1
|
Dumitru AC, Koehler M. Recent advances in the application of atomic force microscopy to structural biology. J Struct Biol 2023; 215:107963. [PMID: 37044358 DOI: 10.1016/j.jsb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The application of atomic force microscopy (AFM) for (functional) imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data on the system under study.
Collapse
Affiliation(s)
- Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany.
| |
Collapse
|
2
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
3
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Simpson JD, Ray A, Koehler M, Mohammed D, Alsteens D. Atomic force microscopy applied to interrogate nanoscale cellular chemistry and supramolecular bond dynamics for biomedical applications. Chem Commun (Camb) 2022; 58:5072-5087. [PMID: 35315846 DOI: 10.1039/d1cc07200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding biological interactions at a molecular level grants valuable information relevant to improving medical treatments and outcomes. Among the suite of technologies available, Atomic Force Microscopy (AFM) is unique in its ability to quantitatively probe forces and receptor-ligand interactions in real-time. The ability to assess the formation of supramolecular bonds and intermediates in real-time on surfaces and living cells generates important information relevant to understanding biological phenomena. Combining AFM with fluorescence-based techniques allows for an unprecedented level of insight not only concerning the formation and rupture of bonds, but understanding medically relevant interactions at a molecular level. As the ability of AFM to probe cells and more complex models improves, being able to assess binding kinetics, chemical topographies, and garner spectroscopic information will likely become key to developing further improvements in fields such as cancer, nanomaterials, and virology. The rapid response to the COVID-19 crisis, producing information regarding not just receptor affinities, but also strain-dependent efficacy of neutralizing nanobodies, demonstrates just how viable and integral to the pre-clinical development of information AFM techniques are in this era of medicine.
Collapse
Affiliation(s)
- Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium.
| |
Collapse
|
5
|
Molecular Recognition of Proteins through Quantitative Force Maps at Single Molecule Level. Biomolecules 2022; 12:biom12040594. [PMID: 35454182 PMCID: PMC9024611 DOI: 10.3390/biom12040594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Intermittent jumping force is an operational atomic-force microscopy mode that produces simultaneous topography and tip-sample maximum-adhesion images based on force spectroscopy. In this work, the operation conditions have been implemented scanning in a repulsive regime and applying very low forces, thus avoiding unspecific tip-sample forces. Remarkably, adhesion images give only specific rupture events, becoming qualitative and quantitative molecular recognition maps obtained at reasonably fast rates, which is a great advantage compared to the force–volume modes. This procedure has been used to go further in discriminating between two similar protein molecules, avidin and streptavidin, in hybrid samples. The adhesion maps generated scanning with biotinylated probes showed features identified as avidin molecules, in the range of 40–80 pN; meanwhile, streptavidin molecules rendered 120–170 pN at the selected working conditions. The gathered results evidence that repulsive jumping force mode applying very small forces allows the identification of biomolecules through the specific rupture forces of the complexes and could serve to identify receptors on membranes or samples or be applied to design ultrasensitive detection technologies.
Collapse
|
6
|
Qin Y, Yang W, Chu H, Li Y, Cai S, Yu H, Liu L. Atomic Force Microscopy for Tumor Research at Cell and Molecule Levels. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-18. [PMID: 35257653 DOI: 10.1017/s1431927622000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumors have posed a serious threat to human life and health. Researchers can determine whether or not cells are cancerous, whether the cancer cells are invasive or metastatic, and what the effects of drugs are on cancer cells by the physical properties such as hardness, adhesion, and Young's modulus. The atomic force microscope (AFM) has emerged as a key important tool for biomechanics research on tumor cells due to its ability to image and collect force spectroscopy information of biological samples with nano-level spatial resolution and under near-physiological conditions. This article reviews the existing results of the study of cancer cells with AFM. The main foci are the operating principle of AFM and research advances in mechanical property measurement, ultra-microtopography, and molecular recognition of tumor cells, which allows us to outline what we do know it in a systematic way and to summarize and to discuss future directions.
Collapse
Affiliation(s)
- Yitong Qin
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Yan Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai264005, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang110016, China
| |
Collapse
|
7
|
Stainer S, Reisetbauer S, Ahiable JEA, Ebner L, Zhu R, Reindl D, Körmöczi GF, Ebner A. Single molecule distribution of RhD binding epitopes on ultraflat erythrocyte ghosts. NANOSCALE 2020; 12:22097-22106. [PMID: 33118583 DOI: 10.1039/d0nr04393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Rh blood group system plays a key role in transfusion and organ transplant medicine. The complex transmembrane Rh polypeptides RhD and RhCE carry numerous antigens, including the extremely immunogenic D antigen. The Rh polypeptides form multimolecular Rh complexes with certain transmembrane and skeletal proteins, with so far only incompletely understood physiological functions. Determination of the energy landscape of individual Rh binding epitopes towards their specific interaction partners as well as their localization across the red blood cell (RBC) membrane requires single molecule approaches including large area high resolution recognition imaging. Atomic force microscopy based molecular recognition force spectroscopy in combination with single molecule recognition imaging fulfills these requirements. For unbiased single molecule results, nano-mechanical influences due to cell elasticity have to be eliminated. This is realized by generation of ultra flat erythrocyte ghosts on a solid support. We developed a protocol for the preparation of complete ultraflat erythrocyte ghosts and determined the molecular binding behaviour of different anti-D antibodies towards their binding epitopes on RhD positive and negative erythrocytes. Performing optimized topography and recognition imaging at 16 Mpixel resolution allowed localisation of individual RhD molecules at the single molecule level across an entire RBC. A map of Rh antigens across integer ultraflat RBC ghosts was generated with nanometer resolution. Here we show a homogeneous distribution on rim and dimple regions with comparable receptor densities. Furthermore, differences in the energy landscape between specific monoclonal antibodies were determined at the single molecule level.
Collapse
Affiliation(s)
- Sarah Stainer
- Molecular Biosensing group, Institute of Biophysics, Johannes Kepler University Linz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF, Alsteens D. Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chem Rev 2020; 121:11701-11725. [PMID: 33166471 DOI: 10.1021/acs.chemrev.0c00617] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last three decades, a series of key technological improvements turned atomic force microscopy (AFM) into a nanoscopic laboratory to directly observe and chemically characterize molecular and cell biological systems under physiological conditions. Here, we review key technological improvements that have established AFM as an analytical tool to observe and quantify native biological systems from the micro- to the nanoscale. Native biological systems include living tissues, cells, and cellular components such as single or complexed proteins, nucleic acids, lipids, or sugars. We showcase the procedures to customize nanoscopic chemical laboratories by functionalizing AFM tips and outline the advantages and limitations in applying different AFM modes to chemically image, sense, and manipulate biosystems at (sub)nanometer spatial and millisecond temporal resolution. We further discuss theoretical approaches to extract the kinetic and thermodynamic parameters of specific biomolecular interactions detected by AFM for single bonds and extend the discussion to multiple bonds. Finally, we highlight the potential of combining AFM with optical microscopy and spectroscopy to address the full complexity of biological systems and to tackle fundamental challenges in life sciences.
Collapse
Affiliation(s)
- Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hermann E Gaub
- Applied Physics, Ludwig-Maximilians-Universität Munich, Amalienstrasse 54, 80799 München, Germany
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain (UCLouvain), Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Zhu R, Sandtner W, Ahiable JEA, Newman AH, Freissmuth M, Sitte HH, Hinterdorfer P. Allosterically Linked Binding Sites in Serotonin Transporter Revealed by Single Molecule Force Spectroscopy. Front Mol Biosci 2020; 7:99. [PMID: 32656227 PMCID: PMC7325972 DOI: 10.3389/fmolb.2020.00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 01/24/2023] Open
Abstract
Crystal structures and experiments relying on the tools of molecular pharmacology reported conflicting results on ligand binding sites in neurotransmitter/sodium symporters (NSS). We explored the number and functionality of ligand binding sites of NSS in a physiological setting by designing novel tools for atomic force microscopy (AFM). These allow for directly measuring the interaction forces between the serotonin transporter (SERT) and the antidepressant S-citalopram (S-CIT) on the single molecule level: the AFM cantilever tips were functionalized with S-CIT via a flexible polyethylene glycol (PEG) linker. The tip chemistry was validated by specific force measurements and recognition imaging on CHO cells. Two distinct populations of characteristic binding strengths of S-CIT binding to SERT were revealed in Na+-containing buffer. In contrast, in Li+-containing buffer, SERT showed only low force interactions. Conversely, the vestibular mutant SERT-G402H merely displayed the high force population. These observations provide physical evidence for the existence of two binding sites in SERT. The dissociation rate constant of both binding sites was extracted by varying the dynamics of the force-probing experiments. Competition experiments revealed that the two sites are allosterically coupled and exert reciprocal modulation.
Collapse
Affiliation(s)
- Rong Zhu
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Joan E A Ahiable
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Koehler M, Farka D, Yumusak C, Serdar Sariciftci N, Hinterdorfer P. Localizing Binding Sites on Bioconjugated Hydrogen-Bonded Organic Semiconductors at the Nanoscale. Chemphyschem 2020; 21:659-666. [PMID: 31867830 PMCID: PMC7187352 DOI: 10.1002/cphc.201901064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Hydrogen‐bonded organic semiconductors are extraordinarily stable organic solids forming stable, large crystallites with the ability to preserve favorable electrical properties upon bioconjugation. Lately, tremendous efforts have been made to use these bioconjugated semiconductors as platforms for stable multifunctional bioelectronics devices, yet the detailed characterization of bio‐active binding sites (orientation, density, etc.) at the nanoscale has not been achieved yet. The presented work investigates the bioconjugation of epindolidione and quinacridone, two representative semiconductors, with respect to their exposed amine‐functionalities. Relying on the biotin‐avidin lock‐and‐key system and applying the atomic force microscopy (AFM) derivative topography and recognition (TREC) imaging, we used activated biotin to flag crystal‐faces with exposed amine functional groups. Contrary to previous studies, biotin bonds were found to be stable towards removal by autolysis. The resolution strength and clear recognition capability makes TREC‐AFM a valuable tool in the investigation of bio‐conjugated, hydrogen‐bonded semiconductors.
Collapse
Affiliation(s)
- Melanie Koehler
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria.,Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Dominik Farka
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, 4040, Linz, Austria.,Institute of Solid State Physics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| |
Collapse
|
11
|
Kiio TM, Park S. Nano-scientific Application of Atomic Force Microscopy in Pathology: from Molecules to Tissues. Int J Med Sci 2020; 17:844-858. [PMID: 32308537 PMCID: PMC7163363 DOI: 10.7150/ijms.41805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The advantages of atomic force microscopy (AFM) in biological research are its high imaging resolution, sensitivity, and ability to operate in physiological conditions. Over the past decades, rigorous studies have been performed to determine the potential applications of AFM techniques in disease diagnosis and prognosis. Many pathological conditions are accompanied by alterations in the morphology, adhesion properties, mechanical compliances, and molecular composition of cells and tissues. The accurate determination of such alterations can be utilized as a diagnostic and prognostic marker. Alteration in cell morphology represents changes in cell structure and membrane proteins induced by pathologic progression of diseases. Mechanical compliances are also modulated by the active rearrangements of cytoskeleton or extracellular matrix triggered by disease pathogenesis. In addition, adhesion is a critical step in the progression of many diseases including infectious and neurodegenerative diseases. Recent advances in AFM techniques have demonstrated their ability to obtain molecular composition as well as topographic information. The quantitative characterization of molecular alteration in biological specimens in terms of disease progression provides a new avenue to understand the underlying mechanisms of disease onset and progression. In this review, we have highlighted the application of diverse AFM techniques in pathological investigations.
Collapse
Affiliation(s)
| | - Soyeun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Daegu 42601, Republic of Korea
| |
Collapse
|
12
|
Li M, Xi N, Wang Y, Liu L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans Nanobioscience 2020; 19:78-99. [DOI: 10.1109/tnb.2019.2954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines. Proc Natl Acad Sci U S A 2019; 116:9616-9621. [PMID: 31019087 DOI: 10.1073/pnas.1819374116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are major loci of excitatory inputs and undergo activity-dependent structural changes that contribute to synaptic plasticity and memory formation. Despite the existence of various classification types of spines, how they arise and which molecular components trigger their structural plasticity remain elusive. microRNAs (miRNAs) have emerged as critical regulators of synapse development and plasticity via their control of gene expression. Brain-specific miR-134s likely regulate the morphological maturation of spines, but their subcellular distributions and functional impacts have rarely been assessed. Here, we exploited atomic force microscopy to visualize in situ miR-134s, which indicated that they are mainly distributed at nearby dendritic shafts and necks of spines. The abundance of miR-134s varied between morphologically and functionally distinct spine types, and their amounts were inversely correlated with their postulated maturation stages. Moreover, spines exhibited reduced contents of miR-134s when selectively stimulated with beads containing brain-derived neurotropic factor (BDNF). Taken together, in situ visualizations of miRNAs provided unprecedented insights into the "inverse synaptic-tagging" roles of miR-134s that are selective to inactive/irrelevant synapses and potentially a molecular means for modifying synaptic connectivity via structural alteration.
Collapse
|
14
|
Oh YJ, Koehler M, Lee Y, Mishra S, Park JW, Hinterdorfer P. Ultra-Sensitive and Label-Free Probing of Binding Affinity Using Recognition Imaging. NANO LETTERS 2019; 19:612-617. [PMID: 30560669 DOI: 10.1021/acs.nanolett.8b04883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reliable quantification of binding affinity is important in biotechnology and pharmacology and increasingly coupled with a demand for ultrasensitivity, nanoscale resolution, and minute sample amounts. Standard techniques are not able to meet these criteria. This study provides a new platform based on atomic force microscopy (AFM)-derived recognition imaging to determine affinity by visualizing single molecular bindings on nanosize dendrons. Using DNA hybridization as a demonstrator, an AFM sensor adorned with a cognate binding strand senses and localizes target DNAs at nanometer resolution. To overcome the limitations of speed and resolution, the AFM cantilever is sinusoidally oscillated close to resonance conditions at small amplitudes. The equilibrium dissociation constant of capturing DNA duplexes was obtained, yielding 2.4 × 10-10 M. Our label-free single-molecular biochemical analysis approach evidences the utility of recognition imaging and analysis in quantifying biomolecular interactions of just a few hundred molecules.
Collapse
Affiliation(s)
- Yoo Jin Oh
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| | - Melanie Koehler
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| | - Yoonhee Lee
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Sourav Mishra
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Joon Won Park
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Peter Hinterdorfer
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , A-4020 Linz , Austria
| |
Collapse
|
15
|
Ebner A, Wildling L, Gruber HJ. Functionalization of AFM Tips and Supports for Molecular Recognition Force Spectroscopy and Recognition Imaging. Methods Mol Biol 2019; 1886:117-151. [PMID: 30374865 DOI: 10.1007/978-1-4939-8894-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Linking of sensor molecules (e.g., antibodies) to an AFM tip converts it into a biosensor by which single target molecules (e.g., antigens) can be detected and localized on the sample surface. Moreover, the mechanism of interaction can be studied by force spectroscopy if purified target molecules are linked to an ultra-flat surface, such as mica or silicon (nitride). Rapid imaging of the binding sites and force spectroscopy studies are greatly facilitated if 6-10 nm long polyethylene glycol (PEG) chains are used as flexible tethers between the sensor molecule and the tip. Here, we describe a set of methods by which a variety of proteins, oligonucleotides, or small molecules can be tethered to silicon (nitride) tips or to mica. Methods are included which afford site-specific and oriented coupling of the sensor molecules.
Collapse
Affiliation(s)
- A Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - L Wildling
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - H J Gruber
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
16
|
Pleshakova TO, Bukharina NS, Archakov AI, Ivanov YD. Atomic Force Microscopy for Protein Detection and Their Physicoсhemical Characterization. Int J Mol Sci 2018; 19:E1142. [PMID: 29642632 PMCID: PMC5979402 DOI: 10.3390/ijms19041142] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.
Collapse
Affiliation(s)
| | - Natalia S Bukharina
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
17
|
Danzberger J, Donovan M, Rankl C, Zhu R, Vicic S, Baltenneck C, Enea R, Hinterdorfer P, Luengo GS. Glycan distribution and density in native skin's stratum corneum. Skin Res Technol 2018; 24:450-458. [PMID: 29417655 PMCID: PMC6446803 DOI: 10.1111/srt.12453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2018] [Indexed: 01/01/2023]
Abstract
Background The glycosylation of proteins on the surface of corneocytes is believed to play an important role in cellular adhesion in the stratum corneum (SC) of human skin. Mapping with accuracy the localization of glycans on the surface of corneocytes through traditional methods of immunohistochemistry and electron microscopy remains a challenging task as both approaches lack enough resolution or need to be performed in high vacuum conditions. Materials and methods We used an advanced mode of atomic force microscope (AFM), with simultaneous topography and recognition imaging to investigate the distribution of glycans on native (no chemical preparation) stripped samples of human SC. The AFM cantilever tips were functionalized with anti‐heparan sulfate antibody and the lectin wheat germ agglutinin (WGA) which binds specifically to N‐acetyl glucosamine and sialic acid. Results From the recognition imaging, we observed the presence of the sulfated glycosaminoglycan, heparan sulfate, and the glycans recognized by WGA on the surface of SC corneocytes in their native state. These glycans were found associated with bead‐like domains which represent corneodesmosomes in the SC layers. Glycan density was calculated to be ~1200 molecules/μm2 in lower layers of SC compared to an important decrease, (~106 molecules/μm2) closer to the surface due probably to corneodesmosome degradation. Conclusion Glycan spatial distribution and degradation is first observed on the surface of SC in native conditions and at high resolution. The method used can be extended to precisely localize the presence of other macromolecules on the surface of skin or other tissues where the maintenance of its native state is required.
Collapse
Affiliation(s)
- J Danzberger
- Center for Advanced Bioanalysis GmbH, Linz, Austria
| | - M Donovan
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - C Rankl
- RECENDT-Research Center for Non-Destructive Testing GmbH, Linz, Austria
| | - R Zhu
- Institute for Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - S Vicic
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - C Baltenneck
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - R Enea
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - P Hinterdorfer
- Center for Advanced Bioanalysis GmbH, Linz, Austria.,Institute for Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - G S Luengo
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| |
Collapse
|
18
|
Chtcheglova LA, Hinterdorfer P. Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells. Semin Cell Dev Biol 2018; 73:45-56. [DOI: 10.1016/j.semcdb.2017.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
19
|
Li M, Dang D, Xi N, Wang Y, Liu L. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. NANOSCALE 2017; 9:17643-17666. [PMID: 29135007 DOI: 10.1039/c7nr07023c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the lack of adequate tools for observation, native molecular behaviors at the nanoscale have been poorly understood. The advent of atomic force microscopy (AFM) provides an exciting instrument for investigating physiological processes on individual living cells with molecular resolution, which attracts the attention of worldwide researchers. In the past few decades, AFM has been widely utilized to investigate molecular activities on diverse biological interfaces, and the performances and functions of AFM have also been continuously improved, greatly improving our understanding of the behaviors of single molecules in action and demonstrating the important role of AFM in addressing biological issues with unprecedented spatiotemporal resolution. In this article, we review the related techniques and recent progress about applying AFM to characterize biomolecular systems in situ from single molecules to living cells. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
20
|
Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem 2017; 409:2767-2776. [PMID: 28229174 PMCID: PMC5366180 DOI: 10.1007/s00216-017-0238-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s−1) indicates low dissociation of the sgc8c–PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per μm2. The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s−1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per μm2 in the cell membrane ![]()
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Alexandra Poturnayova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia.,Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Constanze Lamprecht
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Sabine Weich
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Maja Snejdarkova
- Institute of Biochemistry and Animal Genetics, Slovak Academy of Sciences, Moyzesova 61, 900 28, Ivanka pri Dunaji, Slovakia
| | - Ivana Karpisova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina F1, 842 48, Bratislava, Slovakia
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
21
|
Koehler M, Macher G, Rupprecht A, Zhu R, Gruber HJ, Pohl EE, Hinterdorfer P. Combined Recognition Imaging and Force Spectroscopy: A New Mode for Mapping and Studying Interaction Sites at Low Lateral Density. SCIENCE OF ADVANCED MATERIALS 2017; 9:128-134. [PMID: 29743989 PMCID: PMC5937678 DOI: 10.1166/sam.2017.3066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We combined recognition imaging and force spectroscopy to study the interactions between receptors and ligands on the single molecule level. This method allowed the selection of a single receptor molecule reconstituted in a supported lipid membrane at low density, with the subsequent quantification of the receptor-ligand unbinding force. Based on atomic force microscopy (AFM) tapping mode, a cantilever tip carrying a ligand molecule was oscillated across a membrane. Topography and recognition images of reconstituted receptors were recorded simultaneously by analyzing the downward and upward parts of the oscillation, respectively. Functional receptor molecules were selected from the recognition image with nanometer resolution before the AFM was switched to the force spectroscopy mode, using positional feedback control. The combined mode allowed for dynamic force probing on different pre-selected molecules, resulting in higher throughput when compared with force mapping. We applied this method for a quantitative characterization of the binding mechanism between mitochondrial uncoupling protein 1 (UCP1) and its inhibitor adenosine triphosphate (ATP). Moreover the dynamics of force loading was varied to elucidate the binding dynamics and map the interaction energy landscape.
Collapse
Affiliation(s)
- Melanie Koehler
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Gabriel Macher
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Anne Rupprecht
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Rong Zhu
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Hermann J. Gruber
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
22
|
Koo H, Park I, Lee Y, Kim HJ, Jung JH, Lee JH, Kim Y, Kim JH, Park JW. Visualization and Quantification of MicroRNA in a Single Cell Using Atomic Force Microscopy. J Am Chem Soc 2016; 138:11664-71. [PMID: 27529574 DOI: 10.1021/jacs.6b05048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) play critical roles in controlling various cellular processes, and the expression levels of individual miRNAs can be considerably altered in pathological conditions such as cancer. Accurate quantification of miRNA at the single-cell level will lead to a better understanding of miRNA function. Here, we present a direct and sensitive method for miRNA detection using atomic force microscopy (AFM). A hybrid binding domain (HBD)-tethered tip enabled mature miRNAs, but not premature miRNAs, to be located individually on an adhesion force map. By scanning several sections of a micrometer-sized DNA spot, we were able to quantify the copy number of miR-134 in a single neuron and demonstrate that the expression was increased upon cell activation. Moreover, we visualized individual miR-134s on fixed neurons after membrane removal and observed 2-4 miR-134s in the area of 1.0 × 1.0 μm(2) of soma. The number increased to 8-14 in stimulated neurons, and this change matches the ensemble-averaged increase in copy number. These findings indicate that miRNAs can be reliably quantified at the single cell level with AFM and that their distribution can be mapped at nanometric lateral resolution without modification or amplification. Furthermore, the analysis of miRNAs, mRNAs, and proteins in the same sample or region by scanning sequentially with different AFM tips would let us accurately understand the post-transcriptional regulation of biological processes.
Collapse
Affiliation(s)
- Hyunseo Koo
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Ikbum Park
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Yoonhee Lee
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Hyun Jin Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Jung Hoon Jung
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joo Han Lee
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Youngkyu Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joung-Hun Kim
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Joon Won Park
- Department of Chemistry, ‡Division of Integrative Biosciences and Biotechnology, and §Department of Life Sciences, Pohang University of Science and Technology , 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| |
Collapse
|
23
|
Senapati S, Lindsay S. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Acc Chem Res 2016; 49:503-10. [PMID: 26934674 DOI: 10.1021/acs.accounts.5b00533] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two-color" recognition image. Biological phenomena in nature often involve multimolecular interactions, and this new linker could be ideal for studying them using AFM recognition imaging. It also has the potential to be used extensively in the diagnostics technique. This Account includes fundamentals behind AFM recognition imaging, a brief discussion on tip functionalization, recent advancements, and future directions and possibilities.
Collapse
Affiliation(s)
- Subhadip Senapati
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Stuart Lindsay
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
24
|
Xiao L, Chen Q, Wu Y, Qi X, Zhou A. Simultaneous topographic and recognition imaging of epidermal growth factor receptor (EGFR) on single human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1988-95. [PMID: 26002322 DOI: 10.1016/j.bbamem.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in signaling pathway of the development of breast cancer cells. Since EGFR overexpresses in most breast cancer cells, it is regarded as a biomarker molecule of breast cancer cells. Here we demonstrated a new AFM technique-topography and recognition (TREC) imaging-to simultaneously obtain highly sensitive and specific molecular recognition images and high-resolution topographic images of EGFR on single breast cancer cells.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Qian Chen
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Yangzhe Wu
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Xiaojun Qi
- Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA.
| |
Collapse
|
25
|
Analyses of nuclear proteins and nucleic acid structures using atomic force microscopy. Methods Mol Biol 2015; 1262:119-53. [PMID: 25555579 DOI: 10.1007/978-1-4939-2253-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Since the inception of atomic force microscopy (AFM) in 1986, the value of this technology for exploring the structure and biophysical properties of a variety of biological samples has been increasingly recognized. AFM provides the opportunity to both image samples at nanometer resolution and also measure the forces on the surface of the sample. Here, we describe a variety of methods for studying nuclear samples including single nucleic acid molecules, higher-order chromatin structures, the nucleolus, and the nucleus. Protocols to prepare nucleic acids, nucleic acid-protein complexes, reconstituted chromatin, the cell nucleus, and the nucleolus are included, as well as protocols describing how to prepare the AFM substrate and the AFM tip. Finally, we describe how to perform conventional imaging, high-speed imaging, recognition imaging, force spectroscopy, and nanoindentation experiments.
Collapse
|
26
|
Duman M. Probing and mapping the binding sites on streptavidin imprinted polymer surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:214-20. [PMID: 25175207 DOI: 10.1016/j.msec.2014.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/23/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Molecular imprinting is an effective technique for preparing recognition sites which act as synthetic receptors on polymeric surfaces. Herein, we synthesized MIP surfaces with specific binding sites for streptavidin and characterized them at nanoscale by using two different atomic force microscopy (AFM) techniques. While the single molecule force spectroscopy (SMFS) reveals the unbinding kinetics between streptavidin molecule and binding sites, simultaneous topography and recognition imaging (TREC) was employed, for the first time, to directly map the binding sites on streptavidin imprinted polymers. Streptavidin modified AFM cantilever showed specific unbinding events with an unbinding force around 300 pN and the binding probability was calculated as 35.2% at a given loading rate. In order to prove the specificity of the interaction, free streptavidin molecules were added to AFM liquid cell and the binding probability was significantly decreased to 7.6%. Moreover, the recognition maps show that the smallest recognition site with a diameter of around ~21 nm which corresponds to a single streptavidin molecule binding site. We believe that the potential of combining SMFS and TREC opens new possibilities for the characterization of MIP surfaces with single molecule resolution under physiological conditions.
Collapse
Affiliation(s)
- Memed Duman
- Hacettepe University, Institute of Science, Nanotechnology and Nanomedicine Division, Beytepe 06800 Ankara, Turkey.
| |
Collapse
|
27
|
Lamprecht C, Hinterdorfer P, Ebner A. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv 2014; 11:1237-53. [PMID: 24809228 DOI: 10.1517/17425247.2014.917078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level. AREAS COVERED Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy. EXPERT OPINION Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.
Collapse
Affiliation(s)
- Constanze Lamprecht
- University of Kiel, Institute of Materials Science Biocompatible Nanomaterials , Kaiserstr.2, 24143 Kiel , Germany
| | | | | |
Collapse
|
28
|
Li S, Mulloor J, Wang L, Ji Y, Mulloor CJ, Micic M, Orbulescu J, Leblanc RM. Strong and selective adsorption of lysozyme on graphene oxide. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5704-12. [PMID: 24684375 PMCID: PMC4004197 DOI: 10.1021/am500254e] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biosensing methods and devices using graphene oxide (GO) have recently been explored for detection and quantification of specific biomolecules from body fluid samples, such as saliva, milk, urine, and serum. For a practical diagnostics application, any sensing system must show an absence of nonselective detection of abundant proteins in the fluid matrix. Because lysozyme is an abundant protein in these body fluids (e.g., around 21.4 and 7 μg/mL of lysozyme is found in human milk and saliva from healthy individuals, and more than 15 or even 100 μg/mL in patients suffering from leukemia, renal disease, and sarcoidosis), it may interfere with detections and quantification if it has strong interaction with GO. Therefore, one fundamental question that needs to be addressed before any development of GO based diagnostics method is how GO interacts with lysozyme. In this study, GO has demonstrated a strong interaction with lysozyme. This interaction is so strong that we are able to subsequently eliminate and separate lysozyme from aqueous solution onto the surface of GO. Furthermore, the strong electrostatic interaction also renders the selective adsorption of lysozyme on GO from a mixture of binary and ternary proteins. This selectivity is confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence spectroscopy, and UV-vis absorption spectroscopy.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry and Department of Biology, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| | - Jerome
J. Mulloor
- Department of Chemistry and Department of Biology, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| | - Lingyu Wang
- Department of Chemistry and Department of Biology, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| | - Yiwen Ji
- Department of Chemistry and Department of Biology, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| | - Catherine J. Mulloor
- Department of Chemistry and Department of Biology, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
| | - Miodrag Micic
- Department
of Engineering Design Technology, Cerritos
College, 11110 Alondra
Boulevard, Norwalk, California 92650, United States
- MP Biomedicals
LLC, 3 Hutton Center, Santa Ana, California 92707, United States
| | - Jhony Orbulescu
- MP Biomedicals
LLC, 3 Hutton Center, Santa Ana, California 92707, United States
| | - Roger M. Leblanc
- Department of Chemistry and Department of Biology, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral
Gables, Florida 33146, United States
- E-mail: . Tel.: +1-305-284-2194. Fax: +1-305-284-6367
| |
Collapse
|
29
|
Zhang J, Chtcheglova LA, Zhu R, Hinterdorfer P, Zhang B, Tang J. Nanoscale Organization of Human GnRH-R on Human Bladder Cancer Cells. Anal Chem 2014; 86:2458-64. [DOI: 10.1021/ac403304g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lilia A. Chtcheglova
- Center
for Advanced
Bioanalysis GmbH (CBL), Gruberstrasse
40-42, Linz 4020, Austria
| | - Rong Zhu
- Institute
for Biophysics, Kepler Johannes University of Linz, Gruberstrasse
40-42, Linz 4020, Austria
| | - Peter Hinterdorfer
- Center
for Advanced
Bioanalysis GmbH (CBL), Gruberstrasse
40-42, Linz 4020, Austria
- Institute
for Biophysics, Kepler Johannes University of Linz, Gruberstrasse
40-42, Linz 4020, Austria
| | - Bailin Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P.R. China
| | - Jilin Tang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P.R. China
| |
Collapse
|
30
|
Duman M, Chtcheglova LA, Zhu R, Bozna BL, Polzella P, Cerundolo V, Hinterdorfer P. Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging. J Mol Recognit 2013; 26:408-14. [DOI: 10.1002/jmr.2282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Rong Zhu
- Institute for Biophysics; University of Linz; Altenbergerstrasse 69; A-4040; Linz; Austria
| | - Bianca L. Bozna
- Institute for Biophysics; University of Linz; Altenbergerstrasse 69; A-4040; Linz; Austria
| | - Paolo Polzella
- Cancer Research UK Tumor Immunology Group, The Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine; University of Oxford; Oxford; OX3 9DS; UK
| | - Vicenzo Cerundolo
- Cancer Research UK Tumor Immunology Group, The Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine; University of Oxford; Oxford; OX3 9DS; UK
| | | |
Collapse
|
31
|
Zhu R, Rupprecht A, Ebner A, Haselgrübler T, Gruber HJ, Hinterdorfer P, Pohl EE. Mapping the nucleotide binding site of uncoupling protein 1 using atomic force microscopy. J Am Chem Soc 2013; 135:3640-6. [PMID: 23414455 PMCID: PMC3593612 DOI: 10.1021/ja312550k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A tight regulation of proton transport
in the inner mitochondrial
membrane is crucial for physiological processes such as ATP synthesis,
heat production, or regulation of the reactive oxygen species as proposed
for the uncoupling protein family members (UCP). Specific regulation
of proton transport is thus becoming increasingly important in the
therapy of obesity and inflammatory, neurodegenerative, and ischemic
diseases. We and other research groups have shown previously that
UCP1- and UCP2-mediated proton transport is inhibited by purine nucleotides.
Several hypotheses have been proposed to explain the inhibitory effect
of ATP, although structural details are still lacking. Moreover, the
unresolved mystery is how UCP operates in vivo despite the permanent
presence of high (millimolar) concentrations of ATP in mitochondria.
Here we use the topographic and recognition (TREC) mode of an atomic
force microscope to visualize UCP1 reconstituted into lipid bilayers
and to analyze the ATP–protein interaction at a single molecule
level. The comparison of recognition patterns obtained with anti-UCP1
antibody and ATP led to the conclusion that the ATP binding site can
be accessed from both sides of the membrane. Using cantilever tips
with different cross-linker lengths, we determined the location of
the nucleotide binding site inside the membrane with 1 Å precision.
Together with the recently published NMR structure of a UCP family
member (Berardi et al. Nature, 2011, 476, 109–113), our data
provide a valuable insight into the mechanism of the nucleotide binding
and pave the way for new pharmacological approaches against the diseases
mentioned above.
Collapse
Affiliation(s)
- Rong Zhu
- Institute for Biophysics, Johannes Kepler University, Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
32
|
Chtcheglova LA, Hinterdorfer P. Functional AFM imaging of cellular membranes using functionalized tips. Methods Mol Biol 2013; 950:359-371. [PMID: 23086885 DOI: 10.1007/978-1-62703-137-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The real-time visualization of specific binding sites on biological samples with high spatial resolution, in order of several nanometers, is an important undertaking in many fields of biology. During the past 5 years, simultaneous topography and recognition imaging (TREC) has become a powerful tool to quickly obtain local receptor nanomaps on complex heterogeneous biosurfaces, such as cells and membranes. In this chapter, we present the TREC technique and explain how to unravel the nano-landscape of cells of the immune system, such as macrophages. We describe the procedures for all steps of the experiment including tip functionalization with Fc fragments via flexible PEG-linker, sample preparation, and localization of Fcγ receptors on macrophages.
Collapse
|
33
|
Leitner M, Fantner GE, Fantner EJ, Ivanova K, Ivanov T, Rangelow I, Ebner A, Rangl M, Tang J, Hinterdorfer P. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup. Micron 2012; 43:1399-407. [PMID: 22721963 PMCID: PMC3430863 DOI: 10.1016/j.micron.2012.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 11/27/2022]
Abstract
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants.
Collapse
Affiliation(s)
- Michael Leitner
- Institute of Biophysics, Johannes Kepler University, A-4020 Linz, Austria
| | - Georg E. Fantner
- École Polytechnique Fédéral de Lausanne, Laboratoire de bio- et nano-instrumentation, CH-1015 Lausanne, Switzerland
| | - Ernest J. Fantner
- SCL-Sensortech, Tech Gate Vienna, Science and Technology Park, A-1220 Wien, Austria
| | - Katerina Ivanova
- SCL-Sensortech, Tech Gate Vienna, Science and Technology Park, A-1220 Wien, Austria
| | - Tzvetan Ivanov
- Fachgebiet für Mikro- und nanoelektronische Systeme, Fakultät für Elektrotechnik und Informationstechnik, TU Ilmenau, D-98693 Ilmenau, Germany
| | - Ivo Rangelow
- Fachgebiet für Mikro- und nanoelektronische Systeme, Fakultät für Elektrotechnik und Informationstechnik, TU Ilmenau, D-98693 Ilmenau, Germany
| | - Andreas Ebner
- Institute of Biophysics, Johannes Kepler University, A-4020 Linz, Austria
| | - Martina Rangl
- Institute of Biophysics, Johannes Kepler University, A-4020 Linz, Austria
| | - Jilin Tang
- Chinese Academy of Science, Chang Chun Institute of Applied Chemistry, 130021 Changchun, China
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes Kepler University, A-4020 Linz, Austria
- Center for Advanced Bioanalysis (CBL), A-4020 Linz, Austria
| |
Collapse
|
34
|
Moretti M, Canale C, Canale C, Francardi M, Dante S, De Angelis F, Di Fabrizio E. AFM characterization of biomolecules in physiological environment by an advanced nanofabricated probe. Microsc Res Tech 2012; 75:1723-31. [DOI: 10.1002/jemt.22122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/09/2012] [Indexed: 11/12/2022]
|
35
|
Hinterdorfer P, Garcia-Parajo MF, Dufrêne YF. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res 2012; 45:327-36. [PMID: 21992025 DOI: 10.1021/ar2001167] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional responses upon cell activation. We anticipate that the next steps in the evolution of single-molecule near-field nanoscopy will involve combining single-molecule imaging with single-molecule force spectroscopy to simultaneously measure the localization, elasticity, and interactions of cell surface molecules. In addition, progress in high-speed AFM should allow researchers to image single cell surface molecules at unprecedented temporal resolution. In parallel, exciting advances in the fields of photonic antennas and plasmonics may soon find applications in cell biology, enabling true nanoimaging and nanospectroscopy of individual molecules in living cells.
Collapse
Affiliation(s)
- Peter Hinterdorfer
- Institute for Biophysics, Christian
Doppler Laboratory of Nanoscopic Methods in Biophysics, Johannes Kepler University Linz, Altenbergerstrasse
69, A-4040 Linz, Austria
| | - Maria F. Garcia-Parajo
- ICFO-The Institute of Photonic Sciences, Mediterranean Technology Park,
08860 Castelldefels (Barcelona), Spain, and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010
Barcelona, Spain
| | - Yves F. Dufrêne
- Institute of Condensed Matter
and Nanosciences, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Chtcheglova LA, Hinterdorfer P. Atomic force microscopy functional imaging on vascular endothelial cells. Methods Mol Biol 2012; 931:331-44. [PMID: 23027010 DOI: 10.1007/978-1-62703-056-4_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the challenging tasks in molecular cell biology is to identify and localize specific binding sites on biological samples with high spatial accuracy (in order of several nm). During the past 5 years, simultaneous topography and recognition imaging (TREC) has become a powerful AFM-based technique for quick and easy high-resolution receptor mapping. In this chapter, we provide a flavor of TREC application on vascular endothelial cells by describing the detailed procedures for all stages of the experiment from tip and sample preparations through the operating principles and visualization.
Collapse
|
37
|
High-Speed AFM Reveals the Dynamics of Single Biomolecules at the Nanometer Scale. Cell 2011; 147:979-82. [DOI: 10.1016/j.cell.2011.11.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 01/25/2023]
|
38
|
Leitner M, Mitchell N, Kastner M, Schlapak R, Gruber HJ, Hinterdorfer P, Howorka S, Ebner A. Single-molecule AFM characterization of individual chemically tagged DNA tetrahedra. ACS NANO 2011; 5:7048-7054. [PMID: 21797233 DOI: 10.1021/nn201705p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single-molecule characterization is essential for ascertaining the structural and functional properties of bottom-up DNA nanostructures. Here we enlist three atomic force microscopy (AFM) techniques to examine tetrahedron-shaped DNA nanostructures that are functionally enhanced with small chemical tags. In line with their application for biomolecule immobilization in biosensing and biophysics, the tetrahedra feature three disulfide-modified vertices to achieve directed attachment to gold surfaces. The remaining corner carries a single bioligand that can capture and present individual cargo biomolecules at defined lateral nanoscale spacing. High-resolution AFM topographic imaging confirmed the directional surface attachment as well as the highly effective binding of individual receptor molecules to the exposed bioligands. Insight into the binding behavior at the single-molecule level was gained using molecular recognition force spectroscopy using an AFM cantilever tip with a tethered molecular receptor. Finally, simultaneous topographic and recognition imaging demonstrated the specific receptor-ligand interactions on individual tetrahedra. In summary, AFM characterization verified that the rationally designed DNA nanostructures feature characteristics to serve as valuable immobilization agents in biosensing, biophysics, and cell biology.
Collapse
Affiliation(s)
- Michael Leitner
- Institute for Biophysics, Johannes Kepler University, A-4040 Linz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chtcheglova LA, Hinterdorfer P. Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit 2011; 24:788-94. [DOI: 10.1002/jmr.1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 2011; 22:1239-48. [PMID: 21542606 PMCID: PMC3115690 DOI: 10.1021/bc200099t] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH2 groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH2 groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker (“acetal-PEG-NHS”) which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1–10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker (“aldehyde-PEG-NHS”) to adjacent NH2 groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer.
Collapse
Affiliation(s)
- Linda Wildling
- Institute of Biophysics, J. Kepler University, Altenberger Str. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rankl C, Zhu R, Luengo GS, Donovan M, Baghdadli N, Hinterdorfer P. Detection of corneodesmosin on the surface of stratum corneum using atomic force microscopy. Exp Dermatol 2011; 19:1014-9. [PMID: 21182673 DOI: 10.1111/j.1600-0625.2010.01179.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corneodesmosin, a protein known to be present in the stratum corneum (SC), plays an important role in its physical integrity. Here, a specific antibody to corneodesmosin was tethered via a flexible linker to an atomic force microscopy tip, and the interaction forces between this tip and the surface of the SC were successfully measured. Using the recently developed technique of simultaneous topography and recognition imaging, we were able to map the distribution of corneodesmosin on the surface of the SC at the nanoscale.
Collapse
|
42
|
Creasey R, Sharma S, Gibson CT, Craig JE, Ebner A, Becker T, Hinterdorfer P, Voelcker NH. Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in pseudoexfoliation syndrome. Ultramicroscopy 2011; 111:1055-61. [PMID: 21740868 DOI: 10.1016/j.ultramic.2011.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/22/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
The phenomenon of protein aggregation is of considerable interest to various disciplines, including the field of medicine. A range of disease pathologies are associated with this phenomenon. One of the ocular diseases hallmarked by protein aggregation is the Pseudoexfoliation (PEX) Syndrome. This condition is characterized by the deposition of insoluble proteinaceous material on the anterior human lens capsule. Genomic and proteomic analyses have revealed an association of specific genetic markers and various proteins, respectively, with PEX syndrome. However, the ultrastructure of the protein aggregates is poorly characterized. This study seeks to build capacity to determine the molecular nature of PEX aggregates on human lens capsules in their native state by AFM-based antibody recognition imaging. Lysyl oxidase-Like 1 (LOXL1), a protein identified as a component of PEX aggregates, is detected by an antibody-modified AFM probe. Topographical AFM images and antibody recognition images are obtained using three AFM-based techniques: TREC, phase and force-volume imaging. LOXL1 is found to be present on the lens capsule surface, and is localized around fibrous protein aggregates. Our evaluation shows that TREC imaging is best suited for human tissue imaging and holds significant potential for imaging of human disease tissues in their native state.
Collapse
Affiliation(s)
- Rhiannon Creasey
- School of Chemical and Physical Sciences, Flinders University of SA, GPO Box 2100, Adelaide, SA 5001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lower SK, Yongsunthon R, Casillas-Ituarte NN, Taylor ES, DiBartola AC, Lower BH, Beveridge TJ, Buck AW, Fowler VG. A tactile response in Staphylococcus aureus. Biophys J 2011; 99:2803-11. [PMID: 21044577 DOI: 10.1016/j.bpj.2010.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/16/2010] [Accepted: 08/30/2010] [Indexed: 01/22/2023] Open
Abstract
It is well established that bacteria are able to respond to temporal gradients (e.g., by chemotaxis). However, it is widely held that prokaryotes are too small to sense spatial gradients. This contradicts the common observation that the vast majority of bacteria live on the surface of a solid substrate (e.g., as a biofilm). Herein we report direct experimental evidence that the nonmotile bacterium Staphylococcus aureus possesses a tactile response, or primitive sense of touch, that allows it to respond to spatial gradients. Attached cells recognize their substrate interface and localize adhesins toward that region. Braille-like avidity maps reflect a cell's biochemical sensory response and reveal ultrastructural regions defined by the actual binding activity of specific proteins.
Collapse
|
44
|
Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ. Atomic force microscopy of biological samples. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 2:618-34. [PMID: 20672388 DOI: 10.1002/wnan.104] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).
Collapse
Affiliation(s)
- David P Allison
- Biosciences Division, Oak Ridge National Laboratory, TN 37831-6445, USA
| | | | | | | |
Collapse
|
45
|
Ebner A, Schillers H, Hinterdorfer P. Normal and pathological erythrocytes studied by atomic force microscopy. Methods Mol Biol 2011; 736:223-241. [PMID: 21660731 DOI: 10.1007/978-1-61779-105-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Erythrocytes (red blood cells, RBCs) are the most common type of blood cells in vertebrates. Many diseases and dysfunctions directly affect their structure and function. Employing the atomic force microscope (AFM) physical, chemical, and biological/physiological properties of RBCs can be studied even under near-physiological conditions. In this chapter, we present the application of different AFM techniques to investigate and compare normal and pathological RBCs. We give a detailed description for nondestructive immobilization of whole intact RBCs and explain preparation techniques for isolated native RBC membranes. High-resolution imaging of morphological details and pathological differences are demonstrated with healthy and systemic lupus erythematosus (SLE) erythrocytes revealing substructural changes due to SLE. We also present the technique of simultaneous topography and recognition imaging, which was used to map the distribution of cystic fibrosis transmembrane conductance regulator sites on erythrocyte membranes in healthy and cystic fibrosis-positive RBCs.
Collapse
Affiliation(s)
- Andreas Ebner
- Institute for Biophysics, University of Linz, Linz, Austria
| | | | | |
Collapse
|
46
|
Chiono V, Descrovi E, Sartori S, Gentile P, Ballarini M, Giorgis F, Ciardelli G. Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2 2011. [DOI: 10.1007/978-3-642-10497-8_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
47
|
Creasey R, Sharma S, Craig JE, Gibson CT, Ebner A, Hinterdorfer P, Voelcker NH. Detecting protein aggregates on untreated human tissue samples by atomic force microscopy recognition imaging. Biophys J 2010; 99:1660-7. [PMID: 20816080 DOI: 10.1016/j.bpj.2010.06.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022] Open
Abstract
We apply topography and recognition (TREC) imaging to the analysis of whole, untreated human tissue for what we believe to be the first time. Pseudoexfoliation syndrome (PEX), a well-known cause of irreversible blindness worldwide, is characterized by abnormal protein aggregation on the anterior lens capsule of the eye. However, the development of effective therapies has been hampered by a lack of detailed knowledge of the protein constituents in these pathological deposits and their distribution. Using both TREC and immunofluorescence, one of the proteins implicated in the PEX pathology--the apolipoprotein clusterin--was detected, and differences in its distribution pattern on the surface of untreated human lens capsule tissue in both PEX and normal control samples were investigated. Our study shows the potential of TREC imaging for the analysis of whole, untreated human tissue samples.
Collapse
Affiliation(s)
- Rhiannon Creasey
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Tang J, Ebner A, Kraxberger B, Badelt-Lichtblau H, Gruber HJ, Sleytr UB, Ilk N, Hinterdorfer P. Mapping short affinity tags on bacterial S-layer with an antibody. Chemphyschem 2010; 11:2323-6. [PMID: 20629069 DOI: 10.1002/cphc.201000295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jilin Tang
- State Key Laboratory of Electroanaytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chtcheglova LA, Wildling L, Waschke J, Drenckhahn D, Hinterdorfer P. AFM functional imaging on vascular endothelial cells. J Mol Recognit 2010; 23:589-96. [DOI: 10.1002/jmr.1052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Nanosensing of Fcγ receptors on macrophages. Anal Bioanal Chem 2010; 399:2359-67. [DOI: 10.1007/s00216-010-4039-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/05/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|