1
|
Chandler JM, Xu H. Nanowaveguide-illuminated fluorescence correlation spectroscopy for single molecule studies. AIP ADVANCES 2021; 11:065112. [PMID: 34104537 PMCID: PMC8179723 DOI: 10.1063/5.0051679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Fluorescence Correlation Spectroscopy (FCS) is a method of investigating concentration fluctuations of fluorescent particles typically in the nM range as a result of its femtoliter-sized sample volume. However, biological processes on cell membranes that involve molecules in the μM concentration range require sample volumes well below the conventional FCS limit as well as nanoscale confinement in the longitudinal direction. In this study, we show that an effective measurement volume down to the zeptoliter range can be achieved via the introduction of a nanowire waveguide, resulting in an illumination spot of about 50 nm in lateral dimensions and a longitudinal confinement of around 20 nm just above the waveguide exit surface. Using illumination profiles obtained from finite element method simulations of dielectric nanowaveguides, we perform Monte Carlo simulations of fluorescence fluctuations for two scenarios of fluorophore movement: fluorophores freely diffusing in the three-dimensional (3D) space above the nanowaveguide and fluorophores moving in a two-dimensional (2D) membrane situated directly above the nanowaveguide exit surface. We have developed analytical functions to fit the simulation results and found that an effective illumination size of about 150 zl and 4 × 10-3 µm2 can be obtained for the 3D and 2D scenarios, respectively. Given the flat surface geometry and the deep-subwavelength confinement of its illumination spot, this nanowaveguide-illuminated fluorescence correlation spectroscopy technique may be well suited for studying the concentration and dynamics of densely distributed protein molecules on cell membranes.
Collapse
Affiliation(s)
- Joseph M. Chandler
- Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA
| | - Huizhong Xu
- Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA
| |
Collapse
|
2
|
Jin W, Simsek MF, Pralle A. Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS. Methods 2018. [PMID: 29530504 DOI: 10.1016/j.ymeth.2018.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been long recognized that the cell membrane is heterogeneous on scales ranging from a couple of molecules to micrometers in size and hence diffusion of receptors is length scale dependent. This heterogeneity modulates many cell-membrane-associated processes requiring transient spatiotemporal separation of components. The transient increase in local concentration of interacting signal components enables robust signaling in an otherwise thermally noisy system. Understanding how lipids and proteins self-organize and interact with the cell cortex requires quantifying the motion of the components. Multi-length scale diffusion measurements by single particle tracking, fluorescence correlation spectroscopy (FCS) or related techniques are able to identify components being transiently trapped in nanodomains, from freely moving one and from ones with reduced long-scale diffusion due to interaction with the cell cortex. One particular implementation of multi-length scale diffusion measurements is the combination of FCS with a spatially resolved detector, such as a camera and two-dimensional extended excitation profile. The main advantages of this approach are that all length scales are interrogated simultaneously, uniquely permits quantifying changes to the membrane structure caused by extrenal or internal perturbations. Here, we review how combining total internal reflection microscopy (TIRF) with FC resolves the membrane organization in living cells. We show how to implement the method, which requires only a few seconds of data acquisition to quantify membrane nanodomains, or the spacing of membrane fences caused by the actin cortex. The choice of diffusing fluorescent probe determines which membrane heterogeneity is detected. We review the instrument, sample preparation, experimental and computational requirements to perform such measurements, and discuss the potential and limitations. The discussion includes examples of spatial and temporal comparisons of the membrane structure in response to perturbations demonstrating the complex cell physiology.
Collapse
Affiliation(s)
- Weixiang Jin
- Dept. of Physics, 239 Fronczak Hall, University at Buffalo, SUNY, Buffalo, NY 14260-1500, United States
| | - M Fethullah Simsek
- Dept. of Physics, 239 Fronczak Hall, University at Buffalo, SUNY, Buffalo, NY 14260-1500, United States
| | - Arnd Pralle
- Dept. of Physics, 239 Fronczak Hall, University at Buffalo, SUNY, Buffalo, NY 14260-1500, United States.
| |
Collapse
|
3
|
Winterflood CM, Seeger S. Simultaneous Surface-Near and Solution Fluorescence Correlation Spectroscopy. J Fluoresc 2016; 26:753-6. [PMID: 27001472 PMCID: PMC4853457 DOI: 10.1007/s10895-016-1789-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 12/03/2022]
Abstract
We report the first simultaneous measurement of surface-confined and solution fluorescence correlation spectroscopy (FCS). We use an optical configuration for tightly focused excitation and separate detection of light emitted below (undercritical angle fluorescence, UAF) and above (supercritical angle fluorescence, SAF) the critical angle of total internal reflection of the coverslip/sample interface. This creates two laterally coincident detection volumes which differ in their axial extent. While detection of far-field UAF emission producesa standard confocal volume, near-field-mediated SAF produces a highly surface-confined detection volume at the coverslip/sample interface which extends only ~200 nm into the sample. A characterization of the two detection volumes by FCS of free diffusion is presented and compared with analytical models and simulations. The presented FCS technique allows to determine bulk solution concentrations and surface-near concentrations at the same time.
Collapse
Affiliation(s)
- Christian M Winterflood
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Stefan Seeger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
4
|
Thompson NL, Navaratnarajah P, Wang X. Measuring surface binding thermodynamics and kinetics by using total internal reflection with fluorescence correlation spectroscopy: practical considerations. J Phys Chem B 2011; 115:120-31. [PMID: 21166379 PMCID: PMC3099739 DOI: 10.1021/jp1069708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The combination of total internal reflection illumination and fluorescence correlation spectroscopy (TIR-FCS) is an emerging method useful for, among a number of things, measuring the thermodynamic and kinetic parameters describing the reversible association of fluorescently labeled ligands in solution with immobilized, nonfluorescent surface binding sites. However, there are many parameters (both instrumental and intrinsic to the interaction of interest) that determine the nature of the acquired fluorescence fluctuation autocorrelation functions. In this work, we define criteria necessary for successful measurements and then systematically explore the parameter space to define conditions that meet the criteria. The work is intended to serve as a guide for experimental design, in other words, to provide a methodology to identify experimental conditions that will yield reliable values of the thermodynamic and kinetic parameters for a given interaction.
Collapse
Affiliation(s)
- Nancy L Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
5
|
Thompson NL, Wang X, Navaratnarajah P. Total internal reflection with fluorescence correlation spectroscopy: Applications to substrate-supported planar membranes. J Struct Biol 2009; 168:95-106. [PMID: 19269331 PMCID: PMC2785550 DOI: 10.1016/j.jsb.2009.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
In this paper, the conceptual basis and experimental design of total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) is described. The few applications to date of TIR-FCS to supported membranes are discussed, in addition to a variety of applications not directly involving supported membranes. Methods related, but not technically equivalent, to TIR-FCS are also summarized. Future directions for TIR-FCS are outlined.
Collapse
Affiliation(s)
- Nancy L Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, USA.
| | | | | |
Collapse
|
6
|
Ries J, Petrov EP, Schwille P. Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence. Biophys J 2008; 95:390-9. [PMID: 18339763 PMCID: PMC2426660 DOI: 10.1529/biophysj.107.126193] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/26/2008] [Indexed: 12/20/2022] Open
Abstract
Fluorescence correlation spectroscopy with total internal reflection excitation (TIR-FCS) is a promising method with emerging biological applications for measuring binding dynamics of fluorescent molecules to a planar substrate as well as diffusion coefficients and concentrations at the interface. Models for correlation functions proposed so far are rather approximate for most conditions, since they neglect lateral diffusion of fluorophores. Here we propose accurate extensions of previously published models for axial correlation functions taking into account lateral diffusion through detection profiles realized in typical experiments. In addition, we consider the effects of surface-generated emission in objective-based TIR-FCS. The expressions for correlation functions presented here will facilitate quantitative and accurate measurements with TIR-FCS.
Collapse
Affiliation(s)
- Jonas Ries
- Biotechnologisches Zentrum, Technical University of Dresden, Dresden, Germany
| | | | | |
Collapse
|
7
|
Petrov EP, Schwille P. State of the Art and Novel Trends in Fluorescence Correlation Spectroscopy. SPRINGER SERIES ON FLUORESCENCE 2008. [DOI: 10.1007/4243_2008_032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Sonesson AW, Blom H, Hassler K, Elofsson UM, Callisen TH, Widengren J, Brismar H. Protein–surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS). J Colloid Interface Sci 2008; 317:449-57. [DOI: 10.1016/j.jcis.2007.09.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/26/2022]
|
9
|
Haustein E, Schwille P. Trends in fluorescence imaging and related techniques to unravel biological information. HFSP JOURNAL 2007; 1:169-80. [PMID: 19404444 DOI: 10.2976/1.2778852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/13/2007] [Indexed: 01/24/2023]
Abstract
Optical microscopy is among the most powerful tools that the physical sciences have ever provided biology. It is indispensable for basic lab work, as well as for cutting edge research, as the visual monitoring of life processes still belongs to the most compelling evidences for a multitude of biomedical applications. Along with the rapid development of new probes and methods for the analysis of laser induced fluorescence, optical microscopy over past years experienced a vast increase of both new techniques and novel combinations of established methods to study biological processes with unprecedented spatial and temporal precision. On the one hand, major technical advances have significantly improved spatial resolution. On the other hand, life scientists are moving toward three- and even four-dimensional cell biology and biophysics involving time as a crucial coordinate to quantitatively understand living specimen. Monitoring the whole cell or tissue in real time, rather than producing snap-shot-like two-dimensional projections, will enable more physiological and, thus, more clinically relevant experiments, whereas an increase in temporal resolution facilitates monitoring fast nonperiodic processes as well as the quantitative analysis of characteristic dynamics.
Collapse
Affiliation(s)
- Elke Haustein
- Biophysics Group, BioTec TU Dresden, Tatzberg 47-51, D-01307 Dresden, Germany
| | | |
Collapse
|
10
|
Haustein E, Schwille P. Fluorescence correlation spectroscopy: novel variations of an established technique. ACTA ACUST UNITED AC 2007; 36:151-69. [PMID: 17477838 DOI: 10.1146/annurev.biophys.36.040306.132612] [Citation(s) in RCA: 386] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is one of the major biophysical techniques used for unraveling molecular interactions in vitro and in vivo. It allows minimally invasive study of dynamic processes in biological specimens with extremely high temporal and spatial resolution. By recording and correlating the fluorescence fluctuations of single labeled molecules through the exciting laser beam, FCS gives information on molecular mobility and photophysical and photochemical reactions. By using dual-color fluorescence cross-correlation, highly specific binding studies can be performed. These have been extended to four reaction partners accessible by multicolor applications. Alternative detection schemes shift accessible time frames to slower processes (e.g., scanning FCS) or higher concentrations (e.g., TIR-FCS). Despite its long tradition, FCS is by no means dated. Rather, it has proven to be a highly versatile technique that can easily be adapted to solve specific biological questions, and it continues to find exciting applications in biology and medicine.
Collapse
Affiliation(s)
- Elke Haustein
- BioTec TU Dresden, Institute for Biophysics, D-01307 Dresden, Germany.
| | | |
Collapse
|
11
|
Pero JK, Haas EM, Thompson NL. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy. J Phys Chem B 2007; 110:10910-8. [PMID: 16771344 DOI: 10.1021/jp056990y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diffusion coefficients of nine fluorescently labeled antibodies, antibody fragments, and antibody complexes have been measured in solution very close to supported planar membranes by using total internal reflection with fluorescence correlation spectroscopy (TIR-FCS). The hydrodynamic radii (3-24 nm) of the nine antibody types were determined by comparing literature values with bulk diffusion coefficients measured by spot FCS. The diffusion coefficients very near membranes decreased significantly with molecular size, and the size dependence was greater than that predicted to occur in bulk solution. The observation that membrane surfaces slow the local diffusion coefficient of proteins in a size-dependent manner suggests that the primary effect is hydrodynamic as predicted for simple spheres diffusing close to planar walls. The TIR-FCS data are consistent with predictions derived from hydrodynamic theory. This work illustrates one factor that could contribute to previously observed nonideal ligand-receptor kinetics at model and natural cell membranes.
Collapse
Affiliation(s)
- Jamie K Pero
- Department of Chemistry, Campus Box 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | |
Collapse
|
12
|
Abstract
Total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) is an emerging technique that is used to measure events at or near an interface, including local fluorophore concentrations, local translational mobilities and the kinetic rate constants that describe the association and dissociation of fluorophores at the interface. TIR-FCS is also an extremely promising method for studying dynamics at or near the basal membranes of living cells. This protocol gives a general overview of the steps necessary to construct and test a TIR-FCS system using either through-prism or through-objective internal reflection geometry adapted for FCS. The expected forms of the autocorrelation function are discussed for the cases in which fluorescent molecules in solution diffuse through the depth of the evanescent field, but do not bind to the surface of interest, and in which reversible binding to the surface also occurs.
Collapse
Affiliation(s)
- Nancy L Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
13
|
Li Y, Augustine GJ, Weninger K. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophys J 2007; 93:2178-87. [PMID: 17513363 PMCID: PMC1959531 DOI: 10.1529/biophysj.106.101220] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virtually all measurements of biochemical kinetics have been derived from macroscopic measurements. Single-molecule methods can reveal the kinetic behavior of individual molecular complexes and thus have the potential to determine heterogeneous behaviors. Here we have used single-molecule fluorescence resonance energy transfer to determine the kinetics of binding of SNARE (soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor) complexes to complexin and to a peptide derived from the central SNARE binding region of complexin. A Markov model was developed to account for the presence of unlabeled competitor in such measurements. We find that complexin associates rapidly with SNARE complexes anchored in lipid bilayers with a rate constant of 7.0 x 10(6) M(-1) s(-1) and dissociates slowly with a rate constant of 0.3 s(-1). The complexin peptide associates with SNARE complexes at a rate slower than that of full-length complexin (1.2 x 10(6) M(-1) s(-1)), and dissociates much more rapidly (rate constant >67 s(-1)). Comparison of single-molecule fluorescence resonance energy transfer measurements made using several dye attachment sites illustrates that dye labeling of complexin can modify its rate of unbinding from SNAREs. These rate constants provide a quantitative framework for modeling of the cascade of reactions underlying exocytosis. In addition, our theoretical correction establishes a general approach for improving single-molecule measurements of intermolecular binding kinetics.
Collapse
Affiliation(s)
- Yulong Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|