1
|
Park J, Kim J, Shin B, Schöler HR, Kim J, Kim KP. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances. Int J Stem Cells 2024; 17:363-373. [PMID: 38281813 PMCID: PMC11612216 DOI: 10.15283/ijsc23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.
Collapse
Affiliation(s)
- Junmyeong Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jueun Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Borami Shin
- Department of General Pediatrics, University of Children’s Hospital Münster, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- The Center for Cardiovascular Regeneration and Immunology, TRON-Translational Oncology, The University Medical Center of The Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Kee-Pyo Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Ren R, Jiang J, Li X, Zhang G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front Immunol 2024; 15:1349138. [PMID: 38720903 PMCID: PMC11076788 DOI: 10.3389/fimmu.2024.1349138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Autoimmune diseases can damage specific or multiple organs and tissues, influence the quality of life, and even cause disability and death. A 'disease in a dish' can be developed based on patients-derived induced pluripotent stem cells (iPSCs) and iPSCs-derived disease-relevant cell types to provide a platform for pathogenesis research, phenotypical assays, cell therapy, and drug discovery. With rapid progress in molecular biology research methods including genome-sequencing technology, epigenetic analysis, '-omics' analysis and organoid technology, large amount of data represents an opportunity to help in gaining an in-depth understanding of pathological mechanisms and developing novel therapeutic strategies for these diseases. This paper aimed to review the iPSCs-based research on phenotype confirmation, mechanism exploration, drug discovery, and cell therapy for autoimmune diseases, especially multiple sclerosis, inflammatory bowel disease, and type 1 diabetes using iPSCs and iPSCs-derived cells.
Collapse
Affiliation(s)
| | | | | | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| |
Collapse
|
3
|
Kim JW, Kim J, Mo H, Han H, Rim YA, Ju JH. Stepwise combined cell transplantation using mesenchymal stem cells and induced pluripotent stem cell-derived motor neuron progenitor cells in spinal cord injury. Stem Cell Res Ther 2024; 15:114. [PMID: 38650015 PMCID: PMC11036722 DOI: 10.1186/s13287-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of transplanted cells using stepwise combined cell therapy with human mesenchymal stem cells (hMSC) and induced pluripotent stem cell (iPSC)-derived motor neuron progenitor cells (iMNP) in a rat model of SCI. METHODS A contusive SCI model was developed in Sprague-Dawley rats using multicenter animal spinal cord injury study (MASCIS) impactor. Three protocols were designed and conducted as follows: (Subtopic 1) chronic SCI + iMNP, (Subtopic 2) acute SCI + multiple hMSC injections, and (Main topic) chronic SCI + stepwise combined cell therapy using multiple preemptive hMSC and iMNP. Neurite outgrowth was induced by coculturing hMSC and iPSC-derived motor neuron (iMN) on both two-dimensional (2D) and three-dimensional (3D) spheroid platforms during mature iMN differentiation in vitro. RESULTS Stepwise combined cell therapy promoted mature motor neuron differentiation and axonal regeneration at the lesional site. In addition, stepwise combined cell therapy improved behavioral recovery and was more effective than single cell therapy alone. In vitro results showed that hMSC and iMN act synergistically and play a critical role in the induction of neurite outgrowth during iMN differentiation and maturation. CONCLUSIONS Our findings show that stepwise combined cell therapy can induce alterations in the microenvironment for effective cell therapy in SCI. The in vitro results suggest that co-culturing hMSC and iMN can synergistically promote induction of MN neurite outgrowth.
Collapse
Affiliation(s)
- Jang-Woon Kim
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | | | - Hyunkyung Mo
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Heeju Han
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Catholic iPSC Research Center (CiRC), College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- Department of Biomedicine & Health Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
- YiPSCELL, Inc, Seoul, South Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 06591, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Shoda H, Natsumoto B, Fujio K. Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflamm Regen 2023; 43:51. [PMID: 37876023 PMCID: PMC10594759 DOI: 10.1186/s41232-023-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The precise pathogenesis of immune-related diseases remains unclear, and new effective therapeutic choices are required for the induction of remission or cure in these diseases. Basic research utilizing immune-related disease patient-derived induced pluripotent stem (iPS) cells is expected to be a promising platform for elucidating the pathogenesis of the diseases and for drug discovery. Since autoinflammatory diseases are usually monogenic, genetic mutations affect the cell function and patient-derived iPS cells tend to exhibit disease-specific phenotypes. In particular, iPS cell-derived monocytic cells and macrophages can be used for functional experiments, such as inflammatory cytokine production, and are often employed in research on patients with autoinflammatory diseases.On the other hand, the utilization of disease-specific iPS cells is less successful for research on autoimmune diseases. One reason for this is that autoimmune diseases are usually polygenic, which makes it challenging to determine which factors cause the phenotypes of patient-derived iPS cells are caused by. Another reason is that protocols for differentiating some lymphocytes associated with autoimmunity, such as CD4+T cells or B cells, from iPS cells have not been well established. Nevertheless, several groups have reported studies utilizing autoimmune disease patient-derived iPS cells, including patients with rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis. Particularly, non-hematopoietic cells, such as fibroblasts and cardiomyocytes, differentiated from autoimmune patient-derived iPS cells have shown promising results for further research into the pathogenesis. Recently, our groups established a method for differentiating dendritic cells that produce interferon-alpha, which can be applied as an SLE pathological model. In summary, patient-derived iPS cells can provide a promising platform for pathological research and new drug discovery in the field of immune-related diseases.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Bunki Natsumoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
5
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
6
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
7
|
Badillo-Mata JA, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments. Cells 2022; 11:3410. [PMID: 36359806 PMCID: PMC9656230 DOI: 10.3390/cells11213410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disorders affecting 0.5-1% of the population worldwide. As a disease of multifactorial etiology, its constant study has made it possible to unravel the pathophysiological processes that cause the illness. However, efficient and validated disease models are necessary to continue the search for new disease-modulating drugs. Technologies, such as 3D cell culture and organ-on-a-chip, have contributed to accelerating the prospecting of new therapeutic molecules and even helping to elucidate hitherto unknown aspects of the pathogenesis of multiple diseases. These technologies, where medicine and biotechnology converge, can be applied to understand RA. This review discusses the critical elements of RA pathophysiology and current treatment strategies. Next, we discuss 3D cell culture and apply these methodologies for rheumatological diseases and selected models for RA. Finally, we summarize the application of 3D cell culture for RA treatment.
Collapse
Affiliation(s)
- Jessica Andrea Badillo-Mata
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Pavel Hayl Lugo-Fabres
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
8
|
Preferential stimulation of melanocytes by M2 macrophages to produce melanin through vascular endothelial growth factor. Sci Rep 2022; 12:6416. [PMID: 35440608 PMCID: PMC9019043 DOI: 10.1038/s41598-022-08163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory hyperpigmentation is a skin discoloration process that occurs following an inflammatory response or wound. As the skin begins to heal, macrophages first exhibit a proinflammatory phenotype (M1) during the early stages of tissue repair and then transition to a pro-healing, anti-inflammatory phenotype (M2) in later stages. During this process, M1 macrophages remove invading bacteria and M2 macrophages remodel surrounding tissue; however, the relationship between macrophages and pigmentation is unclear. In this study, we examined the effect of macrophages on melanin pigmentation using human induced pluripotent stem cells. Functional melanocytes were differentiated from human induced pluripotent stem cells and named as hiMels. The generated hiMels were then individually cocultured with M1 and M2 macrophages. Melanin synthesis decreased in hiMels cocultured with M1 macrophages but significantly increased in hiMels cocultured with M2 macrophages. Moreover, the expression of vascular endothelial growth factor was increased in M2 cocultured media. Our findings suggest that M2 macrophages, and not M1 macrophages, induce hyperpigmentation in scarred areas of the skin during tissue repair.
Collapse
|