1
|
Kumar K, Arnold AA, Gauthier R, Mamone M, Paquin JF, Warschawski DE, Marcotte I. Simultaneous assessment of membrane bilayer structure and drug insertion by 19F solid-state NMR. Biophys J 2025; 124:256-266. [PMID: 39614615 DOI: 10.1016/j.bpj.2024.11.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Fluorine-19 is an ideal nucleus for studying biological systems using NMR due to its rarity in biological environments and its favorable magnetic properties. In this work, we used a mixture of monofluorinated palmitic acids (PAs) as tracers to investigate the molecular interaction of the fluorinated drug rosuvastatin in model lipid membranes. More specifically, PAs labeled at the fourth and eighth carbon positions of their acyl chains were coincorporated in phospholipid bilayers to probe different depths of the hydrophobic core. First, the 19F chemical shift anisotropy (CSA), indicative of membrane fluidity, was simultaneously determined for fatty acids (FAs) and the fluorinated drug using either slow magic-angle spinning (MAS) 1D 19F solid-state NMR (SS-NMR) or MAS 2D 19F-19F SS-NMR with CSA recoupling. Membrane heterogeneity and selective partitioning of rosuvastatin into fluid regions could thus be evidenced. We then examined the possibility of mapping intermolecular distances in bilayers, in both the fluid and gel phases, using 19F-19F and 1H-19F correlation experiments by SS-NMR using MAS. Spatial correlations were evidenced between the two PAs in the gel phase, while contacts between the statin and the lipids were detected in the fluid phase. This work paves the way to mapping membrane-active molecules in intact membranes, and stresses the need for new labeling strategies for this purpose.
Collapse
Affiliation(s)
- Kiran Kumar
- Departement of Chemistry, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Alexandre A Arnold
- Departement of Chemistry, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Raphaël Gauthier
- PROTEO, CCVC, Département de Chimie, Université Laval, Québec, Québec, Canada
| | - Marius Mamone
- PROTEO, CCVC, Département de Chimie, Université Laval, Québec, Québec, Canada
| | | | - Dror E Warschawski
- Departement of Chemistry, Université du Québec à Montréal, Montreal, Québec, Canada; Chimie Physique et Chimie du Vivant, CPCV, CNRS UMR 8228, Sorbonne Université, Ecole normale supérieure, PSL University, F-75005, Paris, France.
| | - Isabelle Marcotte
- Departement of Chemistry, Université du Québec à Montréal, Montreal, Québec, Canada.
| |
Collapse
|
2
|
A simple self-assembling system of melittin for hepatoma treatment. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Background
Hepatoma is a serious public health concern. New attempts are urgently needed to solve this problem. Melittin, a host defense peptide derived from the venom of honeybees, has noteworthy hemolysis and non-specific cytotoxicity in clinical applications. Here, the self-assembly of melittin and vitamin E-succinic acid-(glutamate)12 (VG) was fabricated via noncovalent π-stacking and hydrogen bonding interactions using an environment-friendly method without “toxic” solvents.
Results
As expected, the designed self-assembly (denoted as M/VG nanoparticles) exhibits a uniform morphology with a particle size of approximately 60 nm and a zeta potential of approximately − 26.8 mV. Furthermore, added VG significantly decreased hemolytic activity, increased tumor-targeted effects, and accelerated apoptosis.
Conclusion
Our research provides a promising strategy for the development of natural self-assembled biological peptides for clinical application, particularly for transforming toxic peptides into safe therapeutic systems.
Graphical Abstract
Collapse
|
3
|
Naito A, Kawamura I. Dynamic membrane interaction and amyloid fibril formation of glucagon, melittin and human calcitonin. Biophys Chem 2023; 298:107025. [PMID: 37127008 DOI: 10.1016/j.bpc.2023.107025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Glucagon is a 29-amino acid peptide hormone secreted by pancreatic α-cells and interacts with specific receptors located in various organs. Glucagon tends to form gel-like fibril aggregates that are cytotoxic. It is important to reveal the glucagon-membrane interaction to understand activity and cytotoxicity of glucagon and glucagon oligomers. In this review, first glucagon-membrane interactions are described as morphological changes in dimyristoylphosphatidylcholine (DMPC) bilayers containing glucagon in acidic and neutral conditions as compared to the case of melittin. Second, fibril formation by glucagon in acidic solution is discussed in light of morphological and structural changes. Third, kinetic analysis of glucagon fibril formation was performed using a two-step autocatalytic reaction mechanism, as investigated in the case of human calcitonin. The first step is a nuclear formation, and the second step is an autocatalytic fibril elongation. Forth, fibril formation of glucagon inside glucagon-DMPC bilayers in neutral solution under near physiological condition is described.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| |
Collapse
|
4
|
Ravula T, Ramamoorthy A. Measurement of Residual Dipolar Couplings Using Magnetically Aligned and Flipped Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:244-252. [PMID: 34965145 PMCID: PMC9575995 DOI: 10.1021/acs.langmuir.1c02449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent developments in lipid nanodisc technology have successfully overcome the major challenges in the structural and functional studies of membrane proteins and drug delivery. Among the different types of nanodiscs, the use of synthetic amphiphilic polymers created new directions including the applications of solution and solid-state NMR spectroscopy. The ability to magnetically align large-size (>20 nm diameter) polymer nanodiscs and flip them using paramagnetic lanthanide ions has enabled high-resolution studies on membrane proteins using solid-state NMR techniques. The use of polymer-based macro-nanodiscs (>20 nm diameter) as an alignment medium to measure residual dipolar couplings (RDCs) and residual quadrupole couplings by NMR experiments has also been demonstrated. In this study, we demonstrate the use of magnetically aligned and 90°-flipped polymer nanodiscs as alignment media for structural studies on proteins by solution NMR spectroscopy. These macro-nanodiscs, composed of negatively charged SMA-EA polymers and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids, were used to measure residual 1H-15N dipolar couplings (RDCs) from the water-soluble ∼21 kDa uniformly 15N-labeled flavin mononucleotide binding domain (FBD) of cytochrome-P450 reductase. The experimentally measured 1H-15N RDC values are compared with the values calculated from the crystal structures of cytochrome-P450 reductase that lacks the transmembrane domain. The N-H RDCs measured using aligned and 90°-flipped nanodiscs show a modulation by the function (3 cos2 θ - 1), where θ is the angle between the N-H bond vector and the applied magnetic field direction. This successful demonstration of the use of two orthogonally oriented alignment media should enable structural studies on a variety of systems including small molecules, DNA, and RNA.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- Corresponding author’s
| |
Collapse
|
5
|
Czernek J, Brus J. Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors. Antibiotics (Basel) 2021; 10:1265. [PMID: 34680845 PMCID: PMC8532780 DOI: 10.3390/antibiotics10101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Alamethicin (ALM) is an antimicrobial peptide that is frequently employed in studies of the mechanism of action of pore-forming molecules. Advanced techniques of solid-state NMR spectroscopy (SSNMR) are important in these studies, as they are capable of describing the alignment of helical peptides, such as ALM, in lipid bilayers. Here, it is demonstrated how an analysis of the SSNMR measurements can benefit from fully periodic calculations, which employ the plane-wave density-functional theory (PW DFT) of the solid-phase geometry and related spectral parameters of ALM. The PW DFT calculations are used to obtain the structure of desolvated crystalline ALM and predict the NMR chemical shift tensors (CSTs) of its nuclei. A variation in the CSTs of the amidic nitrogens and carbonyl carbons along the ALM backbone is evaluated and included in simulations of the orientation-dependent anisotropic 15N and 13C chemical shift components. In this way, the influence of the site-specific structural effects on the experimentally determined orientation of ALM is shown in models of cell membranes.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 16206 Prague, Czech Republic;
| | | |
Collapse
|
6
|
Brand I, Khairalla B. Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discuss 2021; 232:68-85. [PMID: 34542116 DOI: 10.1039/d0fd00039f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cell membrane of Gram-negative bacteria interacting with an antimicrobial peptide presents a complex supramolecular assembly. Fabrication of models of bacterial cell membranes remains a large experimental challenge. Langmuir-Blodgett and Langmuir-Schaefer (LS-LB) transfer makes possible the deposition of multicomponent asymmetric lipid bilayers onto a gold surface. Two lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and di[3-deoxy-D-manno-octulosonyl]-lipid A (KLA) were used to deposit a model of the outer membrane of Gram-negative bacteria on the Au(111) substrate. The use of gold as the solid substrate enables control of the membrane potential. Molecular scale changes in the model membrane exposed to physiological electric fields and interacting with melittin antimicrobial peptide are discussed in this paper. The interaction of the outer membrane with melittin leads to an increase in the membrane capacitance and permeability to ions and water. The stability of the outer membrane with bound melittin decreases at positive membrane potentials. In situ polarization modulation infrared reflection absorption spectroscopy is used to investigate membrane potential-dependent changes in the structure of the outer membrane interacting with melittin. The hydration of the ester carbonyl groups is not affected by the interaction with melittin. However, the orientation and hydrogen bond network with the carboxylate groups in KLA changes drastically after POPE-KLA bilayer interacts with melittin. We propose that the positively charged groups in the amino acids present at the C-terminus of the peptide interact directly with the polar head group of KLA. Simultaneously, the packing order in hydrocarbon chains in the membrane with bound melittin increases. A hydrophobic match between the chains in the lipids and the peptide, which spans the membrane, seems to be responsible for the ordering of the hydrocarbon chains region of the bilayer. The N-terminus enters into the hydrophobic region of the membrane and forms a channel to the hydrophilic head groups in POPE.
Collapse
Affiliation(s)
- Izabella Brand
- Department of Chemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| | - Bishoy Khairalla
- Department of Chemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
7
|
Lomize AL, Schnitzer KA, Todd SC, Pogozheva ID. Thermodynamics-Based Molecular Modeling of α-Helices in Membranes and Micelles. J Chem Inf Model 2021; 61:2884-2896. [PMID: 34029472 DOI: 10.1021/acs.jcim.1c00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Folding of Membrane-Associated Peptides (FMAP) method was developed for modeling α-helix formation by linear peptides in micelles and lipid bilayers. FMAP 2.0 identifies locations of α-helices in the amino acid sequence, generates their three-dimensional models in planar bilayers or spherical micelles, and estimates their thermodynamic stabilities and tilt angles, depending on temperature and pH. The method was tested for 723 peptides (926 data points) experimentally studied in different environments and for 170 single-pass transmembrane (TM) proteins with available crystal structures. FMAP 2.0 detected more than 95% of experimentally observed α-helices with an average error in helix end determination of around 2, 3, 4, and 5 residues per helix for peptides in water, micelles, bilayers, and TM proteins, respectively. Helical and nonhelical residue states were predicted with an accuracy from 0.86 to 0.96, and the Matthews correlation coefficient was from 0.64 to 0.88 depending on the environment. Experimental micelle- and membrane-binding energies and tilt angles of peptides were reproduced with a root-mean-square deviation of around 2 kcal/mol and 7°, respectively. The TM and non-TM states of hydrophobic and pH-triggered α-helical peptides in various lipid bilayers were reproduced in more than 95% of cases. The FMAP 2.0 web server (https://membranome.org/fmap) is publicly available to explore the structural polymorphism of antimicrobial, cell-penetrating, fusion, and other membrane-binding peptides, which is important for understanding the mechanisms of their biological activities.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Kevin A Schnitzer
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, 1221 Beal Avenue, Ann Arbor, Michigan 48109-2102, United States
| | - Spencer C Todd
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, 1221 Beal Avenue, Ann Arbor, Michigan 48109-2102, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
8
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
9
|
Deng Z, Lu X, Xu C, Yuan B, Yang K. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin. SOFT MATTER 2020; 16:3498-3504. [PMID: 32215386 DOI: 10.1039/d0sm00046a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cell membranes of different cells deviate significantly in lipid compositions and thus provide varying biological environments to modulate the diffusion, organization and the resultant function of biomacromolecules. However, the detailed modulation mechanism remains elusive especially in consideration of the current overuse of the simplified membrane models such as the pure phosphatidylcholine (PC) membrane. In this work, with the typical membrane-active peptide melittin, we demonstrated that a more complicated membrane environment, such as the bacterial (IME) or plasma membrane (PM), would significantly change the organization and dynamics of melittin, by using molecular dynamics simulations as a "computational microscope". It was found that in these membrane systems, adding melittin would cause a varying degree of reduction in the lateral diffusion of lipids due to the different assembly states of peptides. Melittin tended to aggregate to oligomers in the pure PC membrane, mostly as a tetramer or trimer, while in IME or PM, its degree of oligomerization was significantly reduced. More surprisingly, melittin displayed a strong affinity with ganglioside GM3 in PM, leading to the formation of melittin-GM3 nanoclusters, which hindered its diffusion and further oligomerization. Additionally, small changes in the residue sequence of melittin could modulate the degree or structure of the peptide oligomer. Our work provides a typical example of a study on the organization and dynamics of pore-forming peptides in specific membrane environments and has great significance on the optimization of peptide sequences and the design of helix bundles in the membrane for target biological function.
Collapse
Affiliation(s)
- Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Cheng Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China. and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
10
|
Jia HR, Zhu YX, Xu KF, Wu FG. Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin. Adv Healthc Mater 2018; 7:e1800380. [PMID: 29931753 DOI: 10.1002/adhm.201800380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/20/2018] [Indexed: 11/08/2022]
Abstract
Melittin (MEL) is recognized as a highly potent therapeutic peptide for treating various human diseases including cancer. However, the clinical applications of MEL are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity. Here, it is found that MEL can form a stable supramolecular nanocomplex of ≈60 nm with the photosensitizer chlorin e6 (Ce6), which after hyaluronic acid (HA) coating can achieve robust, safe, and imaging-guided tumor ablation. The as-designed nanocomplex (denoted as MEL/Ce6@HA) shows largely reduced hemolysis and selective cytolytic activity toward cancer cells. Upon laser irradiation, the loaded photosensitive Ce6 can synergistically facilitate the membrane-lytic efficiency of melittin and greatly increase the tumor penetration depth of the complexes in multicellular tumor spheroids. In vivo experiments reveal that MEL/Ce6@HA can realize enhanced tumor accumulation, reduced liver deposition, and rapid body clearance, which are beneficial for highly efficient and safe chemo-photodynamic dual therapy. This work develops a unique supramolecular strategy for optimized in vivo delivery of melittin and may have implications for the development of peptide-based theranostics.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
11
|
Naito A, Matsumori N, Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta Gen Subj 2018; 1862:307-323. [PMID: 28599848 PMCID: PMC6384124 DOI: 10.1016/j.bbagen.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
12
|
Mijiddorj B, Kaneda S, Sato H, Kitahashi Y, Javkhlantugs N, Naito A, Ueda K, Kawamura I. The role of d-allo-isoleucine in the deposition of the anti-Leishmania peptide bombinin H4 as revealed by 31P solid-state NMR, VCD spectroscopy, and MD simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:789-798. [PMID: 29337209 DOI: 10.1016/j.bbapap.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Bombinin H4 is an antimicrobial peptide that was isolated from the toad Bombina variegata. Bombinin H family peptides are active against gram-positive, gram-negative bacteria, and fungi as well as the parasite Leishmania. Among them, bombinin H4 (H4), which contains d-allo-isoleucine (d-allo-Ile) as the second residue in its sequence, is the most active, and its l-isomer is bombinin H2 (H2). H4 has a significantly lower LC50 than H2 against Leishmania. However, the atomic-level mechanism of the membrane interaction and higher activity of H4 has not been clarified. In this work, we investigated the behavior of the conformations and interactions of H2 and H4 with the Leishmania membrane using 31P solid-state nuclear magnetic resonance (NMR), vibrational circular dichroism (VCD) spectroscopy, and molecular dynamics (MD) simulations. The generation of isotropic 31P NMR signals depending on the peptide concentration indicated the abilities of H2 and H4 to exert antimicrobial activity via membrane disruption. The VCD experiment and density functional theory calculation confirmed the different stability and conformations of the N-termini of H2 and H4. MD simulations revealed that the N-terminus of H4 is more stable than that of H2 in the membrane, in line with the VCD experiment data. VCD and MD analyses demonstrated that the first l-Ile and second d-allo-Ile of H4 tend to take a cis conformation. These residues function as an anchor and facilitate the easy winding of the helical conformation of H4 in the membrane. It may assist to quickly reach to the threshold concentration of H4 on the Leishmania membrane. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.
Collapse
Affiliation(s)
- Batsaikhan Mijiddorj
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan; School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Shiho Kaneda
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yuki Kitahashi
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Namsrai Javkhlantugs
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan
| | - Kazuyoshi Ueda
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan.
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Japan.
| |
Collapse
|
13
|
Norisada K, Javkhlantugs N, Mishima D, Kawamura I, Saitô H, Ueda K, Naito A. Dynamic Structure and Orientation of Melittin Bound to Acidic Lipid Bilayers, As Revealed by Solid-State NMR and Molecular Dynamics Simulation. J Phys Chem B 2017; 121:1802-1811. [DOI: 10.1021/acs.jpcb.6b11207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazushi Norisada
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Namsrai Javkhlantugs
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- School
of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Daisuke Mishima
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hazime Saitô
- Department
of Life Science, University of Hyogo, Harima Science Garden City, Kamigori, Hyogo 678-1297, Japan
| | - Kazuyoshi Ueda
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate
School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
14
|
Burton MG, Huang QM, Hossain MA, Wade JD, Palombo EA, Gee ML, Clayton AHA. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6496-6505. [PMID: 27281288 DOI: 10.1021/acs.langmuir.6b00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides are promising therapeutic alternatives to counter growing antimicrobial resistance. Their precise mechanism of action remains elusive, however, particularly with respect to live bacterial cells. We investigated the interaction of a fluorescent melittin analogue with single giant unilamellar vesicles, giant multilamellar vesicles, and bilamellar Gram-negative Escherichia coli (E. coli) bacteria. Time-lapse fluorescence lifetime imaging microscopy was employed to determine the population distribution of the fluorescent melittin analogue between pore state and membrane surface state, and simultaneously measure the leakage of entrapped fluorescent species from the vesicle (or bacterium) interior. In giant unilamellar vesicles, leakage from vesicle interior was correlated with an increase in level of pore states, consistent with a stable pore formation mechanism. In giant multilamellar vesicles, vesicle leakage occurred more gradually and did not appear to correlate with increased pore states. Instead pore levels remained at a low steady-state level, which is more in line with coupled equilibria. Finally, in single bacterial cells, significant increases in pore levels were observed over time, which were correlated with only partial loss of cytosolic contents. These observations suggested that pore formation, as opposed to complete dissolution of membrane, was responsible for the leakage of contents in these systems, and that the bacterial membrane has an adaptive capacity that resists peptide attack. We interpret the three distinct pore dynamics regimes in the context of the increasing physical and biological complexity of the membranes.
Collapse
Affiliation(s)
| | | | | | | | - Enzo A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| | | | - Andrew H A Clayton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Victoria 3122, Australia
| |
Collapse
|
15
|
Pan J, Khadka NK. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study. J Phys Chem B 2016; 120:4625-34. [PMID: 27167473 DOI: 10.1021/acs.jpcb.6b02332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative characterization of membrane defects (pores) is important for elucidating the molecular basis of many membrane-active peptides. We study kinetic defects induced by melittin in vesicular and planar lipid bilayers. Fluorescence spectroscopy measurements indicate that melittin induces time-dependent calcein leakage. Solution atomic force microscopy (AFM) is used to visualize melittin-induced membrane defects. After initial equilibration, the most probable defect radius is ∼3.8 nm in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers. Unexpectedly, defects become larger with longer incubation, accompanied by substantial shape transformation. The initial defect radius is ∼4.7 nm in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Addition of 30 mol % cholesterol to DOPC bilayers suppresses defect kinetics, although the inhibitory impact is negated by longer incubation. Overall, the kinetic rate of defect development follows DLPC > DOPC > DOPC/cholesterol. Kinetic defects are also observed when anionic lipids are present. Based on the observation that defects can occupy as large as 40% of the bilayer surface, we propose a kinetic defect growth model. We also study the effect of melittin on the phase behavior of DOPC/egg-sphingomyelin/cholesterol bilayers. We find that melittin initially suppresses or eliminates liquid-ordered (Lo) domains; Lo domains gradually emerge and become the dominant species with longer incubation; and defects in phase-coexisting bilayers have a most probable radius of ∼5 nm and are exclusively localized in the liquid-disordered (Ld) phase. Our experimental data highlight that melittin-induced membrane defects are not static; conversely, spontaneous defect growth is intrinsically associated with membrane permeabilization exerted by melittin.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| | - Nawal K Khadka
- Department of Physics, University of South Florida , Tampa, Florida 33620, United States
| |
Collapse
|
16
|
Nagao T, Mishima D, Javkhlantugs N, Wang J, Ishioka D, Yokota K, Norisada K, Kawamura I, Ueda K, Naito A. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2789-98. [PMID: 26248014 DOI: 10.1016/j.bbamem.2015.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
The structure, topology and orientation of membrane-bound antibiotic alamethicin were studied using solid state nuclear magnetic resonance (NMR) spectroscopy. (13)C chemical shift interaction was observed in [1-(13)C]-labeled alamethicin. The isotropic chemical shift values indicated that alamethicin forms a helical structure in the entire region. The chemical shift anisotropy of the carbonyl carbon of isotopically labeled alamethicin was also analyzed with the assumption that alamethicin molecules rotate rapidly about the bilayer normal of the phospholipid bilayers. It is considered that the adjacent peptide planes form an angle of 100° or 120° when it forms α-helix or 310-helix, respectively. These properties lead to an oscillation of the chemical shift anisotropy with respect to the phase angle of the peptide plane. Anisotropic data were acquired for the 4 and 7 sites of the N- and C-termini, respectively. The results indicated that the helical axes for the N- and C-termini were tilted 17° and 32° to the bilayer normal, respectively. The chemical shift oscillation curves indicate that the N- and C-termini form the α-helix and 310-helix, respectively. The C-terminal 310-helix of alamethicin in the bilayer was experimentally observed and the unique bending structure of alamethicin was further confirmed by measuring the internuclear distances of [1-(13)C] and [(15)N] doubly-labeled alamethicin. Molecular dynamics simulation of alamethicin embedded into dimyristoyl phophatidylcholine (DMPC) bilayers indicates that the helical axes for α-helical N- and 310-helical C-termini are tilted 12° and 32° to the bilayer normal, respectively, which is in good agreement with the solid state NMR results.
Collapse
Affiliation(s)
- Takashi Nagao
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Daisuke Mishima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Namsrai Javkhlantugs
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan; Center for Nanoscience and Nanotechnology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Jun Wang
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Daisuke Ishioka
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kiyonobu Yokota
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazushi Norisada
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuyoshi Ueda
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
17
|
Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1944-54. [PMID: 25726906 DOI: 10.1016/j.bbamem.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
18
|
Nguyen KT. Orientation determination of interfacial bent α-helical structures using Sum Frequency Generation vibrational spectroscopy. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2014.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RA, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:940-9. [DOI: 10.1016/j.bbamem.2013.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 11/26/2022]
|
20
|
Postupalenko VY, Zamotaiev OM, Shvadchak VV, Strizhak AV, Pivovarenko VG, Klymchenko AS, Mely Y. Dual-fluorescence L-amino acid reports insertion and orientation of melittin peptide in cell membranes. Bioconjug Chem 2013; 24:1998-2007. [PMID: 24266665 DOI: 10.1021/bc400325n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring insertion and orientation of peptides in situ on cell membranes remains a challenge. To this end, we synthesized an l-amino acid (AFaa) containing a dual-fluorescence dye of the 3-hydroxyflavone family, as a side chain. In contrast to other labeling approaches using a flexible linker, the AFaa fluorophore, introduced by solid phase synthesis into desired position of a peptide, is attached closely to its backbone with well-defined orientation, and, therefore, could reflect its localization in the membrane. This concept was validated by replacing the leucine-9 (L9) and tryptophan-19 (W19) residues by AFaa in melittin, a well-studied membrane-active peptide. Due to high sensitivity of AFaa dual emission to the environment polarity, we detected a much deeper insertion of L9 peptide position into the bilayer, compared to the W19 position. Moreover, using fluorescence microscopy with a polarized light excitation, we found different orientation of AFaa at L9 and W19 positions of melittin in the bilayers of giant vesicles and cellular membranes. These results suggested that in the natural membranes, similarly to the model lipid bilayers, melittin is preferentially oriented parallel to the membrane surface. The developed amino acid and the proposed methodology will be of interest to study other membrane peptides.
Collapse
Affiliation(s)
- Viktoriia Y Postupalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Lee DK, Brender JR, Sciacca MFM, Krishnamoorthy J, Yu C, Ramamoorthy A. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78). Biochemistry 2013; 52:3254-63. [PMID: 23590672 DOI: 10.1021/bi400087n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The potency and selectivity of many antimicrobial peptides (AMPs) are correlated with their ability to interact with and disrupt the bacterial cell membrane. In vitro experiments using model membranes have been used to determine the mechanism of membrane disruption of AMPs. Because the mechanism of action of an AMP depends on the ability of the model membrane to accurately mimic the cell membrane, it is important to understand the effect of membrane composition. Anionic lipids that are present in the outer membrane of prokaryotes but are less common in eukaryotic membranes are usually thought to be key for the bacterial selectivity of AMPs. We show by fluorescence measurements of peptide-induced membrane permeabilization that the presence of anionic lipids at high concentrations can actually inhibit membrane disruption by the AMP MSI-78 (pexiganan), a representative of a large class of highly cationic AMPs. Paramagnetic quenching studies suggest MSI-78 is in a surface-associated inactive mode in anionic sodium dodecyl sulfate micelles but is in a deeply buried and presumably more active mode in zwitterionic dodecylphosphocholine micelles. Furthermore, a switch in mechanism occurs with lipid composition. Membrane fragmentation with MSI-78 can be observed in mixed vesicles containing both anionic and zwitterionic lipids but not in vesicles composed of a single lipid of either type. These findings suggest membrane affinity and membrane permeabilization are not always correlated, and additional effects that may be more reflective of the actual cellular environment can be seen as the complexity of the model membranes is increased.
Collapse
Affiliation(s)
- Dong-Kuk Lee
- Departments of Biophysics and Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | |
Collapse
|
22
|
Multiple membrane interactions and versatile vesicle deformations elicited by melittin. Toxins (Basel) 2013; 5:637-64. [PMID: 23594437 PMCID: PMC3705284 DOI: 10.3390/toxins5040637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/02/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023] Open
Abstract
Melittin induces various reactions in membranes and has been widely studied as a model for membrane-interacting peptide; however, the mechanism whereby melittin elicits its effects remains unclear. Here, we observed melittin-induced changes in individual giant liposomes using direct real-time imaging by dark-field optical microscopy, and the mechanisms involved were correlated with results obtained using circular dichroism, cosedimentation, fluorescence quenching of tryptophan residues, and electron microscopy. Depending on the concentration of negatively charged phospholipids in the membrane and the molecular ratio between lipid and melittin, melittin induced the “increasing membrane area”, “phased shrinkage”, or “solubilization” of liposomes. In phased shrinkage, liposomes formed small particles on their surface and rapidly decreased in size. Under conditions in which the increasing membrane area, phased shrinkage, or solubilization were mainly observed, the secondary structure of melittin was primarily estimated as an α-helix, β-like, or disordered structure, respectively. When the increasing membrane area or phased shrinkage occurred, almost all melittin was bound to the membranes and reached more hydrophobic regions of the membranes than when solubilization occurred. These results indicate that the various effects of melittin result from its ability to adopt various structures and membrane-binding states depending on the conditions.
Collapse
|
23
|
Wiedman G, Herman K, Searson P, Wimley WC, Hristova K. The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1357-64. [PMID: 23384418 DOI: 10.1016/j.bbamem.2013.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/09/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Melittin is a 26-residue bee venom peptide that folds into amphipathic α-helix and causes membrane permeabilization via a mechanism that is still disputed. While an equilibrium transmembrane pore model has been a central part of the mechanistic dialogue for decades, there is growing evidence that a transmembrane pore is not required for melittin's activity. In part, the controversy is due to limited experimental tools to probe the bilayer's response to melittin. Electrochemical impedance spectroscopy (EIS) is a technique that can reveal details of molecular mechanism of peptide activity, as it yields direct, real-time measurements of membrane resistance and capacitance of supported bilayers. In this work, EIS was used in conjunction with vesicle leakage studies to characterize the response of bilayers of different lipid compositions to melittin. Experiments were carried out at low peptide to lipid ratios between 1:5000 and 1:100. The results directly demonstrate that the response of the bilayer to melittin at these concentrations cannot be explained by an equilibrium transmembrane pore model.
Collapse
Affiliation(s)
- Gregory Wiedman
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
24
|
Bertelsen K, Dorosz J, Hansen SK, Nielsen NC, Vosegaard T. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. PLoS One 2012; 7:e47745. [PMID: 23094079 PMCID: PMC3475706 DOI: 10.1371/journal.pone.0047745] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/17/2012] [Indexed: 01/30/2023] Open
Abstract
There is a considerable interest in understanding the function of antimicrobial peptides (AMPs), but the details of their mode of action is not fully understood. This motivates extensive efforts in determining structural and mechanistic parameters for AMP’s interaction with lipid membranes. In this study we show that oriented-sample 31P solid-state NMR spectroscopy can be used to probe the membrane perturbations and -disruption by AMPs. For two AMPs, alamethicin and novicidin, we observe that the majority of the lipids remain in a planar bilayer conformation but that a number of lipids are involved in the peptide anchoring. These lipids display reduced dynamics. Our study supports previous studies showing that alamethicin adopts a transmembrane arrangement without significant disturbance of the surrounding lipids, while novicidin forms toroidal pores at high concentrations leading to more extensive membrane disturbance.
Collapse
Affiliation(s)
- Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - Jerzy Dorosz
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - Sara Krogh Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Aarhus, Denmark
- * E-mail: (NCN); (TV)
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Aarhus, Denmark
- Department of Engineering, School of Engineering, University of Aarhus, Aarhus, Denmark
- * E-mail: (NCN); (TV)
| |
Collapse
|
25
|
Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, Ueda K, Naito A. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J 2012; 103:1735-43. [PMID: 23083717 DOI: 10.1016/j.bpj.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022] Open
Abstract
Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed (13)C and (31)P NMR, (13)C-(31)P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. (31)P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. (13)C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by (13)C-(31)P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu(3), which are in excellent agreement with the experimental values.
Collapse
Affiliation(s)
- Atsushi Tsutsumi
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Irudayam SJ, Berkowitz ML. Binding and reorientation of melittin in a POPC bilayer: computer simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2975-81. [PMID: 22877705 DOI: 10.1016/j.bbamem.2012.07.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
Abstract
We performed, using an all-atom force field, molecular dynamics computer simulations to study the binding of melittin to the POPC bilayer and its subsequent reorientation in this bilayer. The binding process involves a simultaneous folding and adsorption of the peptide to the bilayer, followed by the creation of a "U shaped" conformation. The reorientation of melittin from the parallel to the perpendicular conformation requires charged residues to cross the hydrophobic core of the bilayer. This is accomplished by a creation of defects in the bilayer that are filled out with water. The defects are caused by peptide charged residues dragging the lipid headgroup atoms along with them, as they reorient. With increased concentration of melittin water defects form stable pores; this makes it easier for the peptide N-terminus to reorient. Our results complement experimental and computational observations of the melittin/lipid bilayer interaction.
Collapse
Affiliation(s)
- Sheeba J Irudayam
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA.
| | | |
Collapse
|
27
|
Balleza D. Mechanical properties of lipid bilayers and regulation of mechanosensitive function: from biological to biomimetic channels. Channels (Austin) 2012; 6:220-33. [PMID: 22790280 DOI: 10.4161/chan.21085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
28
|
Ningsih Z, Hossain MA, Wade JD, Clayton AHA, Gee ML. Slow insertion kinetics during interaction of a model antimicrobial peptide with unilamellar phospholipid vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2217-2224. [PMID: 22148887 DOI: 10.1021/la203770j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mechanism of interaction between a model antimicrobial peptide and phospholipid unilamellar vesicle membranes was studied using fluorescence spectroscopy, fluorescence lifetime measurements, and light scattering. The peptide, a mellitin mutant, was labeled at position K14 with the polarity-sensitive probe AlexaFluor 430. The kinetics of the interaction of this derivative with various concentrations of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) vesicles was examined. Our work unveiled two novel aspects of peptide-lipid interactions. First, the AB plot or phasor analysis of the fluorescence lifetime studies revealed at least three different peptide states, the population of which depended on the lipid to peptide (L:P) concentration ratio. Second, complex fluorescence kinetics were observed over extended time-scales from 30 s to 2 h. The extended kinetics was only observed at particular lipid concentrations (L:P ratios 20:1 and 10:1) and not at others (30, 40, 50 and 100:1 L:P ratio). Analysis of the complex kinetics revealed several intermediates. We assign these to distinct states of the peptide formed during helix insertion into the vesicle membrane that are intermediate to lytic pore formation.
Collapse
Affiliation(s)
- Zubaidah Ningsih
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
29
|
Javkhlantugs N, Naito A, Ueda K. Molecular dynamics simulation of Bombolitin II in the dipalmitoylphosphatidylcholine membrane bilayer. Biophys J 2011; 101:1212-20. [PMID: 21889459 DOI: 10.1016/j.bpj.2011.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/15/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022] Open
Abstract
The orientation behavior of Bombolitin II (BLT2) in the dipalmitoylphosphatidylcholine membrane bilayer was investigated by using molecular-dynamics simulation. During the 20-ns simulation, the BLT2 began to tilt and finally reached the angle of 51° from the membrane-normal. The structure of the peptide formed the amphipathic α-helical structure during the entire simulation time. The peptide tilts with its hydrophobic side faced to the hydrophobic core of the bilayer. We analyzed the mechanism of the tilting behavior of the peptide associated with the membrane in detail. The analysis showed that the hydrogen-bond interaction and the electrostatic interaction were found to exist between Lys(12) and a lipid molecule. These interactions are considered to work as an important factor in tilting the peptide to the membrane-normal.
Collapse
|
30
|
Hall K, Lee TH, Aguilar MI. The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit 2011; 24:108-18. [PMID: 21194121 DOI: 10.1002/jmr.1032] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity.
Collapse
Affiliation(s)
- Kristopher Hall
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
31
|
Uekusa Y, Kamihira-Ishijima M, Sugimoto O, Ishii T, Kumazawa S, Nakamura K, Tanji KI, Naito A, Nakayama T. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1654-60. [DOI: 10.1016/j.bbamem.2011.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/27/2011] [Accepted: 02/17/2011] [Indexed: 11/24/2022]
|
32
|
Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A. Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys J 2010; 99:3282-9. [PMID: 21081076 PMCID: PMC2980745 DOI: 10.1016/j.bpj.2010.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 01/19/2023] Open
Abstract
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state (31)P and (13)C NMR spectroscopy. (31)P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (T(c)) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the T(c). (13)C NMR spectra of site-specifically (13)C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers.
Collapse
Affiliation(s)
- Shuichi Toraya
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | | | - Daisuke Mishima
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | | | - Kazuyoshi Ueda
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - Akira Naito
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
| |
Collapse
|
33
|
Monitoring membrane binding and insertion of peptides by two-color fluorescent label. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:424-32. [PMID: 20932819 DOI: 10.1016/j.bbamem.2010.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/20/2022]
Abstract
Herein, we developed an approach for monitoring membrane binding and insertion of peptides using a fluorescent environment-sensitive label of the 3-hydroxyflavone family. For this purpose, we labeled the N-terminus of three synthetic peptides, melittin, magainin 2 and poly-l-lysine capable to interact with lipid membranes. Binding of these peptides to lipid vesicles induced a strong fluorescence increase, which enabled to quantify the peptide-membrane interaction. Moreover, the dual emission of the label in these peptides correlated well with the depth of its insertion measured by the parallax quenching method. Thus, in melittin and magainin 2, which show deep insertion of their N-terminus, the label presented a dual emission corresponding to a low polar environment, while the environment of the poly-l-lysine N-terminus was rather polar, consistent with its location close to the bilayer surface. Using spectral deconvolution to distinguish the non-hydrated label species from the hydrated ones and two photon fluorescence microscopy to determine the probe orientation in giant vesicles, we found that the non-hydrated species were vertically oriented in the bilayer and constituted the best indicators for evaluating the depth of the peptide N-terminus in membranes. Thus, this label constitutes an interesting new tool for monitoring membrane binding and insertion of peptides.
Collapse
|
34
|
Liu Z, Zhou Q, Mao X, Zheng X, Guo J, Zhang F, Wen T, Pang H. Crystallization and preliminary X-ray analysis of cecropin B from Bombyx mori. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:851-3. [PMID: 20606290 PMCID: PMC2898478 DOI: 10.1107/s1744309110020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/27/2010] [Indexed: 11/10/2022]
Abstract
Cecropin B is a 37-residue cationic antimicrobial peptide derived from the haemolymph of Bombyx mori. The precise mechanism by which cecropins exert their antimicrobial and cytolytic activities is not well understood. Crystals of cecropin B were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant at 289 K. The crystal diffracted to 1.43 A resolution using X-ray radiation and belonged to the orthorhombic space group P1, with unit-cell parameters a = 15.08, b = 22.75, c = 30.20 A, alpha = 96.9, beta = 103.1, gamma = 96.5 degrees. The asymmetric unit contained only one molecule of cecropin B, with a calculated Matthews coefficient of 2.48 A(3) Da(-1) and a solvent content of 50.4%.
Collapse
Affiliation(s)
- Zhongyuan Liu
- School of Medicine, Tsinghua University, Hai’dian District, Beijing 100084, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, People’s Republic of China
| | - Qiangjun Zhou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xinfang Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, People’s Republic of China
| | - Xiangdong Zheng
- School of Medicine, Tsinghua University, Hai’dian District, Beijing 100084, People’s Republic of China
| | - Jiubiao Guo
- School of Medicine, Tsinghua University, Hai’dian District, Beijing 100084, People’s Republic of China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, People’s Republic of China
| | - Tingyi Wen
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hai Pang
- School of Medicine, Tsinghua University, Hai’dian District, Beijing 100084, People’s Republic of China
| |
Collapse
|
35
|
Mihajlovic M, Lazaridis T. Antimicrobial peptides in toroidal and cylindrical pores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1485-93. [PMID: 20403332 DOI: 10.1016/j.bbamem.2010.04.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/02/2010] [Accepted: 04/08/2010] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or closes if glutamines in the N-termini are not located within the pore. On the other hand, when a melittin tetramer is embedded in toroidal pore or in a cylindrical pore, at the end of the simulation the pore is lined both with peptides and lipid headgroups, and, thus, can be classified as a toroidal pore. These observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores. Both alamethicin and melittin form amphiphilic helices in the presence of membranes, but their net charge differs; at pH approximately 7, the net charge of alamethicin is -1 whereas that of melittin is +5. This gives rise to stronger electrostatic interactions of melittin with membranes than those of alamethicin. The melittin tetramer interacts more strongly with lipids in the toroidal pore than in the cylindrical one, due to more favorable electrostatic interactions.
Collapse
Affiliation(s)
- Maja Mihajlovic
- Department of Chemistry, The City College of New York, New York, NY 10031, USA
| | | |
Collapse
|
36
|
Pan H, Myerson JW, Ivashyna O, Soman NR, Marsh JN, Hood JL, Lanza GM, Schlesinger PH, Wickline SA. Lipid membrane editing with peptide cargo linkers in cells and synthetic nanostructures. FASEB J 2010; 24:2928-37. [PMID: 20335225 DOI: 10.1096/fj.09-153130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Current strategies for deploying synthetic nanocarriers involve the creation of agents that incorporate targeting ligands, imaging agents, and/or therapeutic drugs into particles as an integral part of the formulation process. Here we report the development of an amphipathic peptide linker that enables postformulation editing of payloads without the need for reformulation to achieve multiplexing capability for lipidic nanocarriers. To exemplify the flexibility of this peptide linker strategy, 3 applications were demonstrated: converting nontargeted nanoparticles into targeting vehicles; adding cargo to preformulated targeted nanoparticles for in vivo site-specific delivery; and labeling living cells for in vivo tracking. This strategy is expected to enhance the clinical application of molecular imaging and/or targeted therapeutic agents by offering extended flexibility for multiplexing targeting ligands and/or drug payloads that can be selected after base nanocarrier formulation.
Collapse
Affiliation(s)
- Hua Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Su T, Hu KS. Melittin-regenerated purple membrane. BIOCHEMISTRY (MOSCOW) 2009; 74:1375-81. [PMID: 19961420 DOI: 10.1134/s0006297909120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the character of melittin-regenerated purple membrane. Adding melittin to blue membrane causes the color transition and partial regeneration of the photocycle and the proton pump. The reconstitution of bacteriorhodopsin by melittin is proved to be charge-dependent. In studying the location of melittin binding on the blue membrane, we suggest that melittin anchors on the membrane through both hydrophobic and electrostatic interactions. The electrostatic interaction is dominant. The binding sites for the electrostatic interaction should be on the surface of the membrane.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Biophysics, Academia Sinica, Beijing, 100101, PR China
| | | | | |
Collapse
|
38
|
Naito A. Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:67-76. [PMID: 19647984 DOI: 10.1016/j.ssnmr.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Solid-state NMR using magnetically oriented bilayer systems provides useful information on the structure and orientation of peptides and proteins bound to lipid bilayers. The ordering of the lipid bilayer along the magnetic field can be achieved in two ways. First, lipid can be macroscopically oriented by pressing lipid-water dispersion between flat glass plates, which is called a mechanically aligned system. Second, lipid molecules themselves can be aligned spontaneously in the magnetic field because of their diamagnetic anisotropy by forming bicelles or magnetically oriented vesicle systems. Structure and orientation of the membrane-associated peptides and proteins can be achieved by analyzing structural constraints obtained from anisotropic chemical shift interactions such as chemical shift oscillation or nuclear dipolar interactions such as dipolar wave and a combination of them such as PISA wheel. Detailed structure elucidation of various kinds of membrane peptides and proteins in such oriented bilayers is presented.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| |
Collapse
|
39
|
Biophysical studies of the membrane location of the voltage-gated sensors in the HsapBK and KvAP K+ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1976-86. [DOI: 10.1016/j.bbamem.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 11/22/2022]
|
40
|
Esteban-Martín S, Strandberg E, Fuertes G, Ulrich AS, Salgado J. Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis. Biophys J 2009; 96:3233-41. [PMID: 19383467 DOI: 10.1016/j.bpj.2008.12.3950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/12/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022] Open
Abstract
Membrane proteins and peptides exhibit a preferred orientation in the lipid bilayer while fluctuating in an anisotropic manner. Both the orientation and the dynamics have direct functional implications, but motions are usually not accessible, and structural descriptions are generally static. Using simulated data, we analyze systematically the impact of whole-body motions on the peptide orientations calculated from two-dimensional polarization inversion spin exchange at the magic angle (PISEMA) NMR. Fluctuations are found to have a significant effect on the observed spectra. Nevertheless, wheel-like patterns are still preserved, and it is possible to determine the average peptide tilt and azimuthal rotation angles using simple static models for the spectral fitting. For helical peptides undergoing large-amplitude fluctuations, as in the case of transmembrane monomers, improved fits can be achieved using an explicit dynamics model that includes Gaussian distributions of the orientational parameters. This method allows extracting the amplitudes of fluctuations of the tilt and azimuthal rotation angles. The analysis is further demonstrated by generating first a virtual PISEMA spectrum from a molecular dynamics trajectory of the model peptide, WLP23, in a lipid membrane. That way, the dynamics of the system from which the input spectrum originates is completely known at atomic detail and can thus be directly compared with the dynamic output obtained from the fit. We find that fitting our dynamics model to the polar index slant angles wheel gives an accurate description of the amplitude of underlying motions, together with the average peptide orientation.
Collapse
Affiliation(s)
- Santi Esteban-Martín
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna (Valencia), Spain
| | | | | | | | | |
Collapse
|
41
|
Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin. J Struct Biol 2009; 168:37-52. [PMID: 19508895 DOI: 10.1016/j.jsb.2009.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 05/29/2009] [Accepted: 06/02/2009] [Indexed: 11/21/2022]
Abstract
Select transmembrane proteins found in biogenic membranes are known to facilitate rapid bidirectional flip-flop of lipids between the membrane leaflets, while others have no little or no effect. The particular characteristics which determine the extent to which a protein will facilitate flip-flop are still unknown. To determine if the relative polarity of the transmembrane protein segment influences its capacity for facilitation of flip-flop, we have studied lipid flip-flop dynamics for bilayers containing the peptides WALP(23) and melittin. WALP(23) is used as a model hydrophobic peptide, while melittin consists of both hydrophobic and hydrophilic residues. Sum-frequency vibrational spectroscopy (SFVS) was used to characterize the bilayers and determine the kinetics of flip-flop for the lipid component, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), within the mixed bilayers. The kinetic data were utilized to determine the activation thermodynamics for DSPC flip-flop in the presence of the peptides. Melittin was found to significantly reduce the free energy barrier to DSPC flip-flop when incorporated into the bilayer at 1mol.%, while incorporation of WALP(23) at the same concentration led to a more modest reduction of the free energy barrier. The possible mechanisms by which these peptides facilitate flip-flop are analyzed and discussed in terms of the observed activation thermodynamics.
Collapse
|
42
|
Kawamura I, Tanabe J, Ohmine M, Yamaguchi S, Tuzi S, Naito A. Participation of the BC Loop in the Correct Folding of Bacteriorhodopsin as Revealed by Solid-state NMR. Photochem Photobiol 2009; 85:624-30. [DOI: 10.1111/j.1751-1097.2009.00536.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Haldar S, Raghuraman H, Chattopadhyay A. Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J Phys Chem B 2008; 112:14075-82. [PMID: 18842019 DOI: 10.1021/jp805299g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. In spite of a number of studies, there is no consensus regarding the orientation of melittin in membranes. In this study, we used a melittin analogue that is covalently labeled at its amino terminal (Gly-1) with the environment-sensitive 1-dimethylamino-5-sulfonylnaphthalene (dansyl) group to obtain information regarding the orientation and dynamics of the amino terminal region of membrane-bound melittin. Our results show that the dansyl group in Dns-melittin exhibits red edge excitation shift in vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine, implying its localization in a motionally restricted region of the membrane. This is further supported by wavelength-dependent anisotropy and lifetime changes and time-resolved emission spectra characterized by dynamic Stokes shift, which indicates relatively slow solvent relaxation in the excited state. Membrane penetration depth analysis using the parallax method shows that the dansyl group is localized at a depth of approximately 18 A from the center of the bilayer in membrane-bound Dns-melittin. Further analysis of dansyl and tryptophan depths in Dns-melittin shows that the tilt angle between the helix axis of membrane-bound melittin and the bilayer normal is approximately 70 degrees. Our results therefore suggest that melittin adopts a pseudoparallel orientation in DOPC membranes at low concentration.
Collapse
Affiliation(s)
- Sourav Haldar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
44
|
Soman NR, Lanza GM, Heuser JM, Schlesinger PH, Wickline SA. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. NANO LETTERS 2008; 8:1131-6. [PMID: 18302330 PMCID: PMC2710241 DOI: 10.1021/nl073290r] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The therapeutic potential of cytolytic peptides is plagued by nonspecificity and enzymatic degradation. We report the first stable incorporation of melittin (a 26 amino acid amphipathic peptide) into an outer lipid monolayer of perfluorocarbon nanoparticles. Melittin binds avidly to the nanoparticles (dissociation constant approximately 3.27 nM) and retains its pore-forming activity after contact-mediated delivery to model bilayer membrane (liposomes) thereby demonstrating the effectiveness of perfluorocarbon nanoparticles as unique nanocarriers for cytolytic peptides.
Collapse
Affiliation(s)
| | | | | | - Paul H. Schlesinger
- Corresponding authors: Paul H. Schlesinger, Associate Professor of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Ave., St. Louis, MO 63110. Telephone: 1-314-362-2223. E-mail: . Samuel Wickline, Professor of Medicine, Biomedical Engineering, Physics CTRAIN Group, Washington University School of Medicine, Campus Box 8215, 660 South Euclid Ave., St. Louis, MO 63110. E-mail:
| | - Samuel A. Wickline
- Corresponding authors: Paul H. Schlesinger, Associate Professor of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Ave., St. Louis, MO 63110. Telephone: 1-314-362-2223. E-mail: . Samuel Wickline, Professor of Medicine, Biomedical Engineering, Physics CTRAIN Group, Washington University School of Medicine, Campus Box 8215, 660 South Euclid Ave., St. Louis, MO 63110. E-mail:
| |
Collapse
|
45
|
Matsumori N, Kasai Y, Oishi T, Murata M, Nomura K. Orientation of Fluorinated Cholesterol in Lipid Bilayers Analyzed by 19F Tensor Calculation and Solid-State NMR. J Am Chem Soc 2008; 130:4757-66. [DOI: 10.1021/ja077580l] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | - Yusuke Kasai
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| | - Kaoru Nomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan, and Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-Cho, Mishima-Gun, Osaka 618-8503, Japan
| |
Collapse
|
46
|
Hartings MR, Gray HB, Winkler JR. Probing melittin helix-coil equilibria in solutions and vesicles. J Phys Chem B 2008; 112:3202-7. [PMID: 18288832 DOI: 10.1021/jp709866g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melittin is a toxic, amphipathic peptide that rearranges from a random coil in solution to a helical structure upon binding to cell membranes or lipid vesicles. We have found that mutation of the valine at position five of the peptide to a phenylalanine or 3-nitrotyrosine induces aggregation and helix formation at low concentrations (20-80 microM). Donor-acceptor distances obtained from analyses of fluorescence energy transfer kinetics experiments with the 3-nitrotyrosine mutant indicate that both coil and helix structures are present in 2 and 20 microM aqueous solutions. The helical peptide population increases upon addition of phospholipid vesicles or in high ionic strength solutions.
Collapse
Affiliation(s)
- Matthew R Hartings
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
47
|
Uekusa Y, Kamihira M, Nakayama T. Dynamic behavior of tea catechins interacting with lipid membranes as determined by NMR spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9986-9992. [PMID: 17966973 DOI: 10.1021/jf0712402] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Interaction between tea catechins, such as epicatechin gallate (ECg) and epigallocatechin gallate (EGCg), and isotropic bicelle model lipid membranes was investigated by solution NMR techniques. (1)H NMR measurements provided signals from the B-ring and the galloyl moiety in ECg and EGCg that were obviously shifted, and whose proton T1 relaxation times were shortened upon interaction of the catechins with the bicelles. These results indicate that the B-ring and the galloyl moiety play an important role in this interaction. Nuclear Overhauser effect spectrometry experiments demonstrated that the B-ring and the galloyl moiety are located near the gamma-H in the phospholipid trimethylammonium group. On the basis of these findings, we propose that ECg and EGCg interact with the surface of lipid membranes via the choline moiety.
Collapse
Affiliation(s)
- Yoshinori Uekusa
- Laboratory of Functional Food Science and Global COE Program, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
48
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
49
|
Strömstedt AA, Wessman P, Ringstad L, Edwards K, Malmsten M. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers. J Colloid Interface Sci 2007; 311:59-69. [PMID: 17383670 DOI: 10.1016/j.jcis.2007.02.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/25/2007] [Accepted: 02/25/2007] [Indexed: 11/29/2022]
Abstract
The effect of the lipid polar headgroup on melittin-phospholipid interaction was investigated by cryo-TEM, fluorescence spectroscopy, ellipsometry, circular dichroism, electrophoresis and photon correlation spectroscopy. In particular, focus was placed on the effect of the lipid polar headgroup on peptide adsorption to, and penetration into, the lipid bilayer, as well as on resulting colloidal stability effects for large unilamellar liposomes. The effect of phospholipid headgroup properties on melittin-bilayer interaction was addressed by comparing liposomes containing phosphatidylcholine, -acid, and -inositol at varying ionic strength. Increasing the bilayer negative charge leads to an increased liposome tolerance toward melittin which is due to an electrostatic arrest of melittin at the membrane interface. Balancing the electrostatic attraction between the melittin positive charges and the phospholipid negative charges through a hydration repulsion, caused by inositol, reduced this surface arrest and increased liposome susceptibility to the disruptive actions of melittin. Furthermore, melittin was demonstrated to induce liposome structural destabilization on a colloidal scale which coincided with leakage induction for both anionic and zwitterionic systems. The latter findings thus clearly show that coalescence, aggregation, and fragmentation contribute to melittin-induced liposome leakage, and that detailed molecular analyses of melittin pore formation are incomplete without considering also these colloidal aspects.
Collapse
Affiliation(s)
- Adam A Strömstedt
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
50
|
Chen X, Wang J, Kristalyn CB, Chen Z. Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Biophys J 2007; 93:866-75. [PMID: 17483186 PMCID: PMC1913150 DOI: 10.1529/biophysj.106.099739] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between membrane bilayers and peptides/proteins are ubiquitous throughout a cell. To determine the structure of membrane bilayers and the associated peptides/proteins, model systems such as supported lipid bilayers are often used. It has been difficult to directly investigate the interactions between a single membrane bilayer and peptides/proteins without exogenous labeling. In this work we demonstrate that sum frequency generation vibrational spectroscopy can be employed to study the interactions between peptides/proteins and a single lipid bilayer in real time, in situ, and without exogenous labeling. Using melittin and a dipalmitoyl phosphatidylglycerol bilayer as a model system, we monitored the C-H and C-D stretching signals from isotopically symmetric or asymmetric dipalmitoyl phosphatidylglycerol bilayers during their interaction with melittin. It has been found that the extent and kinetics of bilayer perturbation induced by melittin are very sensitive to melittin concentration. Such concentration dependence is correlated to melittin's mode of action. Melittin is found to function via the early and late stage of the carpet model at low and high concentrations, respectively, whereas the toroidal model is probable at intermediate concentrations. This research illustrates the potential of sum frequency generation as a biophysical technique to monitor individual leaflet structure of lipid bilayers in real time during their interactions with biomolecules.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|