1
|
Sankova MV, Beeraka NM, Oganesyan MV, Rizaeva NA, Sankov AV, Shelestova OS, Bulygin KV, Vikram PR H, Barinov A, Khalimova A, Padmanabha Reddy Y, Basappa B, Nikolenko VN. Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine. J Orthop Translat 2024; 49:289-307. [PMID: 39559294 PMCID: PMC11570240 DOI: 10.1016/j.jot.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024] Open
Abstract
Background In recent years, many countries have actively implemented programs and strategies to promote physical education and sports. Despite these efforts, the increase in physical activity has been accompanied by a significant rise in muscle and tendon-ligament injuries, with Achilles tendon rupture being the most prevalent, accounting for 47 % of such injuries. This review aims to summarize all significant factors determining the predisposition of the Achilles tendon to rupture, to develop effective personalized prevention measures. Objective To identify and evaluate the risk factors contributing to Achilles tendon rupture and to develop strategies for personalized prevention. Methods This review utilized data from several databases, including Elsevier, Global Health, PubMed-NCBI, Embase, Medline, Scopus, ResearchGate, RSCI, Cochrane Library, Google Scholar, eLibrary.ru, and CyberLeninka. Both non-modifiable and modifiable risk factors for Achilles tendon injuries and ruptures were analyzed. Results The analysis identified several non-modifiable risk factors, such as genetic predisposition, anatomical and functional features of the Achilles tendon, sex, and age. These factors should be considered when selecting sports activities and designing training programs. Modifiable risk factors included imbalanced nutrition, improper exercise regimens, and inadequate monitoring of Achilles tendon conditions in athletes. Early treatment of musculoskeletal injuries, Achilles tendon diseases, foot deformities, and metabolic disorders is crucial. Long-term drug use and its risk assessment were also highlighted as important considerations. Furthermore, recent clinical advancements in both conventional and surgical methods to treat Achilles tendon injuries were described. The efficacy of these therapies in enhancing functional outcomes in individuals with Achilles injuries was compared. Advancements in cell-based and scaffold-based therapies aimed at enhancing cell regeneration and repairing Achilles injuries were also discussed. Discussion The combination of several established factors significantly increases the risk of Achilles tendon rupture. Addressing these factors through personalized prevention strategies can effectively reduce the incidence of these injuries. Proper nutrition, regular monitoring, timely treatment, and the correction of metabolic disorders are essential components of a comprehensive prevention plan. Conclusion Early identification of Achilles tendon risk factors allows for the timely development of effective personalized prevention strategies. These measures can contribute significantly to public health preservation by reducing the incidence of Achilles tendon ruptures associated with physical activity and sports. Continued research and clinical advancements in treatment methods will further enhance the ability to prevent and manage Achilles tendon injuries. The translational potential of this article This study identifies key modifiable and non-modifiable risk factors for Achilles tendon injuries, paving the way for personalized prevention strategies. Emphasizing nutrition, exercise, and early treatment of musculoskeletal issues, along with advancements in cell-based therapies, offers promising avenues for improving recovery and outcomes. These findings can guide clinical practices in prevention and rehabilitation, ultimately reducing Achilles injuries and enhancing public health.
Collapse
Affiliation(s)
- Maria V. Sankova
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA
| | - Marine V. Oganesyan
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Negoriya A. Rizaeva
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey V. Sankov
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga S. Shelestova
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V. Bulygin
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| | - Hemanth Vikram PR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - A.N. Barinov
- Head of Neurology and Psychotherapy Chair of Medical Academy MEDSI Group, Moscow, Russia
| | - A.K. Khalimova
- International Medical Company “Prime Medical Group”, Almaty, Kazakhstan Asia Halimova Prime Medical Group Medical Center, Republic of Kazakhstan
| | - Y. Padmanabha Reddy
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N. Nikolenko
- Department of Human Anatomy and Histology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Nakamura A, Jo S, Nakamura S, Aparnathi MK, Boroojeni SF, Korshko M, Park YS, Gupta H, Vijayan S, Rockel JS, Kapoor M, Jurisica I, Kim TH, Haroon N. HIF-1α and MIF enhance neutrophil-driven type 3 immunity and chondrogenesis in a murine spondyloarthritis model. Cell Mol Immunol 2024; 21:770-786. [PMID: 38839914 PMCID: PMC11214626 DOI: 10.1038/s41423-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The hallmarks of spondyloarthritis (SpA) are type 3 immunity-driven inflammation and new bone formation (NBF). Macrophage migration inhibitory factor (MIF) was found to be a key driver of the pathogenesis of SpA by amplifying type 3 immunity, yet MIF-interacting molecules and networks remain elusive. Herein, we identified hypoxia-inducible factor-1 alpha (HIF1A) as an interacting partner molecule of MIF that drives SpA pathologies, including inflammation and NBF. HIF1A expression was increased in the joint tissues and synovial fluid of SpA patients and curdlan-injected SKG (curdlan-SKG) mice compared to the respective controls. Under hypoxic conditions in which HIF1A was stabilized, human and mouse neutrophils exhibited substantially increased expression of MIF and IL-23, an upstream type 3 immunity-related cytokine. Similar to MIF, systemic overexpression of IL-23 induced SpA pathology in SKG mice, while the injection of a HIF1A-selective inhibitor (PX-478) into curdlan-SKG mice prevented or attenuated SpA pathology, as indicated by a marked reduction in the expression of MIF and IL-23. Furthermore, genetic deletion of MIF or HIF1A inhibition with PX-478 in IL-23-overexpressing SKG mice did not induce evident arthritis or NBF, despite the presence of psoriasis-like dermatitis and blepharitis. We also found that MIF- and IL-23-expressing neutrophils infiltrated areas of the NBF in curdlan-SKG mice. These neutrophils potentially increased chondrogenesis and cell proliferation via the upregulation of STAT3 in periosteal cells and ligamental cells during endochondral ossification. Together, these results provide supporting evidence for an MIF/HIF1A regulatory network, and inhibition of HIF1A may be a novel therapeutic approach for SpA by suppressing type 3 immunity-mediated inflammation and NBF.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, K7L, 2V6, Canada.
- Translational Institute of Medicine, School of Medicine, Queen's University, Kingston, ON, K7L 2V6, Canada.
- Division of Rheumatology, Kingston Health Science Centre, Kingston, ON, K7L 2V6, Canada.
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mansi K Aparnathi
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Shaghayegh Foroozan Boroojeni
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mariia Korshko
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Guri Hospital, Hanyang University College of Medicine, Guri, 11293, Republic of Korea
| | - Himanshi Gupta
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Sandra Vijayan
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics and Comp. Science and Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 85410, Bratislava, Slovakia
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, 04763, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, Republic of Korea
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Lin M, Li W, Ni X, Sui Y, Li H, Chen X, Lu Y, Jiang M, Wang C. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol 2023; 11:1250533. [PMID: 37781529 PMCID: PMC10539943 DOI: 10.3389/fbioe.2023.1250533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Achilles tendon (AT) injury is one of the most common tendon injuries, especially in athletes, the elderly, and working-age people. In AT injury, the biomechanical properties of the tendon are severely affected, leading to abnormal function. In recent years, many efforts have been underway to develop effective treatments for AT injuries to enable patients to return to sports faster. For instance, several new techniques for tissue-engineered biological augmentation for tendon healing, growth factors (GFs), gene therapy, and mesenchymal stem cells were introduced. Increasing evidence has suggested that GFs can reduce inflammation, promote extracellular matrix production, and accelerate AT repair. In this review, we highlighted some recent investigations regarding the role of GFs, such as transforming GF-β(TGF-β), bone morphogenetic proteins (BMP), fibroblast GF (FGF), vascular endothelial GF (VEGF), platelet-derived GF (PDGF), and insulin-like GF (IGF), in tendon healing. In addition, we summarized the clinical trials and animal experiments on the efficacy of GFs in AT repair. We also highlighted the advantages and disadvantages of the different isoforms of TGF-β and BMPs, including GFs combined with stem cells, scaffolds, or other GFs. The strategies discussed in this review are currently in the early stages of development. It is noteworthy that although these emerging technologies may potentially develop into substantial clinical treatment options for AT injury, definitive conclusions on the use of these techniques for routine management of tendon ailments could not be drawn due to the lack of data.
Collapse
Affiliation(s)
- Meina Lin
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Medical School, Shandong Modern University, Jinan, China
| | - Xiang Ni
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Huan Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yongping Lu
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Williamson MA. A review of the coracoclavicular joint: Description, etiology, and clinical significance. Clin Anat 2023; 36:715-725. [PMID: 36942973 DOI: 10.1002/ca.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The coracoclavicular joint (CCJ) is a synovial joint that forms between the conoid tubercle of the clavicle and the coracoid process of the scapula in approximately 2.5% of the population. The number of bilateral to unilateral cases is almost equal. The number of right-sided and left-sided cases is also almost equal. It is found in both males and females but most often in male adults. Very few cases have been identified in juveniles. Found in populations all over the world, the highest frequencies of CCJ are in Asia. The etiology is unknown but it is most likely caused by metaplastic change of the trapezoid and surrounding tissue due to compression and friction of the coracoacromial ligament between the clavicle and coracoid process. Typically asymptomatic, but if so, the most common complaint is anterior should pain exacerbated by extreme abduction. Successful treatment includes steroid injection and surgical excision.
Collapse
Affiliation(s)
- Matthew A Williamson
- Human Osteology Laboratory, Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, Georgia, USA
| |
Collapse
|
6
|
Orchard KJA, Akbar M, Crowe LAN, Cole J, Millar NL, Raleigh SM. Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes (Basel) 2023; 14:496. [PMID: 36833423 PMCID: PMC9956879 DOI: 10.3390/genes14020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The development and progression of rotator cuff tendinopathy (RCT) is multifactorial and likely to manifest through a combination of extrinsic, intrinsic, and environmental factors, including genetics and epigenetics. However, the role of epigenetics in RCT, including the role of histone modification, is not well established. Using chromatin immunoprecipitation sequencing, differences in the trimethylation status of H3K4 and H3K27 histones in late-stage RCT compared to control were investigated in this study. For H3K4, 24 genomic loci were found to be significantly more trimethylated in RCT compared to control (p < 0.05), implicating genes such as DKK2, JAG2, and SMOC2 in RCT. For H3K27, 31 loci were shown to be more trimethylated (p < 0.05) in RCT compared to control, inferring a role for EPHA3, ROCK1, and DEFβ115. Furthermore, 14 loci were significantly less trimethylated (p < 0.05) in control compared to RCT, implicating EFNA5, GDF6, and GDF7. Finally, the TGFβ signaling, axon guidance, and regulation of focal adhesion assembly pathways were found to be enriched in RCT. These findings suggest that the development and progression of RCT is, at least in part, under epigenetic control, highlighting the influence of histone modifications in this disorder and paving the way to further understand the role of epigenome in RCT.
Collapse
Affiliation(s)
- Kayleigh J. A. Orchard
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Moeed Akbar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Lindsay A. N. Crowe
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - John Cole
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Neal L. Millar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Stuart M. Raleigh
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
7
|
Simvastatin promotes rat Achilles tendon-bone interface healing by promoting osteogenesis and chondrogenic differentiation of stem cells. Cell Tissue Res 2023; 391:339-355. [PMID: 36513828 DOI: 10.1007/s00441-022-03714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022]
Abstract
To investigate the effect and mechanism of simvastatin on cell components of tendon-bone healing interface. The tendon-bone healing model was established by inserting the end of the Achilles tendon into the tibial tunnel on 24 rats, and simvastatin was used locally at the tendon-bone interface. Healing was evaluated at 8 weeks by mechanical testing, micro-CT, and qualitative histology including H&E, Toluidine blue, and immunohistochemical staining. In vitro, bone marrow stromal cells (BMSCs) and tendon-derived mesenchymal stem cells (TDSCs) underwent osteogenic and chondrogenic differentiation respectively by plate co-culture. An analysis was performed on days 7 and 14 of cell differentiation. Biomechanical testing demonstrated a significant increase in maximum stiffness in the simvastatin-treated group. Micro-CT analysis showed that the bone tunnels in the simvastatin group were smaller in diameter and had higher bone density. H&E and Toluidine blue staining demonstrated that tendon-bone healing was significantly greater with better tissue arrangement and more extracellular matrix in the simvastatin-treated group than that in the control group, and immunohistochemical staining showed the expression of VEGF in simvastatin group was significantly higher. Histological staining and RT-PCR confirmed that simvastatin could promote the differentiation of co-cultured BMSCs and TDSCs into osteoblasts and chondroblasts, respectively. The effect of promoting osteogenic differentiation was more tremendous at 14 days, while its effect on promoting chondroblast differentiation was more evident on the 7th day of differentiation. In conclusion, local administration of simvastatin can promote the tendon-bone healing by enhancing neovascularization, chondrogenesis, and osteogenesis in different stages of the tendon-bone healing process.
Collapse
|
8
|
Wang K, Cheng L, He B. Therapeutic effects of asperosaponin VI in rabbit tendon disease. Regen Ther 2022; 20:1-8. [PMID: 35310016 PMCID: PMC8898761 DOI: 10.1016/j.reth.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
|
9
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
10
|
Kim DS, Kim JH, Baek SW, Lee JK, Park SY, Choi B, Kim TH, Min K, Han DK. Controlled vitamin D delivery with injectable hyaluronic acid-based hydrogel for restoration of tendinopathy. J Tissue Eng 2022; 13:20417314221122089. [PMID: 36082312 PMCID: PMC9445534 DOI: 10.1177/20417314221122089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Tendinopathy is a term used to describe tendon disorders that are marked by pain and a loss of function. Recent studies demonstrated that inflammation plays an important role throughout the broad spectrum of tendinopathy. Conventional treatments such as steroid injections, analgesics, and physical modalities simply give pain relief and do not alter the disease progression without the tendon regeneration effect. Tenocytes are responsible for maintaining the tendon matrix and understanding how they function is essential to studying new treatments for tendinopathy. Our previous study showed the protective effects of vitamin D (Vit D) on damaged tenocytes. Besides its well-known effects on bone metabolism, the non-classical action of Vit D is the pleiotropic effects on modulating immune function. In the present study, we developed a Vit D delivery system with hyaluronic acid (HA), which is one of the major components of the extracellular matrix that has anti-inflammation and wound-healing properties. A novel Vit D delivery system with cross-linked HA hydrogel (Gel) and Tween 80 (T80), Vit D@Gel/T80, could be a new regeneration technique for the treatment of tendinopathy. Vit D@Gel/T80 reduced TNF-α induced damage to human tenocytes in vitro. In an animal study, the Vit D@Gel/T80 injected group demonstrated tendon restoration features. As a result, this Vit D@Gel/T80 system might be a local injection material in the treatment for tendinopathy.
Collapse
Affiliation(s)
- Da-Seul Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon-si, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon-si, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea.,Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Chen G, Fan D, Zhang W, Wang S, Gu J, Gao Y, He L, Li W, Zhang C, Li M, Zhang Y, Liu Z, Hao Q. Mkx mediates tenogenic differentiation but incompletely inhibits the proliferation of hypoxic MSCs. Stem Cell Res Ther 2021; 12:426. [PMID: 34321079 PMCID: PMC8317301 DOI: 10.1186/s13287-021-02506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia has been shown to be able to induce tenogenic differentiation and proliferation of mesenchymal stem cells (MSCs) which lead hypoxia-induced MSCs to be a potential treatment for tendon injury. However, little is known about the mechanism underlying the tenogenic differentiation and proliferation process of hypoxic MSCs, which limited the application of differentiation-inducing therapies in tendon repair. This study was designed to investigate the role of Mohawk homeobox (Mkx) in tenogenic differentiation and proliferation of hypoxic MSCs. Methods qRT-PCR, western blot, and immunofluorescence staining were performed to evaluate the expression of Mkx and other tendon-associated markers in adipose-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) under hypoxia condition. Small interfering RNA technique was applied to observe the effect of Mkx levels on the expression of tendon-associated markers in normoxic and hypoxic BMSCs. Hypoxic BMSCs infected with Mkx-specific short hair RNA (shRNA) or scramble were implanted into the wound gaps of injured patellar tendons to assess the effect of Mkx levels on tendon repair. In addition, cell counting kit-8 assay, colony formation unit assay, cell cycle analysis, and EdU assay were adopted to determine the proliferation capacity of normoxic or hypoxic BMSCs infected with or without Mkx-specific shRNA. Results Our data showed that the expression of Mkx significantly increased in hypoxic AMSCs and increased much higher in hypoxic BMSCs. Our results also detected that the expression of tenogenic differentiation markers after downregulation of Mkx were significantly decreased not only in normoxic BMSCs, but also in hypoxic BMSCs which paralleled the inferior histological evidences, worse biomechanical properties, and smaller diameters of collagen fibrils in vivo. In addition, our in vitro data demonstrated that the optical density values, the clone numbers, the percentage of cells in S phage, and cell proliferation potential of both normoxic and hypoxic BMSCs were all significantly increased after knockdown of Mkx and were also significantly enhanced in both AMSCs and BMSCs in hypoxia condition under which the expression of Mkx was upregulated. Conclusions These findings strongly suggested that Mkx mediated hypoxia-induced tenogenic differentiation of MSCs but could not completely repress the proliferation of hypoxic MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02506-3.
Collapse
Affiliation(s)
- Guanyin Chen
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Dong Fan
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaohui Liu
- Department of Rehabilitation and Physiotherapy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Montano C, Auletta L, Greco A, Costanza D, Coluccia P, Del Prete C, Meomartino L, Pasolini MP. The Use of Platelet-Rich Plasma for Treatment of Tenodesmic Lesions in Horses: A Systematic Review and Meta-Analysis of Clinical and Experimental Data. Animals (Basel) 2021; 11:793. [PMID: 33809227 PMCID: PMC7998797 DOI: 10.3390/ani11030793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
The use of platelet-rich plasma (PRP) to enhance tenodesmic lesion healing has been questioned over the years. The aim of this study was to evaluate current literature to establish the effectiveness of PRP for treating tenodesmic lesions through a systematic review, in accordance with the PRISMA guidelines, and a meta-analysis. Studies comparing PRP with placebo or other treatments for horses with tenodesmic injuries or evaluated PRP effect on tendon and ligament explants were included. Outcomes were clinical, ultrasound, histologic, molecular evaluation, and adverse effects. Two authors independently extracted data and assessed each study's risk of bias. Treatment effects were evaluated using risk ratios for dichotomous data, together with 95% CI. Data were pooled using the random-effects model. The quality of the evidence for each outcome was assessed using GRADE criteria. Twenty-four trials met inclusion criteria for systematic review, while fifteen studies were included in the meta-analysis. Results showed no significant differences in the outcomes between PRP and control groups. Finally, there is no definitive evidence that PRP enhances tendons and ligaments healing. Therefore, there is a need for more controlled trials to draw a firmer conclusion about the efficacy of PRP as a treatment for tenodesmic lesions in the horse.
Collapse
Affiliation(s)
- Chiara Montano
- Veterinary Teaching Hospital, School of Veterinary Medicine, University of Córdoba, 14004 Córdoba, Spain;
| | - Luigi Auletta
- Institute of Biostructure and Bioimaging, National Research Council (IBB CNR), Via T. De Amicis 95, 80145 Napoli, Italy;
| | - Adelaide Greco
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Dario Costanza
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Pierpaolo Coluccia
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (C.D.P.); (M.P.P.)
| | - Leonardo Meomartino
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Maria Pia Pasolini
- Department of Veterinary Medicine and Animal Production, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (C.D.P.); (M.P.P.)
| |
Collapse
|