence rate, patients with severe IUAs have a low pregnancy rate. However, there are few effective treatments for IUAs. This study aims to confirm the influence of apoptotic bodies of bone marrow mesenchymal stem cells (BMSCs) on endometrial stromal cell fibrosis by mediating the Wnt/β-catenin signaling pathway and to provide new insight for the clinical treatment of IUAs. Methods Human endometrial stromal cells (HESCs) were used to establish an IUA cell model by treatment with TGF-β1, and a rat IUA model was established by the double injury method. Apoptosis of BMSCs was detected by TUNEL assays, and cell morphology was observed by the CM-DiI tracer. The morphology of apoptotic vacuoles and apoptotic bodies (ABs) was detected by TEM. We used Western blotting to detect the expression of histone H3.3, histone H2B, C3b, cyclin D1, C1QC, α-SMA, COL1A1, COL5A2, FN, CTGF, Wnt2b, c-MYC, CK-18 and VIM. The expression levels of α-SMA, COL1A1, COL5A2, FN and CTGF were detected by RT‒qPCR. The expression levels of α-SMA, COL1A1, FN and CTGF were detected by immunofluorescence. Immunohistochemistry was used to detect the expression of TGF-β, CK-18 and VIM. Flow cytometry, cell scratch assays, CCK-8 assays, and H & E and Masson staining were used to detect the cell cycle, cell migration, cell proliferation, and endometrial pathology, respectively. Results We found that ultraviolet light (UV) irradiation induced apoptosis of BMSCs and increased the production of ABs. TGF-β1 treatment can induce HESCs to form extracellular matrix (ECM), and aggravate cell fibrosis, and adding ABs or FH535, an inhibitor of the Wnt/β-catenin signaling pathway, can inhibit TGF-β1-induced HESC fibrosis. However, the inhibitory effect of ABs on TGF-β1-induced fibrosis of HESCs was attenuated by the addition of LiCl. In the Wnt/β-catenin signaling pathway, LiCl is an activator after coculture with TGF-β1. In vivo, IUA-induced narrowing of the uterine cavity was accompanied by intrauterine adhesions, increased deposition of collagen fibers, upregulation of TGF-β1, VIM, α-SMA, COL1A1 and COL5A2, and downregulation of CK-18. These changes in expression were reversed after treatment with ABs or FH535. When ABs and LiCl were added at the same time, the inhibitory effect of ABs on IUA fibrosis was weakened. Conclusion BMSC-derived ABs inhibit the fibrosis of HESCs by inhibiting the Wnt/β-catenin signaling pathway. These results provide a new direction for the clinical treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yaru Ma
- Department of Gynecology, Women and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jia He
- Department of Plastic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qin Li
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Liu Liu
- Department of Plastic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunli Yang
- Department of Gynecology, Baoshan People's Hospital, Baoshan, Yunnan, China
| | - Jia Chen
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Yi Shen
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Chen S, Ma Y, Qiu X, Liu M, Zhang P, Wei C, Dai Y, Ge L, Zhu H, Zhang Y, Zhang J, Lin X. MicroRNA-122-5p alleviates endometrial fibrosis via inhibiting the TGF-β/SMAD pathway in Asherman's syndrome. Reprod Biomed Online 2023; 47:103253. [PMID: 37677924 DOI: 10.1016/j.rbmo.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023]
Abstract
RESEARCH QUESTION What is the effect of miR-122 on the progression and recovery of fibrosis in Asherman's syndrome? DESIGN Endometrial tissue was collected from 21 patients, 11 with intrauterine adhesion (IUA) and 10 without IUA. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot were applied to observe the expression of mRNAs/miRNAs and protein, respectively. The endometrial physical injury was carried out in C57BL/6 mice to create an endometrial fibrosis model, with intrauterine injection of adenovirus to compare the antifibrosis and repair function of miR-122 on endometrium. The morphology of the uterus was observed using haematoxylin and eosin staining, and fibrosis markers were detected by immunohistochemistry. RESULTS miR-122 expression was reduced in patients with IUAs, accompanied by fibrosis. MiR-122 overexpression reduced the degree of fibrosis in endometrial stromal cells. Further molecular analyses demonstrated that miR-122 inhibited fibrosis through the TGF-β/SMAD pathway by directly targeting the 3' untranslated region of SMAD family member 3, suppressing its expression. Notably, miR-122 promoted endometrial regeneration and recovery of pregnancy capacity in a mouse endometrial injury model. CONCLUSIONS miR-122 is a critical regulator for repair of endometrial fibrosis and provided new insight for the clinical treatment of intrauterine adhesions.
Collapse
Affiliation(s)
- Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaoxiao Qiu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Department of Obstetrics and Gynecology, Taizhou Municipal Hospital, Taizhou, 318000, China
| | - Mengying Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Department of Obstetrics and Gynecology, Tiantai People's Hospital of Zhejiang Province, Taizhou, 317200, China
| | - Cheng Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linyan Ge
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yanling Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Jiaren Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. Qingchun East Road, Jianggan District, Hangzhou, 310016, China..
| |
Collapse
|
13
|
Zhou Y, Li Q, You S, Jiang H, Jiang L, He F, Hu L. Efficacy of Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Animal Model of Female Reproductive Diseases: A Meta-Analysis. Stem Cell Rev Rep 2023; 19:2299-2310. [PMID: 37365433 DOI: 10.1007/s12015-023-10576-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Female reproductive disorders, such as premature ovarian insufficiency (POI), intrauterine adhesion (IUA) or thin endometrium, and polycystic ovary syndrome (PCOS), are the main factors affecting fertility. Mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have gained traction as a new potential treatment and were widely studied in these diseases. However, their impact is still not fully clear. METHODS A systematic search of PubMed, Web of Science, EMBASE, the Chinese National Knowledge of Infrastructure, and WanFang online databases was performed up to September 27th, 2022, and the studies of MSC-EVs-based therapy on the animal models of female reproductive diseases were included. The primary outcomes were anti-Müllerian hormone (AMH) in POI and endometrial thickness in IUA, respectively. RESULTS 28 studies (POI, N = 15; IUA, N = 13) were included. For POI, MSC-EVs improved AMH at 2 weeks (SMD 3.40, 95% CI 2.02 to 4.77) and 4 weeks (SMD 5.39, 95% CI 3.43 to 7.36) compared with placebo, and no difference was found when compared with MSCs in AMH (SMD -2.03, 95% CI -4.25 to 0.18). For IUA, MSC-EVs treatment could increase the endometrial thickness at 2 weeks (WMD 132.36, 95% CI 118.99 to 145.74), but no improvement was found at 4 weeks (WMD 166.18, 95% CI -21.44 to 353.79). The combination of MSC-EVs with hyaluronic acid or collagen had a better effect on the endometrial thickness (WMD 105.31, 95% CI 85.49 to 125.13) and glands (WMD 8.74, 95% CI 1.34 to 16.15) than MSC-EVs alone. The medium dose of EVs may allow for great benefits in both POI and IUA. CONCLUSIONS MSC-EVs treatment could improve the functional and structural outcomes in female reproductive disorders. The combination of MSC-EVs with HA or collagen may enhance the effect. These findings can accelerate the translation of MSC-EVs treatment to human clinical trials.
Collapse
Affiliation(s)
- Yuanyang Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
- Department of Obstetrics and Gynaecology, Jinjiang Maternity Hospital, No. 22 Huangshan Road, Deyang, Sichuan Province, China
| | - Qu Li
- Department of Obstetrics and Gynaecology, Jinjiang Maternity Hospital, No. 22 Huangshan Road, Deyang, Sichuan Province, China
| | - Shuang You
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
| | - Huanhuan Jiang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
| | - Linying Jiang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
| | - Fan He
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China.
- Joint International Research Lab for Reproduction and Development, Ministry of Education of the People's Republic of China, Chongqing, China.
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.
| | - Lina Hu
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China.
- Joint International Research Lab for Reproduction and Development, Ministry of Education of the People's Republic of China, Chongqing, China.
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.
| |
Collapse
|
14
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
15
|
Backer S, Khanna D, Sadr S, Khatibi A. Intra-operative Guidelines for the Prevention of Uterine Niche Formation in Cesarean Sections: A Review. Cureus 2023; 15:e44521. [PMID: 37790067 PMCID: PMC10544643 DOI: 10.7759/cureus.44521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Formation of a uterine niche following a C-section can predispose the patient to future obstetric complications such as dehiscence, uterine rupture, ectopic pregnancy, and placenta accreta. The significant morbidity and mortality of these complications along with increasing C-section rates emphasizes the importance of prevention. However, there are no clear guidelines on intra-operative protocol to prevent postpartum niche formation. Besides surgical technique, the novel use of platelet-rich plasma (PRP) and mesenchymal stem cell (MSC) injections has demonstrated promising potential and may have applications in hysterotomy closures. The objective is to examine current research on optimal C-section procedures to prevent uterine niche formation and subsequent obstetric complications. A systematic review was conducted using PubMed and Google Scholar. Initial searches yielded 827 results. Inclusion criteria were human, animal, and in-vitro studies, peer-reviewed sources, and outcomes pertinent to the uterine niche. Exclusion criteria applied to articles with outcomes unrelated to myometrium and interventions outside of the intra-operative and immediate pre-/post-operative period. Based on the criteria, 41 articles were cited. Pathophysiology of uterine niche formation was associated with incisions through cervical tissue, adhesion formation, and poor approximation. Significant risk factors were low uterine incisions, advanced cervical dilatation, low station, non-closure of the peritoneum, and creation of a bladder flap. There was no consensus on uterine closure as it likely depends on surgical proficiency with the given technique, but a double-layered non-locking suture appears reliable to reduce niche severity. Recent trials indicate that intra-operative PRP/MSC injections may decrease niche incidence and severity, but more research is needed. If prevention or minimization of uterine niche is desired, the optimal C-section protocol should avoid low uterine incisions, choose uterine closure technique based on the surgeon's proficiency (double-layered non-locking is reliable), and close the peritoneum, and myometrial injection of PRP/MSC may be a useful adjunct intervention pending further clinical evidence.
Collapse
Affiliation(s)
- Sean Backer
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Tampa, USA
| | - Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Sonia Sadr
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Ali Khatibi
- Obstetrics and Gynaecology, Sahlgrenska University Hospital, Gothenburg, SWE
| |
Collapse
|
16
|
Li C, Hu Y. Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion. Int J Stem Cells 2023; 16:260-268. [PMID: 37385632 PMCID: PMC10465336 DOI: 10.15283/ijsc21177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 07/01/2023] Open
Abstract
Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.
Collapse
Affiliation(s)
- Chao Li
- Department of Gynecology, Tianjin Medical University, Tianjin, China
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
17
|
Qi J, Zhang X, Zhang S, Wu S, Lu Y, Li S, Li P, Tan J. P65 mediated UBR4 in exosomes derived from menstrual blood stromal cells to reduce endometrial fibrosis by regulating YAP Ubiquitination. J Nanobiotechnology 2023; 21:305. [PMID: 37644565 PMCID: PMC10463480 DOI: 10.1186/s12951-023-02070-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a recurrent and refractory reproductive dysfunction disorder for which menstrual blood-derived stromal cells (MenSCs) might be a promising intervention. We reported that administration of MenSCs-derived exosomes (MenSCs-EXO) could achieve similar therapeutic effects to MenSCs transplantation, including alleviating endometrial fibrosis and improving fertility in IUA rats. The mass spectrometry sequencing result suggested that UBR4, a member of the proteasome family, was abundantly enriched in MenSCs-EXO. This study aimed to investigate the key role of UBR4 in MenSCs-EXO for the treatment of IUA and the specific molecular mechanism. RESULTS UBR4 was lowly expressed in the endometrial stromal cells (EndoSCs) of IUA patients. MenSCs-EXO treatment could restore the morphology of IUA endometrium, reduce the extent of fibrosis, and promote endometrial and vascular proliferation. Knockdown of UBR4 in MenSCs did not affect the characteristics of exosomes but attenuated the therapeutic effect of exosomes. UBR4 in MenSCs-EXO could alleviate endometrial fibrosis by boosting YAP ubiquitination degradation and promoting YAP nuclear-cytoplasmic translocation. Moreover, P65 could bind to the UBR4 promoter region to transcriptionally promote the expression level of UBR4 in MenSCs. CONCLUSION Our study clarified that MenSCs-EXO ameliorated endometrial fibrosis in IUA primarily by affecting YAP activity mediated through UBR4, while inflammatory signaling P65 may affect UBR4 expression in MenSCs to enhance MenSCs-EXO therapeutic effects. This revealed a novel mechanism for the treatment of IUA with MenSCs-EXO, proposing a potential option for the clinical treatment of endometrial injury.
Collapse
Affiliation(s)
- Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Yimeng Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
18
|
Liu YL, Chen JS, An JH, Cai ZG, Lan JC, Li Y, Kong XW, Zhang MY, Hou R, Wang DH. Characteristics of mesenchymal stem cells and their exosomes derived from giant panda (Ailuropoda melanoleuca) endometrium. In Vitro Cell Dev Biol Anim 2023; 59:550-563. [PMID: 37639049 DOI: 10.1007/s11626-023-00802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Conservation of genetic resources is an important way to protect endangered species. At present, mesenchymal stem cells (MSCs) have been isolated from the bone marrow and umbilical cords of giant pandas. However, the types and quantities of preserved cell resources were rare and limited, and none of MSCs was derived from female reproductive organs. Here, we first isolated MSCs from the endometrium of giant panda. These cells showed fibroblast morphology and expressed Sox2, Klf4, Thy1, CD73, CD105, CD44, CD49f, and CD105. Endometrium mesenchymal stem cells (eMSCs) of giant panda could induce differentiation into three germ layers in vitro. RNA-seq analysis showed that 833 genes were upregulated and 716 genes were downregulated in eMSCs compared with skin fibroblast cells. The results of GO and the KEGG analysis of differentially expressed genes (DEGs) were mainly focused on transporter activity, signal transducer activity, pathways regulating pluripotency of stem cells, MAPK signaling pathway, and PI3K-Akt signaling pathway. The genes PLCG2, FRK, JAK3, LYN, PIK3CB, JAK2, CBLB, and MET were identified as hub genes by PPI network analysis. In addition, the exosomes of eMSCs were also isolated and identified. The average diameter of exosomes was 74.26 ± 13.75 nm and highly expressed TSG101 and CD9 but did not express CALNEXIN. A total of 277 miRNAs were detected in the exosomes; the highest expression of miRNA was the has-miR-21-5p. A total of 14461 target genes of the whole miRNAs were predicted and proceeded with functional analysis. In conclusion, we successfully isolated and characterized the giant panda eMSCs and their exosomes, and analyzed their functions through bioinformatics techniques. It not only enriched the conservation types of giant panda cell resources and promoted the protection of genetic diversity, but also laid a foundation for the application of eMSCs and exosomes in the disease treatment of giant pandas.
Collapse
Affiliation(s)
- Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Jia-Song Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Jing-Chao Lan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
| | - Xiang-Wei Kong
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China
| | - Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu, 610081, China.
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu, 610081, China.
- Sichuan Academy of Giant Panda, Sichuan Province, Chengdu, 610081, China.
| |
Collapse
|
19
|
Lee JH, Won YJ, Kim H, Choi M, Lee E, Ryoou B, Lee SG, Cho BS. Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration. Int J Mol Sci 2023; 24:10434. [PMID: 37445612 DOI: 10.3390/ijms241310434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Wound healing is a complex process involving cell proliferation, migration, and extracellular matrix (ECM) remodeling. Extracellular vesicles (EVs) or exosomes derived from adipose tissue-derived stem cells (ASCs) are emerging as promising alternatives to cell therapy for advanced wound healing. Hyaluronic acid (HA), a major component of the skin ECM, is widely utilized in wound dressings and dermal fillers. This study aimed to investigate the effects of ASC-derived exosomes (ASC-EXOs) on human dermal fibroblasts (HDFs) and their potential combination with HA in in vivo wound healing and dermal filler models. In HDFs, ASC-EXOs increased cell proliferation and migration. ASC-EXOs also upregulated the expression of genes involved in cell proliferation and wound healing while stimulating collagen production in HDFs. In a porcine wound healing model, topical treatment with a combination of HA and ASC-EXOs led to higher wound closure rates compared to HA alone. Histological examination showed increased re-epithelialization and collagen type III deposition in wounds treated with the combination of HA and ASC-EXOs. In a mouse dermal filler model, tissues injected with the combination of HA and ASC-EXOs exhibited thicker tissue layers, increased vascularization, enhanced infiltration of myofibroblasts, and higher levels of collagen III and collagen fiber content compared to HA alone. These findings suggest that ASC-EXOs have beneficial effects on cell proliferation, migration, and gene expression related to wound healing, and they may accelerate wound closure and promote tissue regeneration. Furthermore, the combination of HA and ASC-EXOs may enhance wound healing and tissue remodeling, indicating its potential for both clinical and regenerative aesthetic applications in skin repair and regeneration.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Yu Jin Won
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Esther Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Bumsik Ryoou
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| |
Collapse
|
20
|
Tabeeva G, Silachev D, Vishnyakova P, Asaturova A, Fatkhudinov T, Smetnik A, Dumanovskaya M. The Therapeutic Potential of Multipotent Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Endometrial Regeneration. Int J Mol Sci 2023; 24:ijms24119431. [PMID: 37298382 DOI: 10.3390/ijms24119431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Disruption of endometrial regeneration, fibrosis formation, and intrauterine adhesions underlie the development of "thin" endometrium and/or Asherman's syndrome (AS) and are a common cause of infertility and a high risk for adverse obstetric outcomes. The methods used (surgical adhesiolysis, anti-adhesive agents, and hormonal therapy) do not allow restoration of the regenerative properties of the endometrium. The experience gained today with cell therapy using multipotent mesenchymal stromal cells (MMSCs) proves their high regenerative and proliferative properties in tissue damage. Their contribution to regenerative processes is still poorly understood. One of these mechanisms is based on the paracrine effects of MMSCs associated with the stimulation of cells of the microenvironment by secreting extracellular vesicles (EVs) into the extracellular space. EVs, whose source is MMSCs, are able to stimulate progenitor cells and stem cells in damaged tissues and exert cytoprotective, antiapoptotic, and angiogenic effects. This review described the regulatory mechanisms of endometrial regeneration, pathological conditions associated with a decrease in endometrial regeneration, and it presented the available data from studies on the effect of MMSCs and their EVs on endometrial repair processes, and the involvement of EVs in human reproductive processes at the level of implantation and embryogenesis.
Collapse
Affiliation(s)
- Gyuzyal Tabeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Denis Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Alexandra Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Antonina Smetnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Madina Dumanovskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
21
|
Comparative analysis of magnetically activated cell sorting and ultracentrifugation methods for exosome isolation. PLoS One 2023; 18:e0282238. [PMID: 36854030 PMCID: PMC9974127 DOI: 10.1371/journal.pone.0282238] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Mesenchymal stem cell-derived exosomes regulate cell migration, proliferation, differentiation, and synthesis of the extracellular matrix, giving great potential for the treatment of different diseases. The ultracentrifugation method is the gold standard method for exosome isolation due to the simple protocol, and high yield, but presents low purity and requires specialized equipment. Amelioration of technical optimization is required for quick and reliable confinement of exosomes to translate them to the clinic as cell therapeutics In this study, we hypothesized that magnetically activated cell sorting may provide, an effective, reliable, and rapid tool for exosome isolation when compared to ultracentrifugation. We, therefore, aimed to compare the efficiency of magnetically activated cell sorting and ultracentrifugation for human mesenchymal stem cell-derived exosome isolation from culture media by protein quantification, surface biomarker, size, number, and morphological analysis. Magnetically activated cell sorting provided a higher purity and amount of exosomes that carry visible magnetic beads when compared to ultracentrifugation. The particle number of the magnetically activated cell sorting group was higher than the ultracentrifugation. In conclusion, magnetically activated cell sorting presents a quick, and reliable method to collect and present human mesenchymal stem cell exosomes to clinics at high purity for potential cellular therapeutic approaches. The novel isolation and purification method may be extended to different clinical protocols using different autogenic or allogeneic cell sources.
Collapse
|
22
|
Mohamed Rasheed ZB, Nordin F, Wan Kamarul Zaman WS, Tan YF, Abd Aziz NH. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. BIOLOGY 2023; 12:108. [PMID: 36671799 PMCID: PMC9855776 DOI: 10.3390/biology12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Infertility could be associated with a few factors including problems with physical and mental health, hormonal imbalances, lifestyles, and genetic factors. Given that there is a concern about the rise of infertility globally, increased focus has been given to its treatment for the last several decades. Traditional assisted reproductive technology (ART) has been the prime option for many years in solving various cases of infertility; however, it contains significant risks and does not solve the fundamental problem of infertility such as genetic disorders. Attention toward the utilization of MSCs has been widely regarded as a promising option in the development of stem-cell-based infertility treatments. This narrative review briefly presents the challenges in the current ART treatment of infertility and the various potential applications of autologous MSCs in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Zahirrah Begam Mohamed Rasheed
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, WPKL, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Research Laboratory of UKM Specialist Children’s Hospital, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
23
|
Qian X, Xie F, Cui D. Exploring Purification Methods of Exosomes from Different Biological Samples. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2336536. [PMID: 37124929 PMCID: PMC10132896 DOI: 10.1155/2023/2336536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
Objective Exosomes were extracted from a variety of biological samples using several different purification processes, and our goal was to determine which method and sample were the most effective for exosome extraction. Methods We used ExoQuick-TC combined with ultrafiltration to separate and purify exosomes from the supernatant of gastric cancer cells, while we used the ExoQuick kit and ultracentrifugation to purify exosomes from human serum samples. Furthermore, exosomes were isolated and purified from human urine samples by diafiltration and from postparturition human breast milk samples by the filtration-polyethylene glycol precipitation method. The isolated exosomes were morphologically analyzed using a transmission electron microscope, the particle size was measured by NanoSight, and the protein content was analyzed by western blotting. Results The isolated exosomes showed an obvious cup holder shape, with a clear outline and typical exosome morphological characteristics. The sizes of exosomes derived from gastric cancer cell supernatant, serum, urine, and milk were 65.8 ± 26.9 nm, 87.6 ± 50.9 nm, 197.5 ± 55.2 nm, and 184.1 ± 68.7 nm, respectively. Western blot results showed that CD9 and TSG101 on the exosomes were expressed to varying degrees based on the exosome source. Exosome abundance was higher in the serum, urine, and breast milk than in the supernatant. It is suggested that its exosomes can be extracted to obtain an excellent potential biological source of exosomes. Conclusion In this study, the extraction and separation methods of foreign bodies from different biological samples were obtained, and it was found that human breast milk was a potential excellent material for administration because of its high abundance.
Collapse
Affiliation(s)
- Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xie
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
25
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
26
|
Wang Y, Sun X, Yang Q, Yin L. Exosomes from bone mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury by inhibiting TLR3 via delivering miR-941. Physiol Int 2022; 109:443-456. [DOI: 10.1556/2060.2022.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Abstract
Objective
We aim to investigate the protective effect and underlying mechanisms of BMSCs-exo on human endometrial stromal cells (HESCs) induced by mifepristone in this study.
Methods
BMSCs-exo were extracted and then identified by transmission electron microscopy and western-blot assay. RT-PCR assay was used to determine the level of miR-941. MiR-941 mimics or inhibitor were transfected into BMSCs and the exosomes were extracted. Then, Cell activity, apoptosis rate, cell migration and invasion, as well as the expression of angiogenic proteins were determined in HESCs stimulated by mifepristone and BMSCs-exo. Next, Dual-luciferase reporting assay was used to verify the targeted binding of miR-941 to TLR3, and the TLR3 expression in HESCs was detected by RT-PCR and western-blot. Finally, TLR3 was overexpressed to evaluate the effects of miR-941 from BMSCs-exo on cell apoptosis, cell invasion and angiogenesis in HESCs induced by mifepristone.
Results
miR-941 was highly expressed in BMSCs-exo. Exosome miR-941 in BMSCs-exo inhibited the cell apoptosis, and promoted cell activity, cell migration, invasion as well as angiogenesis were also improved in HESCs induced by mifepristone. TLR3 was a target of miR-941, which was up-regulated in mifepristonetreated HESCs. We further found that miR-941 derived from BMSCs-exo down-regulated the expression of TLR3 in HESCs treated by mifepristone. In addition, TLR3 overexpression blocked the inhibition of miR-941 on mifepristone-induced cell apoptosis, as well as cell migration and angiogenesis in HESCs.
Conclusions
Thus, we concluded that BMSCs-exo has protective effect on mifepristone-induced cell damage by delivering miR-941 which targeted TLR3 and regulated cell activity, migration, and angiogenesis in HESCs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiaofei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| | - Lili Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China
| |
Collapse
|
27
|
Wang H, Liu S, Zhang W, Liu M, Deng C. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosome Repairs Endometrial Epithelial Cells Injury Induced by Hypoxia via Regulating miR-663a/CDKN2A Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3082969. [PMID: 36275892 PMCID: PMC9581691 DOI: 10.1155/2022/3082969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Aim Thin endometrium remains a severe clinical challenge with no effective therapy to date. We aimed at exploring the role and molecular mechanism of human umbilical cord mesenchymal stem cell- (hucMSC-) derived exosomes (hucMSC-Ex) in repairing hypoxic injury of endometrial epithelial cells (EECs). Methods Exosomes were harvested from the conditioned medium of hucMSC and characterized using western blot, transmission electron microscopy (TEM), flow cytometry, and nanoparticle tracking analysis (NTA). EECs were subjected to hypoxic conditions before cocultured with hucMSC-Ex. Cell viability, apoptosis, and migration were determined with CCK-8, flow cytometry, and wound healing assay, respectively. Apoptosis/EMT-related proteins were detected by western blot. The miRNA profiling was determined by RNA sequencing. The expression of miR-663a and CDKN2A was measured by qRT-PCR. MiR-663a in EECs was overexpressed by transfecting with miR-663a mimics. Results Mesenchymal stem cells (MSCs) markers CD73, CD90, and CD106 were positively expressed in hucMSCs. Exosome isolated from hucMSC expressed CD63 and TSG101, and were 100-150 nm in diameter. HucMSC-Ex promoted cell proliferation inhibited by hypoxia. And hucMSC-Ex also inhibited hypoxia-induced apoptosis, migration, and EMT of EECs by upregulating the expression of Bcl-2 and E-cadherin and downregulating Bax and N-cadherin levels. Further, bioinformatics research found that hucMSC-Ex coculture can significantly upregulate the expression of miR-663a and decrease the expression of CDKN2A in hypoxia-induced EECs. Furthermore, miR-663a overexpression inhibited CDKN2A expression and increased the expression of Bcl-2 and E-cadherin in hypoxia-induced EECs. Conclusions HucMSC-Ex promoted cell proliferation, inhibited cell apoptosis, migration, and EMT in hypoxia-induced EECs, thereby alleviating hypoxia-induced EECs injury, which may be related to its regulation of miR-663a/CDKN2A expression. Our study indicated that hucMSC-Ex might benefit for repairing thin endometrium.
Collapse
Affiliation(s)
- Hanbi Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuai fu yuan, Dongcheng District, Beijing 100730, China
| | - Simiao Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuai fu yuan, Dongcheng District, Beijing 100730, China
| | - Wanyu Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuai fu yuan, Dongcheng District, Beijing 100730, China
| | - Meizhi Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuai fu yuan, Dongcheng District, Beijing 100730, China
| | - Chengyan Deng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuai fu yuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
28
|
Dong R, Ma S, Zhao X, Wang B, Roy M, Yao L, Xia T, Liu Y. Recent progress of Bioinspired Hydrogel-based delivery system for endometrial repair. Front Bioeng Biotechnol 2022; 10:1013217. [PMID: 36159661 PMCID: PMC9503822 DOI: 10.3389/fbioe.2022.1013217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Endometrial injury is the main fact leading to infertility. Current treatments of endometrial injury present many problems, such as unable to achieve desired effects due to low retention and the inherent potential risk of injury. Besides, it is important to the development of bioinspired material that can mimic the natural tissue and possess native tissue topography. Hydrogel is a kind of bioinspired superhydrophilic materials with unique characteristics, such as excellent biocompatibility, biodegradability, porosity, swelling, and cross-linkage. These unique physiochemical properties of bioinspired hydrogels enable their promising application as novel delivery platform and alternative therapies for endometrial injury. In this mini review, we summarize the recent advances in bioinispred hydrogel-based delivery system for endometrial repair, including as a post-operative physical barrier and therapeutic delivery system. In addition, present status, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Rong Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Saihua Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoli Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baojuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mridul Roy
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Yao
- Hemay Zhihui Science and Technology Co. Ltd, Tianjin, China
| | - Tian Xia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
29
|
Wang X, Wu J, Xie Y, Liu Y, Feng W, Zhang L, Zhao J, Meng H, Chen B, Zhao Q, Guo R. Bone marrow mesenchymal stem cell-derived extracellular vesicles facilitate endometrial injury repair by carrying the E3 ubiquitin ligase WWP1. Biochem Cell Biol 2022; 100:357-369. [PMID: 36043683 DOI: 10.1139/bcb-2021-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells-derived extracellular vesicles (BMSC-EVs) relieve endometrial injury. This study aimed to elucidate the BMSC-EV mechanism in alleviating endometrial injury. Endometrial injury model in vivo was induced using 95% ethanol, and endometrial epithelial cells (EECs) treated with mifepristone were applied as an endometrial injury model in vitro. After BMSCs and BMSC-EVs were isolated and identified, the BMSC-EV function was evaluated by hematoxylin-eosin and Masson staining, immunohistochemistry, quantitative real-time PCR, Cell Counting Kit-8 assay, flow cytometry, enzyme-linked immunosorbent assay, and Transwell and tubule formation assays. The BMSC-EV mechanism was assessed using Western blot, ubiquitination, and cycloheximide-chase assays. After isolation and identification, BMSC-EVs were effective in endometrial injury repair in vivo and facilitated EEC proliferation and repressed cell apoptosis in vitro; the EEC supernatants accelerated human umbilical vein endothelial cell proliferation, migration, and invasion and facilitated angiogenesis after endometrial injury in vitro. For the BMSC-EV mechanism, E3 ubiquitin ligase WWP1 in BMSC-EVs mediated the ubiquitination of peroxisome proliferator-activated receptor gamma (PPARγ), thus relieving the PPARγ inhibition on vascular endothelial growth factor expression. Furthermore, the WWP1 in BMSC-EVs alleviated endometrial injury in vitro and in vivo. BMSC-EVs facilitated endometrial injury repair by carrying WWP1.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Hua County People's Hospital, Anyang, Henan, China
| | - Junwei Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Hua County People's Hospital, Anyang, Henan, China.,Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Xie
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanjie Liu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Feng
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lirong Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Zhao
- Hua County People's Hospital, Anyang, Henan, China
| | - Hongyu Meng
- Hua County People's Hospital, Anyang, Henan, China
| | - Baohong Chen
- Hua County People's Hospital, Anyang, Henan, China
| | - Qian Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Yiliyasi Y, Wusainahong K, An L, Liu Q, Fan Z, Fan J. Co-Culture of Bone Marrow Mesenchymal Stem Cells Regulates the Fibrotic Response of Endometrial Stromal Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study explored the protective effects and mechanisms of bone marrow mesenchymal stem cells (BMSCs) on the fibrotic response of endometrial stromal cells. The endometrial cells were isolated from intrauterine adhesions (IUA) patients and assigned into control group, TGF-β1
group, BMSC group which was co-cultured with BMSCs in presence of TGF-β1; Exo group (treated with BMSCs-originated exosomes); Exo-inhibitor group (treated with exosome-specific inhibitors) followed by analysis of α-SMA and Vimentin level, cell viability and expression
of TGFBR2, TGFβ-1, Fibronectin (FN), α-SMA, Collagen 1α1 (Col1a1), Smad2/3 and p-Smad2/3. After TGF-β1 treatment, cells exhibited higher expression of p-Smad2/3, TGFBR2, FN, TGF-SMA and COL1A1 along with reduced cell proliferation. However,
BMSCs-originated exosomes or co-culture with BMSCs reversed these changes which could be inverted by exosome-specific inhibitors. In conclusion, BMSCs-originated exosomes and BMSCs exerted an anti-fibrosis effect, which was possibly through regulation of TGFβ1/Smad2/Smad3 signalling
pathway in endometrial stromal cells.
Collapse
Affiliation(s)
- Yilinuer Yiliyasi
- Department of Obstetrics and Gynecology, Beijing Changping District Hospital of Traditional Chinese Medicine, Beijing, 102200, China
| | - Kunduozi Wusainahong
- Department of Gynaecology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830001, China
| | - Liping An
- Department of Obstetrics and Gynecology, Beijing Changping District Hospital of Traditional Chinese Medicine, Beijing, 102200, China
| | - Qinghua Liu
- Department of Obstetrics and Gynecology, Beijing Changping District Hospital of Traditional Chinese Medicine, Beijing, 102200, China
| | - ZeLing Fan
- Department of Obstetrics and Gynecology, Beijing Changping District Hospital of Traditional Chinese Medicine, Beijing, 102200, China
| | - JunHua Fan
- Department of Obstetrics and Gynecology, Beijing Changping District Hospital of Traditional Chinese Medicine, Beijing, 102200, China
| |
Collapse
|
31
|
Huang J, Li Q, Yuan X, Liu Q, Zhang W, Li P. Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: a phase I clinical trial. Stem Cell Res Ther 2022; 13:85. [PMID: 35241151 PMCID: PMC8895869 DOI: 10.1186/s13287-022-02756-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Intrauterine adhesion and cesarean scar diverticulum are the main complications of poor healing after uterine injury. Human umbilical cord MSCs transplantation has been regarded as the most potential treatment in the clinic, the safety and efficacy of which in the clinic, however, remains unclear. Methods In this study, ten patients were enrolled: six with intrauterine adhesion and four with cesarean scar diverticulum. All the patients were injected with human umbilical cord MSCs twice into the uterus. Beside the chest X-ray, ECG and abdominal ultrasound, many laboratory tests including blood routine, liver and renal function, ovarian function, tumor biomarkers, and immune function were used to estimate the safe after stem cell transplanted. In addition, the efficacy of stem cell transplanted was shown by the endometrial thickness, the volume of the uterus, and cesarean scar diverticulum based on 3D ultrasound imaging. Results We found that all results of these laboratory tests were normal in these enrolled patients before and after cell injection. Meanwhile, the results of the chest X-ray and ECG were also normal in the treatment process. The abdominal ultrasound showed that the size of the left and right kidneys was inconsistent in one patient after cell therapy, while those of other patients were normal. In addition, endometrial thickness, the volume of the uterus, and cesarean scar diverticulum showed an improving tendency, but no significant difference was noted. Conclusion In summary, intrauterine injection of clinically graded human umbilical cord MSCs was safe for poor healing after uterus injury. Trial registration NCT03386708. Registered 27 December 2017, https://clinicaltrials.gov/ct2/show/NCT03386708?cond=CSD&cntry=CN&draw=2&rank=2 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02756-9.
Collapse
Affiliation(s)
- Jingrui Huang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China
| | - Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaohua Yuan
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qiaoshu Liu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
32
|
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Front Microbiol 2022; 12:786111. [PMID: 35237239 PMCID: PMC8882917 DOI: 10.3389/fmicb.2021.786111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids, lipids, and proteins and mediate intercellular communication, have attracted much attention in diagnosis and treatment in the field of medicine. The contents of exosomes vary depending on the cell type and physiological conditions. Among exosomes derived from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly being explored due to their immunomodulatory properties, regenerative capacity, anti-inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free therapy for various diseases, has gained great promise. Indeed, the advantages of exosomes secreted from stem cells outweigh those of their parent cells owing to their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier condition for storage. Recently, the use of stem cell-Exo has been proposed in the field of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can cause various diseases in humans with acute and chronic complications, sometimes resulting in mortality. On the other hand, treatments based on antibiotics and other chemical compounds have many side effects and the strains become resistant to drugs in some cases. Hence, this review aimed to highlight the effect of stem cell-derived extracellular vesicles including stem cell-Exo on microbial diseases. Although most published studies are preclinical, the avenue of clinical application of stem cell-Exo is under way to reach clinical applications. The challenges ahead of this cell-free treatment that might be applied as a therapeutic alternative to stem cells for translation from bench to bed were emphasized, as well.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
33
|
Chen JM, Huang QY, Zhao YX, Chen WH, Lin S, Shi QY. The Latest Developments in Immunomodulation of Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions, Both Allogeneic and Autologous. Front Immunol 2021; 12:785717. [PMID: 34868069 PMCID: PMC8634714 DOI: 10.3389/fimmu.2021.785717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrosis disease caused by repeated operations of the uterus and is a common cause of female infertility. In recent years, treatment using mesenchymal stem cells (MSCs) has been proposed by many researchers and is now widely used in clinics because of the low immunogenicity of MSCs. It is believed that allogeneic MSCs can be used to treat IUA because MSCs express only low levels of MHC class I molecules and no MHC class II or co-stimulatory molecules. However, many scholars still believe that the use of allogeneic MSCs to treat IUA may lead to immune rejection. Compared with allogeneic MSCs, autologous MSCs are safer, more ethical, and can better adapt to the body. Here, we review recently published articles on the immunomodulation of allogeneic and autologous MSCs in IUA therapy, with the aim of proving that the use of autologous MSCs can reduce the possibility of immune rejection in the treatment of IUAs.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
34
|
Liu Y, Zhang S, Xue Z, Zhou X, Tong L, Liao J, Pan H, Zhou S. Bone mesenchymal stem cells-derived miR-223-3p-containing exosomes ameliorate lipopolysaccharide-induced acute uterine injury via interacting with endothelial progenitor cells. Bioengineered 2021; 12:10654-10665. [PMID: 34738867 PMCID: PMC8810142 DOI: 10.1080/21655979.2021.2001185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) have been used for the treatment of acute uterine injury (AUI)-induced intrauterine adhesion (IUA) via interacting with the endothelial progenitor cells (EPCs), and BMSCs-derived exosomes (BMSCs-exo) may be the key regulators for this process. However, the underlying mechanisms have not been studied. Based on the existed literatures, lipopolysaccharide (LPS) was used to induce AUI in mice models and EPCs to mimic the realistic pathogenesis of IUA in vivo and in vitro. Our data suggested that LPS induced apoptotic and pyroptotic cell death in mice uterine horn tissues and EPCs, and the clinical data supported that increased levels of pro-inflammatory cytokines IL-18 and IL-1β were also observed in IUA patients' serum samples, and silencing of NLRP3 rescued cell viability in LPS-treated EPCs. Next, the LPS-treated EPCs were respectively co-cultured with BMSCs in the Transwell system and BMSCs-exo, and the results hinted that both BMSCs and BMSCs-exo reversed the promoting effects of LPS treatment-induced cell death in EPCs. Then, we screened out miR-223-3p, as the upstream regulator for NLRP3, was enriched in BMSCs-exo, and BMSCs-exo inactivated NLRP3-mediated cell pyroptosis in EPCs via delivering miR-223-3p. Interestingly, upregulation of miR-223-3p attenuated LPS-induced cell death in EPCs. Collectively, we concluded that BMSCs-exo upregulated miR-223-3p to degrade NLRP3 in EPCs, which further reversed the cytotoxic effects of LPS treatment on EPCs to ameliorate LPS-induced AUI.
Collapse
Affiliation(s)
- Yana Liu
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Shihong Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Zhiwei Xue
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Xiaoxia Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Lin Tong
- Department of Obstetrics and Gynecology, Minerva Hospital for Women and Children, Chengdu, Sichuan, China
| | - Jiachen Liao
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| | - Huan Pan
- Department of Obstetrics and Gynecology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Obstetric and Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichaun, China
| |
Collapse
|
35
|
Gu P, Li W, Zhao X, Xu D. The Top 100 Most Cited Articles on Intrauterine Adhesion: a Bibliometric Analysis. Reprod Sci 2021; 29:460-474. [PMID: 34780024 PMCID: PMC8782778 DOI: 10.1007/s43032-021-00794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Bibliometric analysis is a statistical method that attempts to assess articles by their citations, analyzing their frequency and citation pattern, which subsequently gleans direction and guidance for future research. Over the past few years, articles focused on intrauterine adhesions have been published with increasing frequency. Nevertheless, little is known about the properties and qualities of this research, and no current analysis exists that has examined the progress in intrauterine adhesion research. Web of Science Core Collection, BIOSIS Citation Index, and MEDLINE database were searched to identify articles on intrauterine adhesion published from 1950 to October 2020. The 100 most cited articles were chosen to analyze citation count, citation density, authorship, theme, geographic distribution, time-related flux, level of evidence, and network analysis. An overwhelming majority of these 100 articles were published in the 2010s (35%). Citations per article ranged from 30 to 253. Chinese authors published the most papers in the top 100, followed by the USA, France, Israel, and Italy. The most salient study themes included operative hysteroscopy and adjunctive treatments for improving reproductive outcomes. The most common level of evidence was level II, and there was no statistical difference in the number of citations between the levels. The network analysis indicated that hysteroscopy, hysteroscopic adhesiolysis, infertility, and the reproductive outcome had a great degree of centrality in the 2000s and 2010s. In comparison, placental implantation had a great degree of centrality in the 2000s, and stem cell and fibrosis had a great degree of centrality in the 2010s. The value of IUA investigation has been gradually appreciated recently. Hysteroscopic adhesiolysis was continuously explored to achieve better reproductive outcome. Over time, the main focus of research has gradually shifted from complications to postoperative adjuvant treatment. Moreover, breakthrough progress is needed in underlying mechanism and early prevention of IUA.
Collapse
Affiliation(s)
- Pan Gu
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Waixing Li
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
36
|
Gao M, Yu Z, Yao D, Qian Y, Wang Q, Jia R. Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure. Tissue Cell 2021; 74:101676. [PMID: 34798583 DOI: 10.1016/j.tice.2021.101676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Both intrauterine adhesions (IUA) and premature ovarian failure (POF) have plagued women all over the world for a long time. It is well known that all invasive operations involving the uterus can disrupt its structural and functional integrity to a varying degree, which inevitably lead to abnormal scar formation, such as IUA, also known as Asherman's syndrome with symptoms like hypomenorrhea or infertility. Another reproductive disorder that causes infertility is primary ovarian insufficiency (POI) or POF, which is a degenerative phenomenon in the ovary among women under the age of 40. In recent years, various types of stem cells, especially mesenchymal stem cells (MSCs) have been widely used in reproductive medicine due to their properties, such as immunoregulation, anti-inflammation, angiogenesis, anti-apoptosis, and trophicity. However, the extensive clinical application of cell therapy is impeded by their safety, cost, and manufacturing. In this review, we sought to summarize the recent advances in using different types of MSCs in treating uterine scars and POF. We also describe several biological pathways and molecules involved in animal studies and clinical application; extracellular vesicles secreted by MSCs may be a promising attractive tool to ensure the treatment of infertility by restoring normal reproductive function.
Collapse
Affiliation(s)
- Mingming Gao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Zhaoer Yu
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Dan Yao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Yating Qian
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Qi Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ruizhe Jia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| |
Collapse
|
37
|
Patel SK, Valicherla GR, Micklo AC, Rohan LC. Drug delivery strategies for management of women's health issues in the upper genital tract. Adv Drug Deliv Rev 2021; 177:113955. [PMID: 34481034 DOI: 10.1016/j.addr.2021.113955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The female upper genital tract (UGT) hosts important reproductive organs including the cervix, uterus, fallopian tubes, and ovaries. Several pathologies affect these organ systems such as infections, reproductive issues, structural abnormalities, cancer, and inflammatory diseases that could have significant impact on women's overall health. Effective disease management is constrained by the multifaceted nature of the UGT, complex anatomy and a dynamic physiological environment. Development of drug delivery strategies that can overcome mucosal and safety barriers are needed for effective disease management. This review introduces the anatomy, physiology, and mucosal properties of the UGT and describes drug delivery barriers, advances in drug delivery technologies, and opportunities available for new technologies that target the UGT.
Collapse
|
38
|
Huang Y, Yang L. Mesenchymal stem cell-derived extracellular vesicles in therapy against fibrotic diseases. Stem Cell Res Ther 2021; 12:435. [PMID: 34348793 PMCID: PMC8334330 DOI: 10.1186/s13287-021-02524-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
Fibrosis is likely to occur in many tissues and organs to induce cicatrisation and dysfunction. The therapeutic regimens for delaying and even reversing fibrosis are quite limited at present. In nearly a decade, mesenchymal stem cells (MSCs) have been widely acknowledged as useful in treating fibrotic diseases in preclinical and clinical trials. Further preclinical studies indicated that the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are probably superior to that of MSCs. At present, MSC-EVs have attracted much attention in treating fibrosis of lung, liver, kidney, skin, and heart. By contrast, a significant knowledge-gap remains in treating fibrosis of other tissues and organs (including uterus, gastrointestinal tract, and peritoneum) with the aid of MSC-EVs. This review summarises the preclinical research status of MSC-EVs in treating fibrotic diseases and proposes solutions to existing problems, which contribute to further clinical research on the treatment of fibrotic diseases with MSC-EVs in the future.
Collapse
Affiliation(s)
- Yuling Huang
- Departments of Geriatrics, The First Affiliated Hospital of China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, People's Republic of China
| | - Lina Yang
- Departments of Geriatrics, The First Affiliated Hospital of China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
39
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|