1
|
Maman N, Kumar P, Yadav A, Feingold M. Single Molecule Study of the Polymerization of RecA on dsDNA: The Dynamics of Individual Domains. Front Mol Biosci 2021; 8:609076. [PMID: 33842536 PMCID: PMC8025788 DOI: 10.3389/fmolb.2021.609076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
In the Escherichia coli, RecA plays a central role in the recombination and repair of the DNA. For homologous recombination, RecA binds to ssDNA forming a nucleoprotein filament. The RecA-ssDNA filament searches for a homologous sequence on a dsDNA and, subsequently, RecA mediates strand exchange between the ssDNA and the dsDNA. In vitro, RecA binds to both ssDNA and dsDNA. Despite a wide range of studies of the polymerization of RecA on dsDNA, both at the single molecule level and by means of biochemical methods, important aspects of this process are still awaiting a better understanding. Specifically, a detailed, quantitative description of the nucleation and growth dynamics of the RecA-dsDNA filaments is still lacking. Here, we use Optical Tweezers together with a single molecule analysis approach to measure the dynamics of the individual RecA domains on dsDNA and the corresponding growth rates for each of their fronts. We focus on the regime where the nucleation and growth rate constants, kn and kg, are comparable, leading to a coverage of the dsDNA molecule that consists of a small number of RecA domains. For the case of essentially irreversible binding (using ATPγS instead of ATP), we find that domain growth is highly asymmetric with a ratio of about 10:1 between the fast and slow fronts growth rates.
Collapse
Affiliation(s)
- Nitzan Maman
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Pramod Kumar
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Amarjeet Yadav
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.,Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mario Feingold
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Prasad D, Muniyappa K. The extended N-terminus of Mycobacterium smegmatis RecX potentiates its ability to antagonize RecA functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140468. [PMID: 32526474 DOI: 10.1016/j.bbapap.2020.140468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023]
Abstract
The members of the RecX family of proteins have a unique capacity to regulate the catalytic activities of RecA/Rad51 proteins in both prokaryotic and eukaryotic organisms. However, our understanding of the functional roles of RecX in pathogenic and non-pathogenic mycobacteria has been limited by insufficient knowledge of the molecular mechanisms of its activity and regulation. Moreover, the significance of a unique 14 amino acid N-terminal extension in Mycobacterium smegmatis RecX (MsRecX) to its function remains unknown. Here, we advance our understanding of the antagonistic roles of mycobacterial RecX proteins and the functional significance of the extended N-terminus of MsRecX. The full-length MsRecX acts as an antagonist of RecA, negatively regulating RecA promoted functions, including DNA strand exchange, LexA cleavage and ATP hydrolysis, but not binding of ATP. The N-terminally truncated MsRecX variants retain the RecA inhibitory activity, albeit with lower efficiencies compared to the full-length protein. Perhaps most importantly, direct visualization of RecA nucleoprotein filaments, which had been incubated with RecX proteins, showed that they promote disassembly of nucleoprotein filaments primarily within the filaments. In addition, interaction of RecX proteins with the RecA nucleoprotein filaments results in the formation of stiff and irregularly shaped nucleoprotein filaments. Thus, these findings add an additional mechanism by which RecX disassembles RecA nucleoprotein filaments. Overall, this study provides strong evidence for the notion that the N-terminal 14 amino acid region of MsRecX plays an important role in the negative regulation of RecA functions and new insights into the molecular mechanism underlying RecX function.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
3
|
Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, Summers C, Guck J, Chilvers ER. The mechanics of myeloid cells. Biol Cell 2020; 112:103-112. [DOI: 10.1111/boc.201900084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen R Bashant
- Department of MedicineUniversity of Cambridge Cambridge UK
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | - Nicole Toepfner
- Center for Molecular and Cellular BioengineeringBiotechnology Center, Technische Universität Dresden Dresden Germany
- Department of PediatricsUniversity Clinic Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | | | - Nehal N Mehta
- National Heart Lung and Blood InstituteNational Institutes of Health Bethesda MD USA
| | - Mariana J Kaplan
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | | | - Jochen Guck
- Max‐Planck‐Institut für die Physik des Lichts & Max‐Planck‐Zentrum für Physik und Medizin Erlangen Germany
| | | |
Collapse
|
4
|
Schvartzman JB, Hernández P, Krimer DB. Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks. Bioessays 2020; 42:e1900204. [PMID: 32115727 DOI: 10.1002/bies.201900204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Indexed: 11/09/2022]
Abstract
During replication, the topology of DNA changes continuously in response to well-known activities of DNA helicases, polymerases, and topoisomerases. However, replisomes do not always progress at a constant speed and can slow-down and even stall at precise sites. The way these changes in the rate of replisome progression affect DNA topology is not yet well understood. The interplay of DNA topology and replication in several cases where progression of replication forks reacts differently to changes in DNA topology ahead is discussed here. It is proposed, there are at least two types of replication fork barriers: those that behave also as topological barriers and those that do not. Two-Dimensional (2D) agarose gel electrophoresis is the method of choice to distinguish between these two different types of replication fork barriers.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
5
|
Öz R, Kk S, Westerlund F. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level. NANOSCALE 2019; 11:2071-2078. [PMID: 30644945 DOI: 10.1039/c8nr09023h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single DNA molecule techniques have revolutionized our understanding of DNA-protein interactions. Traditional techniques for such studies have the major drawback that the DNA molecule studied is attached to a bead or a surface. Stretching of DNA molecules in nanofluidic channels has enabled single-molecule studies of DNA-protein interactions without the need of tethering the molecule to a foreign entity. This in turn allows for studying reactions along the whole extension of the molecule, including the free DNA ends. However, existing studies either rely on measurements where all components are mixed before introduction into the nanochannels or where passive diffusion brings the reagents to the confined DNA molecule. We here present a new generation of nanofluidic devices, where active exchange of the local environment within the nanofluidic channel is possible, while keeping the DNA molecule stretched and in confinement. To demonstrate the functionality of this novel device we added different analytes, such as SDS, spermidine and DNase I, to YOYO-1 stained DNA and studied the response in real time. We also performed a FRET-based reaction, where two different analytes were added sequentially to the same DNA molecule. We believe that this design will enable in situ mapping of complex biochemical processes, involving multiple proteins and cofactors, on single DNA molecules as well as other biomacromolecules.
Collapse
Affiliation(s)
- Robin Öz
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | |
Collapse
|
6
|
Nautiyal A, Patil KN, Muniyappa K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J Antimicrob Chemother 2014; 69:1834-43. [PMID: 24722837 DOI: 10.1093/jac/dku080] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. METHODS We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. RESULTS We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC(50) values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. CONCLUSIONS Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Ngo KV, Molzberger ET, Chitteni-Pattu S, Cox MM. Regulation of Deinococcus radiodurans RecA protein function via modulation of active and inactive nucleoprotein filament states. J Biol Chem 2013; 288:21351-21366. [PMID: 23729671 DOI: 10.1074/jbc.m113.459230] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RecA protein of Deinococcus radiodurans (DrRecA) has a central role in genome reconstitution after exposure to extreme levels of ionizing radiation. When bound to DNA, filaments of DrRecA protein exhibit active and inactive states that are readily interconverted in response to several sets of stimuli and conditions. At 30 °C, the optimal growth temperature, and at physiological pH 7.5, DrRecA protein binds to double-stranded DNA (dsDNA) and forms extended helical filaments in the presence of ATP. However, the ATP is not hydrolyzed. ATP hydrolysis of the DrRecA-dsDNA filament is activated by addition of single-stranded DNA, with or without the single-stranded DNA-binding protein. The ATPase function of DrRecA nucleoprotein filaments thus exists in an inactive default state under some conditions. ATPase activity is thus not a reliable indicator of DNA binding for all bacterial RecA proteins. Activation is effected by situations in which the DNA substrates needed to initiate recombinational DNA repair are present. The inactive state can also be activated by decreasing the pH (protonation of multiple ionizable groups is required) or by addition of volume exclusion agents. Single-stranded DNA-binding protein plays a much more central role in DNA pairing and strand exchange catalyzed by DrRecA than is the case for the cognate proteins in Escherichia coli. The data suggest a mechanism to enhance the efficiency of recombinational DNA repair in the context of severe genomic degradation in D. radiodurans.
Collapse
Affiliation(s)
- Khanh V Ngo
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Eileen T Molzberger
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Sindhu Chitteni-Pattu
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael M Cox
- From the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.
| |
Collapse
|
8
|
Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst) 2013; 12:162-76. [PMID: 23380520 DOI: 10.1016/j.dnarep.2012.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 11/22/2022]
Abstract
All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillus subtilis senses DNA damage and responds to DSBs. RecN, which is among the first responders to DNA DSBs, promotes the ordered recruitment of repair proteins to the site of a lesion. Cells have evolved different mechanisms for efficient end processing to create a 3'-tailed duplex DNA, the substrate for RecA binding, in the repair of one- and two-ended DSBs. Strand continuity is re-established via homologous recombination (HR), utilizing an intact homologous DNA molecule as a template. In the absence of transient diploidy or of HR, however, two-ended DSBs can be directly re-ligated via error-prone non-homologous end-joining. Here we review recent findings that shed light on the early stages of DSB repair in Firmicutes.
Collapse
|
9
|
Li BS, Wei B, Goh MC. Direct visualization of the formation of RecA/dsDNA complexes at the single-molecule level. Micron 2012; 43:1073-5. [PMID: 22633148 DOI: 10.1016/j.micron.2012.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 03/20/2012] [Accepted: 04/29/2012] [Indexed: 10/28/2022]
Abstract
The assembly of RecA on linear dsDNA with ATPγS in the reaction was elucidated using atomic force microscopy (AFM) on a single-molecule level. It was found that assembly generally (∼95%) proceeded from a single nucleation site that started from one end of the DNA strand. About 5% of the complexes were formed starting either from both ends or from the middle of dsDNA strand. In all these cases, the RecA coating was contiguous for each region suggesting the binding of RecA to DNA is cooperative. The AFM observation provides direct experimental evidence to show how RecA binds to linear dsDNA in the presence of ATPγS.
Collapse
Affiliation(s)
- Bing Shi Li
- School of Chemistry and Chemical Engineering, Shenzhen University, University of Toronto, M5S 3H6 Toronto, Ontario, Canada.
| | | | | |
Collapse
|
10
|
López V, Martínez-Robles ML, Hernández P, Krimer DB, Schvartzman JB. Topo IV is the topoisomerase that knots and unknots sister duplexes during DNA replication. Nucleic Acids Res 2011; 40:3563-73. [PMID: 22187153 PMCID: PMC3333868 DOI: 10.1093/nar/gkr1237] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA topology plays a crucial role in all living cells. In prokaryotes, negative supercoiling is required to initiate replication and either negative or positive supercoiling assists decatenation. The role of DNA knots, however, remains a mystery. Knots are very harmful for cells if not removed efficiently, but DNA molecules become knotted in vivo. If knots are deleterious, why then does DNA become knotted? Here, we used classical genetics, high-resolution 2D agarose gel electrophoresis and atomic force microscopy to show that topoisomerase IV (Topo IV), one of the two type-II DNA topoisomerases in bacteria, is responsible for the knotting and unknotting of sister duplexes during DNA replication. We propose that when progression of the replication forks is impaired, sister duplexes become loosely intertwined. Under these conditions, Topo IV inadvertently makes the strand passages that lead to the formation of knots and removes them later on to allow their correct segregation.
Collapse
Affiliation(s)
| | | | | | | | - Jorge B. Schvartzman
- *To whom correspondence should be addressed. Tel: +34 91 837 3112 (ext. 4232); Fax: +34 91 536 0432;
| |
Collapse
|
11
|
Candelli A, Wuite GJL, Peterman EJG. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Phys Chem Chem Phys 2011; 13:7263-72. [PMID: 21416086 DOI: 10.1039/c0cp02844d] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexity and heterogeneity are common denominators of the many molecular events taking place inside the cell. Single-molecule techniques are important tools to quantify the actions of biomolecules. Heterogeneous interactions between multiple proteins, however, are difficult to study with these technologies. One solution is to integrate optical trapping with micro-fluidics and single-molecule fluorescence microscopy. This combination opens the possibility to study heterogeneous/complex protein interactions with unprecedented levels of precision and control. It is particularly powerful for the study of DNA-protein interactions as it allows manipulating the DNA while at the same time, individual proteins binding to it can be visualized. In this work, we aim to illustrate several published and unpublished key results employing the combination of fluorescence microscopy and optical tweezers. Examples are recent studies of the structural properties of DNA and DNA-protein complexes, the molecular mechanisms of nucleo-protein filament assembly on DNA and the motion of DNA-bound proteins. In addition, we present new results demonstrating that single, fluorescently labeled proteins bound to individual, optically trapped DNA molecules can already be tracked with localization accuracy in the sub-10 nm range at tensions above 1 pN. These experiments by us and others demonstrate the enormous potential of this combination of single-molecule techniques for the investigation of complex DNA-protein interactions.
Collapse
Affiliation(s)
- Andrea Candelli
- Institute for Lasers, Life and Biophotonics Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | |
Collapse
|
12
|
Li BS, Goh MC. Direct evidence of the role of ATPγS in the binding of single-stranded binding protein (Escherichia coli) and RecA to single-stranded DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14755-14758. [PMID: 20722443 DOI: 10.1021/la102347b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To gain insight into the influence of ATPγS on the competitive binding of RecA and single-stranded binding protein (SSB) on single-stranded DNA (ssDNA), AFM imaging was used to examine the three-dimensional structures of the different complexes formed by the binding of the two proteins on ssDNA in the presence and absence of ATPγS. In the presence of ATPγS, RecA attaches to ssDNA, displacing SSB, to form continuous binding regions that caused considerable elongation of the strand. When ATPγS is absent, RecA could not compete with SSB and only binds at a few sites that correspond to the vacancy in ssDNA left when SSB unbinds. These results provide direct evidence that, while SSB binding affinity to DNA is substantially higher than that of RecA, the presence of ATPγS is sufficient to alter the events and enable RecA coating of DNA.
Collapse
Affiliation(s)
- Bing Shi Li
- Department of Chemistry and Institute for Optical Sciences, University of Toronto, Toronto, Ontario, M5S 3H6 Canada.
| | | |
Collapse
|
13
|
Li BS, Goh MC. Direct visualization of the formation and structure of RecA/dsDNA complexes. Micron 2010; 41:227-31. [DOI: 10.1016/j.micron.2009.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
|
14
|
Pastré D, Hamon L, Sorel I, Le Cam E, Curmi PA, Piétrement O. Specific DNA-protein interactions on mica investigated by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2618-2623. [PMID: 19791748 DOI: 10.1021/la902727b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA processing by site-specific proteins on surface remains a challenging issue for nanobioscience applications and, in particular, for high-resolution imaging by atomic force microscopy (AFM). To obtain high-resolution conditions, mica, an atomically flat and negatively charged surface, is generally used. However, even though many specific DNA/protein interactions have already been observed by AFM, little is known about DNA accessibility to specific enzymes on mica. Here we measured the accessibility of adsorbed DNA to restriction endonucleases (EcoRI and EcoRV) using AFM. By increasing the concentration of divalent or multivalent salts, DNA adsorption on mica switches from weak to strong binding. Interestingly, while the accessibility of strongly bound DNA was inhibited, loosely adsorbed DNA was efficiently cleaved on mica. This result opens new perspective to study DNA/protein interaction by AFM or to modify specifically DNA on surface.
Collapse
Affiliation(s)
- David Pastré
- Laboratoire Structure et Activité des Biomolécules Normales et Pathologiques, INSERM/UEVE U829, Université d'Evry val d'Essonne, Evry F-91025, France.
| | | | | | | | | | | |
Collapse
|
15
|
Smeets RMM, Kowalczyk SW, Hall AR, Dekker NH, Dekker C. Translocation of RecA-coated double-stranded DNA through solid-state nanopores. NANO LETTERS 2009; 9:3089-3096. [PMID: 19053490 DOI: 10.1021/nl803189k] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report translocation of double-stranded DNA (dsDNA) molecules that are coated with RecA protein through solid-state nanopores. Translocation measurements show current-blockade events with a wide variety in time duration (10-4-10-1 s) and conductance blockade values (3-14 nS). Large blockades (11.4+/-0.7 nS) are identified as being caused by translocations of RecA-dsDNA filaments. We confirm these results through a variety of methods, including changing molecular length and using an optical tweezer system to deliver bead-functionalized molecules to the nanopore. We further distinguish two different regimes of translocation: a low-voltage regime (<150 mV) in which the event rate increases exponentially with voltage, and a high-voltage regime in which it remains constant. Our results open possibilities for a variety of future experiments with (partly) protein-coated DNA molecules, which is interesting for both fundamental science and genomic screening applications.
Collapse
Affiliation(s)
- R M M Smeets
- KaVli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Guo C, Li G, Liu Z, Sun L, Sun Y, Xu F, Zhang Y, Yang T, Li Z. Influence of Polyelectrolyte on DNA-RecA Nucleoprotein Filaments: Poly-L-Lysine Used as a Model. Chemphyschem 2009; 10:1624-9. [DOI: 10.1002/cphc.200800850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Guo C, Song Y, Wang L, Sun L, Sun Y, Peng C, Liu Z, Yang T, Li Z. Atomic Force Microscopic Study of Low Temperature Induced Disassembly of RecA−dsDNA Filaments. J Phys Chem B 2008; 112:1022-7. [DOI: 10.1021/jp077233y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cunlan Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Yonghai Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Li Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Lanlan Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Yujing Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Chongyang Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Zhelin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Tao Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Zhuang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
18
|
An historical perspective on cell mechanics. Pflugers Arch 2007; 456:3-12. [DOI: 10.1007/s00424-007-0405-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
|
19
|
Lebel R, McDuff FO, Lavigne P, Grandbois M. Direct Visualization of the Binding of c-Myc/Max Heterodimeric b-HLH-LZ to E-Box Sequences on the hTERT Promoter. Biochemistry 2007; 46:10279-86. [PMID: 17705400 DOI: 10.1021/bi700076m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myc and Max belong to the b-HLH-LZ family of transcription factors. Heterodimerization between Myc and Max or homodimerization of Max allows these proteins to bind their cognate DNA sequence known as the E-box (CACGTG). Recent evidence has suggested that the c-Myc/Max heterodimeric b-HLH-LZ could interact to form a head-to-tail dimer of dimers and induce complex topologies such as loops in promoters containing more than one E-box sequence. In an attempt to shed light on this hypothesis, the interaction between the heterodimeric b-HLH-LZ of c-Myc/Max and a fragment of the hTERT promoter containing two E-box sequences was studied by atomic force microscopy. Specific binding events were observed at both E-box sites with equal probabilities. In accordance with previous results obtained by EMSA, we observed that the specific binding of the c-Myc/Max b-HLH-LZ bends the promoter. However no looping could be observed in a wide range of concentration encompassing the Ka (association constant) of the putative tetramer and the Ka for the specific binding of the heterodimer. In contrast, experiments performed with a mandatory c-Myc/Max b-HLH-LZ tetramer incubated with the hTERT promoter fragment allowed for the visualization of loops and cross-linked DNA strands originating from specific binding. Altogether, our results indicate that the c-Myc/Max b-HLH-LZ dimer binds specifically and equally to both E-box sites of the hTERT promoter and induces a significant bending of the promoter and that the suggested oligomerization of the c-Myc/Max heterodimeric b-HLH-LZ, if existing, is most likely too weak to induce the formation of a loop in a promoter.
Collapse
Affiliation(s)
- Réjean Lebel
- Département de pharmacologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | |
Collapse
|
20
|
Cisse I, Okumus B, Joo C, Ha T. Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci U S A 2007; 104:12646-50. [PMID: 17563361 PMCID: PMC1937520 DOI: 10.1073/pnas.0610673104] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicle encapsulation offers a biologically relevant environment for many soluble proteins and nucleic acids and an optimal immobilization medium for single-molecule fluorescence assays. Furthermore, the confinement of biomolecules within small volumes opens up new avenues to unique experimental configurations. Nevertheless, the vesicles' impermeability, even toward ions and other small molecules such as ATP, hinders more general applications. We therefore developed methods to induce pores into vesicles. Porous vesicles were then used to modulate the interaction between Escherichia coli RecA proteins and ssDNA by changing the extravesicular nucleotides. Repetitive binding and dissociation of the same RecA filament on the DNA was observed with a rebinding rate two orders of magnitude greater than in the absence of confinement, suggesting a previously unreported nucleation pathway for RecA filament. This method provides a biofriendly and simple alternative to surface tethering that is ideal for the study of transient and weakly interacting biological complexes.
Collapse
Affiliation(s)
| | | | | | - Taekjip Ha
- *Department of Physics
- Center for Biophysics and Computational Biology
- Howard Hughes Medical Institute, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Kim J, Dukkipati V, Pang SW, Larson RG. Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level. NANOSCALE RESEARCH LETTERS 2007. [PMCID: PMC3246225 DOI: 10.1007/s11671-007-9057-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule studies of the interactions of DNA and proteins are important in a variety of biological or biotechnology processes ranging from the protein’s search for its DNA target site, DNA replication, transcription, or repair, and genome sequencing. A critical requirement for single-molecule studies is the stretching and immobilization of otherwise randomly coiled DNA molecules. Several methods for doing so have been developed over the last two decades, including the use of forces derived from light, magnetic and electric fields, and hydrodynamic flow. Here we review the immobilization and stretching mechanisms for several of these techniques along with examples of single-molecule DNA–protein interaction assays that can be performed with each of them.
Collapse
Affiliation(s)
- JiHoon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| | - VenkatRam Dukkipati
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Stella W Pang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|
22
|
Shi WX, Larson RG. RecA-ssDNA filaments supercoil in the presence of single-stranded DNA-binding protein. Biochem Biophys Res Commun 2007; 357:755-60. [PMID: 17449010 DOI: 10.1016/j.bbrc.2007.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/02/2007] [Indexed: 11/18/2022]
Abstract
Using atomic force microscopy (AFM), we find that RecA-single-stranded DNA (RecA-ssDNA) filaments, in the presence of single-stranded DNA-binding (SSB) protein, organize into left-handed bundles, which differ from the previously reported disordered aggregates formed when SSB is excluded from the reaction. In addition, we see both left- and right-handedness on bundles of two filaments. These two-filament supercoils, individual filaments, and other smaller bundles further organize into more complicated bundles, showing overall left-handedness which cannot be explained by earlier arguments that presumed supercoiling is absent in RecA-ssDNA filaments. This novel finding and our previous results regarding supercoiling of RecA-double-stranded DNA (RecA-dsDNA) filaments are, however, consistent with each other and can possibly be explained by the intrinsic tendency of RecA-DNA filaments, in their fully coated form, to order themselves into helical bundles, independent of the DNA inside the filaments (ssDNA or dsDNA). RecA-RecA interactions may dominate the bundling process, while the original conformation of DNA inside filaments and other factors (mechanical properties of filaments, concentration of filaments, and Mg(2+) concentration) could contribute to the variation in the appearance and pitch of supercoils. The tendency of RecA-DNA filaments to form ordered supercoils and their presence during strand exchange suggest a possible biological importance of supercoiled filaments.
Collapse
Affiliation(s)
- Wei-Xian Shi
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, MI 48109-2136, USA
| | | |
Collapse
|
23
|
Hamon L, Pastré D, Dupaigne P, Le Breton C, Le Cam E, Piétrement O. High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein--DNA complexes. Nucleic Acids Res 2007; 35:e58. [PMID: 17392343 PMCID: PMC1885666 DOI: 10.1093/nar/gkm147] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A–SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA–SSB complexes. At low spermidine concentration (<0.3 mM), we obtained AFM images of ssDNA–SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA–SSB complexes as intermediates by AFM.
Collapse
Affiliation(s)
- Loïc Hamon
- Laboratoire de Structure et Activité des Biomolécules Normales et Pathologiques, INSERM U829, Université d'Evry-Val d'Essonne EA3637, Evry, F-91025, France.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
With the growth of the "-omics" such as functional genomics and proteomics, one of the foremost challenges in biotechnologies has become the development of novel methods to monitor biological process and acquire the information of biomolecular interactions in a systematic manner. To fully understand the roles of newly discovered genes or proteins, it is necessary to elucidate the functions of these molecules in their interaction network. Microarray technology is becoming the method of choice for such a task. Although protein microarray can provide a high throughput analytical platform for protein profiling and protein-protein interaction, most of the current reports are limited to labeled detection using fluorescence or radioisotope techniques. These limitations deflate the potential of the method and prevent the technology from being adapted in a broader range of proteomics applications. In recent years, label-free analytical approaches have gone through intensified development and have been coupled successfully with protein microarray. In many examples of label-free study, the microarray has not only offered the high throughput detection in real time, but also provided kinetics information as well as in situ identification. This article reviews the most significant label-free detection methods for microarray technology, including surface plasmon resonance imaging, atomic force microscope, electrochemical impedance spectroscopy and MS and their applications in proteomics research.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Biochemistry, Beijing Institute of Radiation Medicine, Beijing Proteome Research Center, Beijing, PR China
| | | | | |
Collapse
|
25
|
Sattin BD, Goh MC. Novel polymorphism of RecA fibrils revealed by atomic force microscopy. J Biol Phys 2006; 32:153-68. [PMID: 19669458 DOI: 10.1007/s10867-006-9010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RecA fibrils in physiological conditions have been successfully imaged using Tapping Mode atomic force microscopy. This represents the first time images of recA have been obtained without drying, freezing and/or exposure to high vacuum conditions. While previously observed structures - the monomer, the hexamer, the short rod - were seen, a new type of fibril was also observed. This protofibril is narrower in diameter than the standard fibril, and occurs in three distinct morphologies: aperiodic, 100-nm periodic, and 150-nm periodic. In addition, much longer rods were observed, and appear curved and even circular.
Collapse
Affiliation(s)
- Bernie D Sattin
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
26
|
Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 2006; 443:875-8. [PMID: 16988658 DOI: 10.1038/nature05197] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 09/04/2006] [Indexed: 11/09/2022]
Abstract
Escherichia coli RecA is essential for the repair of DNA double-strand breaks by homologous recombination. Repair requires the formation of a RecA nucleoprotein filament. Previous studies have indicated a mechanism of filament assembly whereby slow nucleation of RecA protein on DNA is followed by rapid growth. However, many aspects of this process remain unclear, including the rates of nucleation and growth and the involvement of ATP hydrolysis, largely because visualization at the single-filament level is lacking. Here we report the direct observation of filament assembly on individual double-stranded DNA molecules using fluorescently modified RecA. The nucleoprotein filaments saturate the DNA and extend it approximately 1.6-fold. At early time points, discrete RecA clusters are seen, permitting analysis of single-filament growth from individual nuclei. Formation of nascent RecA filaments is independent of ATP hydrolysis but is dependent on the type of nucleotide cofactor and the RecA concentration, suggesting that nucleation involves binding of approximately 4-5 ATP-RecA monomers to DNA. Individual RecA filaments grow at rates of 3-10 nm s(-1). Growth is bidirectional and, in contrast to nucleation, independent of nucleotide cofactor, suggesting addition of approximately 2-7 monomers s(-1). These results are in accord with extensive genetic and biochemical studies, and indicate that assembly in vivo is controlled at the nucleation step. We anticipate that our approach and conclusions can be extended to the related eukaryotic counterpart, Rad51 (see ref.), and to regulation by assembly mediators.
Collapse
Affiliation(s)
- Roberto Galletto
- Section of Microbiology, Center for Genetics and Development, Davis, California 95616, USA
| | | | | | | |
Collapse
|
27
|
Humeník D, Chorvát D, Novotný I, Tvarozek V, Oretskaya TS, Hianik T. AFM images of short oligonucleotides on a surface of supported lipid films. Med Eng Phys 2006; 28:956-62. [PMID: 16829154 DOI: 10.1016/j.medengphy.2006.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
Atomic force microscopy (AFM) was used to study the topography of lipid films on a gold support with immobilized 19 mer single stranded DNA (ssDNA) chemically modified by oleylamine and after hybridization with complementary DNA. The topography of various surfaces was analyzed, including alkanethiol layer chemisorbed on a gold support, lipid films formed on alkanethiol layer without and with immobilized single or double stranded DNA (dsDNA). The value of root means square roughness (RMS) for each surface was determined. RMS value for sBLM with immobilized ssDNA was 2.98 nm, while slightly higher value of 3.37 nm was typical for dsDNA. The analysis of AFM images revealed that both ssDNA and dsDNA form clusters. The clusters formed by ssDNA are not uniform, but that formed by dsDNA are almost of circular shape with diameter of 13.6+/-0.5 nm. Formation of the clusters could be consequence of lower hydration of lipids and DNA at an air. The water deficit and hence increased ion concentration probably facilitate the attraction between oligonucleotides.
Collapse
Affiliation(s)
- Drahoslav Humeník
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
28
|
Li BS, Sattin BD, Goh MC. Direct and real-time visualization of the disassembly of a single RecA-DNA-ATPgammaS complex using AFM imaging in fluid. NANO LETTERS 2006; 6:1474-8. [PMID: 16834432 DOI: 10.1021/nl060862j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RecA disassembly from circular double-stranded DNA (dsDNA) was studied by atomic force microscopy (AFM) imaging in fluid on a single molecule scale. The RecA/DNA complex was formed in the presence of ATPgammaS, and the disassembly was then initiated by buffer exchange to rinse off ATPgammaS. Performing AFM imaging in fluid allowed direct and real-time visualization of the disassembly of RecA from dsDNA in solution. It was found that RecA disassembly commenced from multiple sites both in deionized water and in buffer; the areas where RecA dissociated showed the appearance of "gaps" in the filamentous structure. RecA further disassembled either through the already existing "gaps" or by generation of new gaps. The disassembly was slower in buffer than in deionized water, suggesting that ions also contribute to the stabilization of the complex. RecA hexamers and monomers were observed in deionized water and in buffer, respectively, during the disassembly process.
Collapse
Affiliation(s)
- Bing Shi Li
- Department of Chemistry and Institute for Optical Sciences, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Shi WX, Larson RG. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles. NANO LETTERS 2005; 5:2476-81. [PMID: 16351198 DOI: 10.1021/nl051783v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RecA and its complexes with double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) are responsible for homologous recombination and DNA repair. In this study, we have observed, by atomic force microscopy (AFM), two-filament left-handed superhelices of RecA-dsDNA filaments that further interwind into four- or six-filament bundles, in addition to previously reported left-handed bundles of three or six filaments. Also revealed are four-filament bundles formed by further interwinding of two intrafilament superhelices of individual filaments. Pitches of superhelices of RecA-DNA filaments are similar to each other regardless the number of component filaments, and those formed on Phix174 RFII dsDNA and pNEB206A dsDNA are measured as 339.3 +/- 6.2 nm (690 counts of pitch/2) and 321.6 +/- 11.7 nm (101 counts of pitch/2), respectively, consistent with earlier measurements made by electron microscopy with a much smaller sample size. The study of these structures provides insight into the self-interactions of RecA and RecA-like proteins, which are present in all living cells, and into the general phenomenon of bundling, which is relevant to both biological and nonbiological filaments.
Collapse
Affiliation(s)
- Wei-Xian Shi
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, MI 48109-2136, USA
| | | |
Collapse
|
30
|
Kidane D, Graumann PL. Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. ACTA ACUST UNITED AC 2005; 170:357-66. [PMID: 16061691 PMCID: PMC2171471 DOI: 10.1083/jcb.200412090] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that RecN protein is recruited to a defined DNA double strand break (DSB) in Bacillus subtilis cells at an early time point during repair. Because RecO and RecF are successively recruited to DSBs, it is now clear that dynamic DSB repair centers (RCs) exist in prokaryotes. RecA protein was also recruited to RCs and formed highly dynamic filamentous structures, which we term threads, across the nucleoids. Formation of RecA threads commenced ∼30 min after the induction of DSBs, after RecN recruitment to RCs, and disassembled after 2 h. Time-lapse microscopy showed that the threads rapidly changed in length, shape, and orientation within minutes and can extend at 1.02 μm/min. The formation of RecA threads was abolished in recJ addAB mutant cells but not in each of the single mutants, suggesting that RecA filaments can be initiated via two pathways. Contrary to proteins forming RCs, DNA polymerase I did not form foci but was present throughout the nucleoids (even after induction of DSBs or after UV irradiation), suggesting that it continuously scans the chromosome for DNA lesions.
Collapse
Affiliation(s)
- Dawit Kidane
- Biochemie, Fachbereich Chemie, Hans-Meerwein-Strasse, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
31
|
van der Heijden T, van Noort J, van Leest H, Kanaar R, Wyman C, Dekker N, Dekker C. Torque-limited RecA polymerization on dsDNA. Nucleic Acids Res 2005; 33:2099-105. [PMID: 15824062 PMCID: PMC1075924 DOI: 10.1093/nar/gki512] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The assembly of RecA onto a torsionally constrained double-stranded DNA molecule was followed in real time using magnetic tweezers. Formation of a RecA–DNA filament on the DNA tether was stalled owing to different physical processes depending on the applied stretching force. For forces up to 3.6 pN, the reaction stalled owing to the formation of positive plectonemes in the remaining DNA molecule. Release of these plectonemes by rotation of the magnets led to full coverage of the DNA molecule by RecA. At stretching forces larger than 3.6 pN, the twist induced during filament formation caused the reaction to stall before positive supercoils were generated. We deduce a maximum built-up torsion of 10.1 ± 0.7 kbT. In vivo this built-up torsion may be used to favor regression of a stalled replication fork or to free the chromosomal DNA in E.coli from its condensing proteins.
Collapse
Affiliation(s)
| | | | | | - Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus Medical CenterPO Box 1738, 3000 DR Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus Medical CenterPO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Cell Biology and Genetics, Erasmus Medical CenterPO Box 1738, 3000 DR Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus Medical CenterPO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | - Cees Dekker
- To whom correspondence should be addressed. Tel: +31 15 2786094; Fax: +31 15 2781202;
| |
Collapse
|
32
|
Lysetska M, Zettl H, Oka I, Lipps G, Krauss G, Krausch G. Site-Specific Binding of the 9.5 Kilodalton DNA-Binding Protein ORF80 Visualized by Atomic Force Microscopy. Biomacromolecules 2005; 6:1252-7. [PMID: 15877339 DOI: 10.1021/bm0494489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic force microscopy (AFM) has been used to examine the binding properties of the DNA-binding protein ORF80 to DNA. ORF80 is a 9.5 kDa protein that binds site-specifically to double-stranded DNA of the sequence TTAA-N(7)-TTAA. Direct sizing of the protein complexes on DNA fragments from the plasmid pRN1 with AFM shows that the protein ORF80 binds preferentially to two positions. These positions agree well with the ORF80 binding sites determined by footprinting analysis. The measurements allow an estimate of the stoichiometry of the DNA-protein complexes. In contrast to previous results, the single-molecule experiments suggest that only a low number of ORF80 molecules bind to a DNA-binding site.
Collapse
Affiliation(s)
- M Lysetska
- Lehrstuhl für Physikalische Chemie II and Lehrstuhl für Biochemie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Umemura K, Okada T, Kuroda R. Cooperativity and intermediate structures of single-stranded DNA binding-assisted RecA-single-stranded DNA complex formation studied by atomic force microscopy. SCANNING 2005; 27:35-43. [PMID: 15712756 DOI: 10.1002/sca.4950270107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The formation of a complex between RecA protein and single-stranded (ss) DNA was studied systematically by atomic force microscopy (AFM) by varying incubation time and the molecular ratio of RecA protein to single-stranded DNA binding (SSB) protein. New intermediate structures, such as small circular, tangled, and protruded structures in the absence of SSB and sharply turned structures in the presence of SSB, were clearly identified at the early stage of complex formation. These structures have probably resulted from competitive binding of RecA and SSB to DNA. After long incubation, only fully covered RecA-ssDNA and totally RecA-free SSB-ssDNA complexes were present regardless of RecA concentrations. Together with intermediate structures which consisted of only two parts, that is, ssDNA covered by SSB and by RecA proteins, the observation suggested strong neighbor cooperative binding of RecA to ssDNA assisted by SSB.
Collapse
Affiliation(s)
- K Umemura
- Joint Research Center for Atom Technology, Ibaraki
| | | | | |
Collapse
|