1
|
Singh D, Tripathi A, Bhati J, Taunk J, Singh D, Siddiqui MH, Singh MP. Genome wide identification and expression profiling of ATP binding cassette (ABC) transporters gene family in lentil (Lens culinaris Medikus) under aluminium stress condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108710. [PMID: 38735154 DOI: 10.1016/j.plaphy.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ankita Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyotika Bhati
- ICAR-India Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, 250001, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Targeting Nucleotide Binding Domain of Multidrug Resistance-associated Protein-1 (MRP1) for the Reversal of Multi Drug Resistance in Cancer. Sci Rep 2018; 8:11973. [PMID: 30097643 PMCID: PMC6086895 DOI: 10.1038/s41598-018-30420-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is the major cause, by which cancer cells expel the drugs out, developing a challenge against the current chemotherapeutic drugs regime. This mechanism is attributed to the over expression of ABC transporters like MRP1 on the surface of cells. Since nucleotide binding domains (NBD) of ABC transporters are the site of ATP binding and hydrolysis, thereby in this study we have targeted NBD1 of MRP1using molecular docking and molecular dynamic simulations (MDS). The compounds present in the FDA approved library were docked against NBD1 of the human multidrug resistance associated protein 1 (PDB ID: 2CBZ). For the docking studies, Standard Precision and Extra Precision methods were employed. After the EP docking studies, ligands showed an extremely low docking score that was indicative of very high binding affinity of the ligands to the NBD. Apart from the low docking score, another short listing criterion in simulation studies was the interaction of incoming ligand with the desired conserved residues of NDB involved in ATP binding and hydrolysis. Based on these measures, potassium citrate (DB09125) and technetium Tc-99m medronate (DB09138) were chosen and subjected to 100 ns simulation studies. From the MDS study we concluded that between these two compounds, potassium citrate is a better candidate for targeting MRP1.
Collapse
|
3
|
Zhang Y, Gong W, Wang Y, Liu Y, Li C. Exploring movement and energy in human P-glycoprotein conformational rearrangement. J Biomol Struct Dyn 2018; 37:1104-1119. [PMID: 29620438 DOI: 10.1080/07391102.2018.1461133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human P-glycoprotein (P-gp), a kind of ATP-Binding Cassette transporter, can export a diverse variety of anti-cancer drugs out of the tumor cell. Its overexpression is one of the main reasons for the multidrug resistance (MDR) of tumor cells. It has been confirmed that during the substrate transport process, P-gp experiences a large-scale structural rearrangement from the inward- to outward-facing states. However, the mechanism of how the nucleotide-binding domains (NBDs) control the transmembrane domains (TMDs) to open towards the periplasm in the outward-facing state has not yet been fully characterized. Herein, targeted molecular dynamics simulations were performed to explore the conformational rearrangement of human P-gp. The results show that the allosteric process proceeds in a coupled way, and first the transition is driven by the NBDs, and then transmitted to the cytoplasmic parts of TMDs, finally to the periplasmic parts. The trajectories show that besides the translational motions, the NBDs undergo a rotation movement, which mainly occurs in xy plane and ensures the formation of the correct ATP-binding pockets. The analyses on the interaction energies between the six structure segments (cICLs) from the TMDs and NBDs reveal that their subtle energy differences play an important role in causing the periplasmic parts of the transmembrane helices to separate from each other in the established directions and in appropriate amplitudes. This conclusion can explain the two experimental phenomena about human P-gp in some extent. These studies have provided a detailed exploration into human P-gp rearrangement process and given an energy insight into the TMD reorientation during P-gp transition.
Collapse
Affiliation(s)
- Yue Zhang
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| | - Weikang Gong
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| | - Yan Wang
- b Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei , 430074 , China
| | - Yang Liu
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| | - Chunhua Li
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| |
Collapse
|
4
|
Pan X, Zhang Q, Qu S, Huang S, Wang H, Mei H. Allosteric effects of ATP binding on the nucleotide-binding domain of a heterodimeric ATP-binding cassette transporter. Integr Biol (Camb) 2017; 8:1158-1169. [PMID: 27731447 DOI: 10.1039/c6ib00136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATP-binding cassette (ABC) exporters mediate vital transport of a variety of molecules across the lipid bilayer in all organisms. To explore the allosteric effect of ATP binding at the asymmetric ATPase sites, molecular dynamics simulations were performed on the nucleotide-binding domains (NBDs) of a heterodimeric exporter TM287/288 in 4 different ATP-bound states. The results showed that ATP bound at the degenerate site can maintain a semi-open conformation of NBD1-NBD2, which may be defective in ATP hydrolysis. By contrast, when bound at the consensus site, ATP can induce an intra-domain rotation of the α-helical subdomain towards the RecA-like subdomain of NBD2 at the degenerate site. The rotation of the α-helical subdomain rearranged the hydrogen bond networks at the NBD1-NBD2 interface, induced a significant conformational change in the D-loop at the degenerate site and inter- and intra-domain communications at both sites, and eventually elicited dimerization of NBD1-NBD2. These findings indicate that the asymmetric ATPase sites of the heterodimeric exporter are structurally and functionally distinct.
Collapse
Affiliation(s)
- Xianchao Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiaoxia Zhang
- Chongqing Research Institute of Chemical Industry, Chongqing 400021, China
| | - Sujun Qu
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Huicong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Jones PM, George AM. How Intrinsic Dynamics Mediates the Allosteric Mechanism in the ABC Transporter Nucleotide Binding Domain Dimer. J Chem Theory Comput 2017; 13:1712-1722. [PMID: 28240893 DOI: 10.1021/acs.jctc.6b00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A protein's architecture facilitates specific motions-intrinsic dynamic modes-that are employed to effect function. Here we used molecular dynamics (MD) simulations to investigate the dynamics of the MJ0796 ABC transporter nucleotide-binding domain (NBD). ABC transporter NBDs form a rotationally symmetric dimer whereby two equivalent active sites are formed at their interface; in complex with a dimer of transmembrane domains they hydrolyze ATP to energize translocation of substrates across cellular membranes. Our data suggest the ABC NBD's ensemble of functional states can be understood predominately in terms of conformational changes between its major subdomains, occurring along two orthogonal dynamic modes. The data show that ligands and oligomeric interactions modulate the equilibrium conformation of the NBD with respect to these motions, suggesting that allostery is achieved by affecting the energetic profile along these two modes. The observed dynamics and allostery integrate consonantly and logically within a mechanistic framework for the ABC NBD dimer, which is supported by a large body of experimental and theoretical data, providing a higher resolution view of the enzyme's dynamic cycle. Our study shows how valuable mechanistic inferences can be derived from accessible short-time scale MD simulations of an enzyme's substructures.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney , P.O. Box 123, Broadway, New South Wales 2007, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney , P.O. Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
6
|
Prieß M, Schäfer LV. Release of Entropic Spring Reveals Conformational Coupling Mechanism in the ABC Transporter BtuCD-F. Biophys J 2016; 110:2407-2418. [PMID: 27276259 PMCID: PMC4906252 DOI: 10.1016/j.bpj.2016.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/14/2023] Open
Abstract
Substrate translocation by ATP-binding cassette (ABC) transporters involves coupling of ATP binding and hydrolysis in the nucleotide-binding domains (NBDs) to conformational changes in the transmembrane domains. We used molecular dynamics simulations to investigate the atomic-level mechanism of conformational coupling in the ABC transporter BtuCD-F, which imports vitamin B12 across the inner membrane of Escherichia coli. Our simulations show how an engineered disulfide bond across the NBD dimer interface reduces conformational fluctuations and hence configurational entropy. As a result, the disulfide bond is under substantial mechanical stress. Releasing this entropic spring, as is the case in the wild-type transporter, combined with analyzing the pairwise forces between individual residues, unravels the coupling mechanism. The identified pathways along which force is propagated from the NBDs via the coupling helix to the transmembrane domains are composed of highly conserved residues, underlining their functional relevance. This study not only reveals the details of conformational coupling in BtuCD-F, it also provides a promising approach to other long-range conformational couplings, e.g., in ABC exporters or other ATP-driven molecular machines.
Collapse
Affiliation(s)
- Marten Prieß
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum, Germany.
| |
Collapse
|
7
|
Jones PM, George AM. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains. PLoS One 2015; 10:e0131505. [PMID: 26120849 PMCID: PMC4485892 DOI: 10.1371/journal.pone.0131505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
8
|
Micoud J, Chauvet S, Scheckenbach KEL, Alfaidy N, Chanson M, Benharouga M. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2420-31. [PMID: 26083625 DOI: 10.1016/j.bbamcr.2015.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.
Collapse
Affiliation(s)
- Julien Micoud
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France
| | - Sylvain Chauvet
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France
| | | | - Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1036 Grenoble, France
| | - Marc Chanson
- Laboratory of Clinical Investigation III, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique (CNRS), LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France; Grenoble Alpes Université (GAU), Grenoble 1, France.
| |
Collapse
|
9
|
Prajapati R, Sangamwar AT. Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2882-98. [DOI: 10.1016/j.bbamem.2014.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
|
10
|
Yang Z, Niu X, Zhang H, Wang S, Zhao X, Huang X. Conformational changes in MetNI: steered molecular dynamic studies of the methionine ABC transporter with and without substrates. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.910599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Chang SY, Liu FF, Dong XY, Sun Y. Molecular insight into conformational transmission of human P-glycoprotein. J Chem Phys 2014; 139:225102. [PMID: 24329094 DOI: 10.1063/1.4832740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.
Collapse
Affiliation(s)
- Shan-Yan Chang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fu-Feng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Zhang J, Sun T, Liang L, Wu T, Wang Q. Drug promiscuity of P-glycoprotein and its mechanism of interaction with paclitaxel and doxorubicin. SOFT MATTER 2014; 10:438-445. [PMID: 24652302 DOI: 10.1039/c3sm52499j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
P-glycoprotein (P-gp) pumps a broad range of structurally diverse anti-cancer drugs out of cancer cells. Therefore, multi-drug resistance (MDR) in chemotherapy closely correlates with P-gp. However, how this single transport system recognizes different substrates remains unclear. In this study, we attempt to uncover the mechanism of substrate promiscuity of P-gp by atomistic molecular dynamics simulations. Results indicate that different drugs like paclitaxel and doxorubicin approach the putative binding site of P-gp, and the inner residues are found to be important in this process. An obstacle-overcoming process was observed, illustrating that the inner residues are flexible. Interaction energy calculations suggest that the inner residues possess high affinity toward substrates. The cavity of adaptability to accommodate different drugs would help explain why P-gp has so many different substrates.
Collapse
Affiliation(s)
- Junqiao Zhang
- Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Dawson JE, Farber PJ, Forman-Kay JD. Allosteric coupling between the intracellular coupling helix 4 and regulatory sites of the first nucleotide-binding domain of CFTR. PLoS One 2013; 8:e74347. [PMID: 24058550 PMCID: PMC3776845 DOI: 10.1371/journal.pone.0074347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/01/2013] [Indexed: 12/25/2022] Open
Abstract
Cystic fibrosis is caused by mutations in CFTR (cystic fibrosis transmembrane conductance regulator), leading to folding and processing defects and to chloride channel gating misfunction. CFTR is regulated by ATP binding to its cytoplasmic nucleotide-binding domains, NBD1 and NBD2, and by phosphorylation of the NBD1 regulatory insert (RI) and the regulatory extension (RE)/R region. These regulatory effects are transmitted to the rest of the channel via NBD interactions with intracellular domain coupling helices (CL), particularly CL4. Using a sensitive method for detecting inter-residue correlations between chemical shift changes in NMR spectra, an allosteric network was revealed within NBD1, with a construct lacking RI. The CL4-binding site couples to the RI-deletion site and the C-terminal residues of NBD1 that precede the R region in full-length CFTR. Titration of CL4 peptide into NBD1 perturbs the conformational ensemble in these sites with similar titration patterns observed in F508del, the major CF-causing mutant, and in suppressor mutants F494N, V510D and Q637R NBD1, as well as in a CL4-NBD1 fusion construct. Reciprocally, the C-terminal mutation, Q637R, perturbs dynamics in these three sites. This allosteric network suggests a mechanism synthesizing diverse regulatory NBD1 interactions and provides biophysical evidence for the allosteric coupling required for CFTR function.
Collapse
Affiliation(s)
- Jennifer E. Dawson
- Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. Farber
- Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Julie D. Forman-Kay
- Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Heuveling J, Frochaux V, Ziomkowska J, Wawrzinek R, Wessig P, Herrmann A, Schneider E. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:106-16. [PMID: 24021237 DOI: 10.1016/j.bbamem.2013.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022]
Abstract
Prokaryotic solute binding protein-dependent ATP-binding cassette import systems are divided into type I and type II and mechanistic differences in the transport process going along with this classification are under intensive investigation. Little is known about the conformational dynamics during the catalytic cycle especially concerning the transmembrane domains. The type I transporter for positively charged amino acids from Salmonella enterica serovar Typhimurium (LAO-HisQMP2) was studied by limited proteolysis in detergent solution in the absence and presence of co-factors including ATP, ADP, LAO/arginine, and Mg(2+) ions. Stable peptide fragments could be obtained and differentially susceptible cleavage sites were determined by mass spectrometry as Lys-258 in the nucleotide-binding subunit, HisP, and Arg-217/Arg-218 in the transmembrane subunit, HisQ. In contrast, transmembrane subunit HisM was gradually degraded but no stable fragment could be detected. HisP and HisQ were equally resistant under pre- and post-hydrolysis conditions in the presence of arginine-loaded solute-binding protein LAO and ATP/ADP. Some protection was also observed with LAO/arginine alone, thus reflecting binding to the transporter in the apo-state and transmembrane signaling. Comparable digestion patterns were obtained with the transporter reconstituted into proteoliposomes and nanodiscs. Fluorescence lifetime spectroscopy confirmed the change of HisQ(R218) to a more apolar microenvironment upon ATP binding and hydrolysis. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. Together, our data suggest similar conformational changes during the transport cycle as described for the maltose ABC transporter of Escherichia coli, despite distinct structural differences between both systems.
Collapse
Affiliation(s)
- Johanna Heuveling
- Institut für Biologie/Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
In silico model for P-glycoprotein substrate prediction: insights from molecular dynamics and in vitro studies. J Comput Aided Mol Des 2013; 27:347-63. [DOI: 10.1007/s10822-013-9650-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
|
16
|
George AM, Jones PM. An asymmetric post-hydrolysis state of the ABC transporter ATPase dimer. PLoS One 2013; 8:e59854. [PMID: 23573213 PMCID: PMC3616075 DOI: 10.1371/journal.pone.0059854] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/19/2013] [Indexed: 01/30/2023] Open
Abstract
ABC transporters are a superfamily of enzyme pumps that hydrolyse ATP in exchange for translocation of substrates across cellular membranes. Architecturally, ABC transporters are a dimer of transmembrane domains coupled to a dimer of nucleotide binding domains (NBDs): the NBD dimer contains two ATP-binding sites at the intersubunit interface. A current controversy is whether the protomers of the NBD dimer separate during ATP hydrolysis cycling, or remain in constant contact. In order to investigate the ABC ATPase catalytic mechanism, MD simulations using the recent structure of the ADP+Pi-bound MJ0796 isolated NBD dimer were performed. In three independent simulations of the ADP+Pi/apo state, comprising a total of >0.5 µs, significant opening of the apo (empty) active site was observed; occurring by way of intrasubunit rotations between the core and helical subdomains within both NBD monomers. In contrast, in three equivalent simulations of the ATP/apo state, the NBD dimer remained close to the crystal structure, and no opening of either active site occurred. The results thus showed allosteric coupling between the active sites, mediated by intrasubunit conformational changes. Opening of the apo site is exquisitely tuned to the nature of the ligand, and thus to the stage of the reaction cycle, in the opposite site. In addition to this, in also showing how one active site can open, sufficient to bind nucleotide, while the opposite site remains occluded and bound to the hydrolysis products ADP+Pi, the results are consistent with a Constant Contact Model. Conversely, they show how there may be no requirement for the NBD protomers to separate to complete the catalytic cycle.
Collapse
Affiliation(s)
- Anthony M George
- School of Medical & Molecular Biosciences, University of Technology Sydney, Broadway, New South Wales, Australia.
| | | |
Collapse
|
17
|
George AM, Jones PM. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 109:95-107. [PMID: 22765920 DOI: 10.1016/j.pbiomolbio.2012.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
Abstract
ABC transporters constitute one of the largest protein families across the kingdoms of archaea, eubacteria and eukarya. They couple ATP hydrolysis to vectorial translocation of diverse substrates across membranes. The ABC transporter architecture comprises two transmembrane domains and two cytosolic ATP-binding cassettes. During 2002-2012, nine prokaryotic ABC transporter structures and two eukaryotic structures have been solved to medium resolution. Despite a wealth of biochemical, biophysical, and structural data, fundamental questions remain regarding the coupling of ATP hydrolysis to unidirectional substrate translocation, and the mechanistic suite of steps involved. The mechanics of the ATP cassette dimer is defined most popularly by the 'Switch Model', which proposes that hydrolysis in each protomer is sequential, and that as the sites are freed of nucleotide, the protomers lose contact across a large solvent-filled gap of 20-30 Å; as captured in several X-ray solved structures. Our 'Constant Contact' model for the operational mechanics of ATP binding and hydrolysis in the ATP-binding cassettes is derived from the 'alternating sites' model, proposed in 1995, and which requires an intrinsic asymmetry in the ATP sites, but does not require the partner protomers to lose contact. Thus one of the most debated issues regarding the function of ABC transporters is whether the cooperative mechanics of ATP hydrolysis requires the ATP cassettes to separate or remain in constant contact and this dilemma is discussed at length in this review.
Collapse
Affiliation(s)
- Anthony M George
- School of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| | | |
Collapse
|
18
|
Molecular-dynamics simulations of the ATP/apo state of a multidrug ATP-binding cassette transporter provide a structural and mechanistic basis for the asymmetric occluded state. Biophys J 2011; 100:3025-34. [PMID: 21689537 DOI: 10.1016/j.bpj.2011.05.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 05/02/2011] [Accepted: 05/11/2011] [Indexed: 01/03/2023] Open
Abstract
ATP-binding cassette transporters use the energy of ATP hydrolysis to transport substrates across cellular membranes. They have two transmembrane domains and two cytosolic nucleotide-binding domains. Biochemical studies have characterized an occluded state of the transporter in which nucleotide is tenaciously bound in one active site, whereas the opposite active site is empty or binds nucleotide loosely. Here, we report molecular-dynamics simulations of the bacterial multidrug ATP-binding cassette transporter Sav1866. In two simulations of the ATP/apo state, the empty site opened substantially by way of rotation of the nucleotide-binding domain (NBD) core subdomain, whereas the ATP-bound site remained occluded and intact. We correlate our findings with elastic network and molecular-dynamics simulation analyses of the Sav1866 NBD monomer, and with existing experimental data, to argue that the observed transition is physiological, and that the final structure observed in the ATP/apo simulations corresponds to the tight/loose state of the NBD dimer characterized experimentally.
Collapse
|
19
|
Inter-domain communication mechanisms in an ABC importer: a molecular dynamics study of the MalFGK2E complex. PLoS Comput Biol 2011; 7:e1002128. [PMID: 21829343 PMCID: PMC3150292 DOI: 10.1371/journal.pcbi.1002128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/07/2011] [Indexed: 12/22/2022] Open
Abstract
ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”. ABC transporters are membrane proteins that couple ATP binding and hydrolysis with the active transport of substrates across membranes. These transporters form one of the largest families of membrane proteins and they can be found in all phyla of life. Moreover, some members of this family are involved in several genetic diseases (such as cystic fibrosis) and in multidrug resistance in bacteria, fungi and mammals. In this work, we use molecular dynamics simulations to study conformational changes due to ATP hydrolysis in an ABC transporter responsible for maltose uptake in E. coli. These conformational changes arising from one side of the protein (NBDs – Nucleotide Binding domains) where ATP binds, are propagated across the protein to more distant regions. Additionally, we can observe an NBD dimer interface dissociation event upon inorganic phosphate exit. These simulations together with other theoretical studies suggest that there is a general inter-domain communication mechanism common to importers and exporters.
Collapse
|
20
|
Oliveira AS, Baptista AM, Soares CM. Conformational changes induced by ATP-hydrolysis in an ABC transporter: a molecular dynamics study of the Sav1866 exporter. Proteins 2011; 79:1977-90. [PMID: 21488101 DOI: 10.1002/prot.23023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/30/2011] [Accepted: 02/15/2011] [Indexed: 12/20/2022]
Abstract
ATP-Binding Cassette (ABC) transporters are ubiquitous membrane proteins that use energy from ATP binding or/and hydrolysis to actively transport allocrites across membranes. In this study, we identify ATP-hydrolysis induced conformational changes in a complete ABC exporter (Sav1866) from Staphylococcus aureaus, using molecular dynamics (MD) simulations. By performing MD simulations on the ATP and ADP+IP bound states, we identify the conformational consequences of hydrolysis, showing that the major rearrangements are not restricted to the NBDs, but extend to the transmembrane domains (TMDs) external regions. For the first time, to our knowledge, we see, within the context of a complete transporter, NBD dimer opening in the ADP+IP state in contrast with all ATP-bound states. This opening results from the dissociation of the ABC signature motif from the nucleotide. In addition, in both states, we observe the opening of a gate entrance in the intracellular loop region leading to the exposure of the TMDs internal cavity to the cytoplasm. To see if this opening was large enough to allow allocrite transport, the adiabatic energy profile for doxorubicin passage was determined. For both states, this profile, although an approximation, is overall downhill from the cytoplasmatic to the extracellular side, and the local energy barriers along the TMDs are relatively small, evidencing the exporter nature of Sav1866. The major difference between states is an energy barrier located in the cytoplasmic gate region, which becomes reduced upon hydrolysis, suggesting that allocrite passage is facilitated, and evidencing a possible molecular mechanism for the active transport in these proteins.
Collapse
Affiliation(s)
- A Sofia Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
21
|
Becker JP, Van Bambeke F, Tulkens PM, Prévost M. Dynamics and structural changes induced by ATP binding in SAV1866, a bacterial ABC exporter. J Phys Chem B 2010; 114:15948-57. [PMID: 21069970 DOI: 10.1021/jp1038392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multidrug transporters of the ATP-binding cassette family export a wide variety of compounds across membranes in both prokaryotes and eukaryotes, using ATP hydrolysis as energy source. Several of these membrane proteins are of clinical importance. Although biochemical and structural studies have provided insights into the mechanism underlying substrate transport, many key questions subsist regarding the molecular and structural nature of this mechanism. In particular, the detailed conformational changes occurring during the catalytic cycle are still elusive. We explored the conformational changes occurring upon ATP/Mg(2+) binding using molecular dynamics simulations starting from the nucleotide-bound structure of SAV1866 embedded in an explicit lipid bilayer. The removal of nucleotide revealed a major rearrangement in the outer membrane leaflet portion of the transmembrane domain (TMD) resulting in the closure of the central cavity at the extracellular side. This closure is similar to that observed in the crystal nucleotide-free structures. The interface of the nucleotide-binding domain dimer (NDB) is significantly more hydrated in the nucleotide-free trajectory though it is not disrupted. This finding suggests that the TMD closure could occur as a first step preceding the dissociation of the dimer. The transmission pathway of the signal triggered by the removal of ATP/Mg(2+) mainly involves the conserved Q-loop and X-loop as well as TM6.
Collapse
Affiliation(s)
- Jean-Paul Becker
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
22
|
Dynamics of alpha-helical subdomain rotation in the intact maltose ATP-binding cassette transporter. Proc Natl Acad Sci U S A 2010; 107:20293-8. [PMID: 21059948 DOI: 10.1073/pnas.1006544107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are powered by a nucleotide-binding domain dimer that opens and closes during cycles of ATP hydrolysis. These domains consist of a RecA-like subdomain and an α-helical subdomain that is specific to the family. Many studies on isolated domains suggest that the helical subdomain rotates toward the RecA-like subdomain in response to ATP binding, moving the family signature motif into a favorable position to interact with the nucleotide across the dimer interface. Moreover, the transmembrane domains are docked into a cleft at the interface between these subdomains, suggesting a putative role of the rotation in interdomain communication. Electron paramagnetic resonance spectroscopy was used to study the dynamics of this rotation in the intact Escherichia coli maltose transporter MalFGK(2). This importer requires a periplasmic maltose-binding protein (MBP) that activates ATP hydrolysis by promoting the closure of the cassette dimer (MalK(2)). Whereas this rotation occurred during the transport cycle, it required not only trinucleotide, but also MBP, suggesting it is part of a global conformational change in the transporter. Interaction of AMP-PNP-Mg(2+) and a MBP that is locked in a closed conformation induced a transition from open MalK(2) to semiopen MalK(2) without significant subdomain rotation. Inward rotation of the helical subdomain and complete closure of MalK(2) therefore appear to be coupled to the reorientation of transmembrane helices and the opening of MBP, events that promote transfer of maltose into the transporter. After ATP hydrolysis, the helical subdomain rotates out as MalK(2) opens, resetting the transporter in an inward-facing conformation.
Collapse
|
23
|
Kurkcuoglu O, Bates PA. Mechanism of cohesin loading onto chromosomes: a conformational dynamics study. Biophys J 2010; 99:1212-20. [PMID: 20713005 PMCID: PMC2920725 DOI: 10.1016/j.bpj.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/28/2010] [Accepted: 06/03/2010] [Indexed: 01/24/2023] Open
Abstract
The structure-function relationship of cohesin, an essential chromosome maintenance protein, is investigated by analyzing its collective dynamics and conformational flexibility, enhancing our understanding of the sister chromatid cohesion process. A three-dimensional model of cohesin has been constructed by homology modeling using both crystallographic and electron microscopy image data. The harmonic dynamics of the cohesin structure are calculated with a coarse-grained elastic network model. The model shows that the bending motion of the cohesin ring is able to adopt a head-to-tail conformation, in agreement with experimental data. Low-frequency conformational changes are observed to deform the highly conserved glycine residues at the interface of the cohesin heterodimer. Normal mode analysis further reveals that, near large globular structures such as nucleosome and accessory proteins docked to cohesin, the mobility of the coiled-coil regions is notably affected. Moreover, fully solvated molecular dynamics calculations, performed specifically on the hinge region, indicate that hinge opening starts from one side of the dimerization interface, and is coordinated by highly conserved glycine residues.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Biomolecular Modeling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Paul A. Bates
- Biomolecular Modeling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| |
Collapse
|
24
|
Oliveira ASF, Baptista AM, Soares CM. Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 2010; 114:5486-96. [PMID: 20369870 DOI: 10.1021/jp905735y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the rapid advances in the study of ABC transporters, many fundamental questions linked to ATP binding/hydrolysis and its relation to the transport cycle remain unanswered. In particular, it is still neither clear nor consensual how the ATP energy is used by the nucleotide binding domains (NBDs) to produce mechanical work and drive the substrate translocation. The major conformational changes in the NBDs following ATP hydrolysis during the transport cycle and the role played by the conserved family motifs in harnessing the energy associated with nucleotide hydrolysis are yet unknown. Additionally, the way energy is transmitted from the catalytic to the membrane domains, in order to drive substrate translocation, is also a fundamental question that remains unanswered. Due to the high structure similarities of the NBD architecture throughout the whole ABC family, it is likely that the mechanism of ATP binding, hydrolysis, and communication with the transmembrane domains is similar in all family members, independently of the nature of the transported substrate. In this work, we focused our attention on the consequences of ATP hydrolysis in the NBDs, especially on the structural changes that occur during this process. For that, we use molecular dynamics simulation techniques taking as a starting point the X-ray structure of the MJ0796 dimer from Methanococcus jannaschii. Several potential intermediate states of the ATP hydrolytic cycle are investigated, each consisting of different combinations of nucleotide-bound forms. The results obtained allowed us to identify the conformational rearrangements induced by hydrolysis on the catalytic subunits, as well as the residues involved in this reorganization. The major changes are localized at specific regions of the protein, namely, involving segments 11-19 and 93-124. Additionally, our results together with the knowledge of complete ABC transporter X-ray structures suggest a possible NBD:TMD signal transmission interface.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
25
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 967] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
26
|
Ecker GF, Stockner T, Chiba P. Computational models for prediction of interactions with ABC-transporters. Drug Discov Today 2008; 13:311-7. [PMID: 18405843 DOI: 10.1016/j.drudis.2007.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 12/10/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023]
Abstract
The polyspecific ligand recognition pattern of ATB-binding cassette (ABC)-transporters, combined with the limited knowledge on the molecular basis of their multispecificity, makes it difficult to apply traditional molecular modelling and quantitative structure-activity relationships (QSAR) methods for identification of new ligands. Recent advances relied mainly on pharmacophore modelling and machine learning methods. Structure-based design studies suffer from the lack of available protein structures at atomic resolution. The recently published protein homology models of P-glycoprotein structure, based on the high-resolution structure of the bacterial ABC-transporter of Sav1866, may open a new chapter for structure-based studies. Last, but not least, molecular dynamics simulations have already proved their high potential for structure-function modelling of ABC-transporter. Because of the recognition of several ABC-transporters as antitargets, algorithms for predicting substrate properties are of increasing interest.
Collapse
Affiliation(s)
- Gerhard F Ecker
- Emerging Field Pharmacoinformatics, Department of Medicinal Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | | | | |
Collapse
|
27
|
Lawson J, O'Mara ML, Kerr ID. Structure-based interpretation of the mutagenesis database for the nucleotide binding domains of P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:376-91. [PMID: 18035039 DOI: 10.1016/j.bbamem.2007.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/12/2007] [Accepted: 10/25/2007] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.
Collapse
Affiliation(s)
- J Lawson
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
28
|
Jones PM, George AM. Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer. J Biol Chem 2007; 282:22793-803. [PMID: 17485460 DOI: 10.1074/jbc.m700809200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ATP-binding cassette transporters perform energy-dependent transmembrane solute trafficking in all organisms. These proteins often mediate cellular resistance to therapeutic drugs and are involved in a range of human genetic diseases. Enzymological studies have implicated a helical subdomain within the ATP-binding cassette nucleotide-binding domain in coupling ATP hydrolysis to solute transport in the transmembrane domains. Consistent with this, structural and computational analyses have indicated that the helical subdomain undergoes nucleotide-dependent movement relative to the core of the nucleotide-binding domain fold. Here we use theoretical methods to examine the allosteric nucleotide dependence of helical subdomain transitions to further elucidate its role in interactions between the transmembrane and nucleotide-binding domains. Unrestrained 30-ns molecular dynamics simulations of the ATP-bound, ADP-bound, and apo states of the MJ0796 monomer support the idea that interaction of a conserved glutamine residue with the catalytic metal mediates the rotation of the helical subdomain in response to nucleotide binding and hydrolysis. Simulations of the nucleotide-binding domain dimer revealed that ATP hydrolysis induces a large transition of one helical subdomain, resulting in an asymmetric conformation of the dimer not observed previously. A coarse-grained elastic network analysis supports this finding, revealing the existence of corresponding dynamic modes intrinsic to the contact topology of the protein. The implications of these findings for the coupling of ATP hydrolysis to conformational changes in the transmembrane domains required for solute transport are discussed in light of recent whole transporter structures.
Collapse
Affiliation(s)
- Peter M Jones
- Department of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, P. O. Box 123, Broadway, New South Wales 2007, Australia
| | | |
Collapse
|
29
|
Siarheyeva A, Lopez JJ, Lehner I, Hellmich UA, van Veen HW, Glaubitz C. Probing the Molecular Dynamics of the ABC Multidrug Transporter LmrA by Deuterium Solid-State Nuclear Magnetic Resonance†. Biochemistry 2007; 46:3075-83. [PMID: 17302438 DOI: 10.1021/bi062109a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular dynamics of the 64 kDa ABC multidrug efflux pump LmrA from Lactococcus lactis within lipid membranes has been investigated by deuterium solid-state NMR. Deuteriomethyl-labeled alanine has been used to probe global protein backbone dynamics. A comparison of static deuterium NMR spectra of full-length LmrA in the resting state and its isolated transmembrane domain revealed a high mobility for the nucleotide binding domains. Their motional freedom is restricted upon ATP binding as seen for LmrA in complex with AMP-PNP, a nonhydrolyzable ATP analogue. LmrA returns to full motional flexibility in the posthydrolysis, vanadate-trapped state. These experiments provide insight into the molecular dynamics of a full-length ABC transporter during the catalytic cycle. Data are discussed in the context of known biochemical data and structural models of ABC transporters.
Collapse
Affiliation(s)
- Alena Siarheyeva
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, J. W. Goethe Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Ivetac A, Campbell JD, Sansom MSP. Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochemistry 2007; 46:2767-78. [PMID: 17302441 DOI: 10.1021/bi0622571] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABC transporters are integral membrane proteins which couple the energy of ATP hydrolysis to the translocation of solutes across cell membranes. BtuCD is a approximately 1100-residue protein found in the inner membrane of Gram-negative bacteria which transports vitamin B12. Vitamin B12 is bound in the periplasm by BtuF, which delivers the solute to the periplasmic entrance of the transporter protein complex BtuCD. Molecular dynamics simulations of the BtuCD and BtuCDF complexes (in a lipid bilayer) and of the isolated BtuD and BtuF proteins (in water) have been used to explore the conformational dynamics of this complex transport system. Overall, seven simulations have been performed, with and without bound ATP, corresponding to a total simulation time of 0.1 micros. Binding of ATP drives closure of the nucleotide-binding domains (NBDs) in BtuD in a symmetrical fashion, but not in BtuCD. It seems that ATP constrains the flexibility of the NBDs in BtuCD such that their closure may only occur upon binding of BtuF to the complex. Upon introduction of BtuF, and concomitant with NBD association, one ATP-binding site displays a closure, while the opposite site remains relatively unchanged. This asymmetry may reflect an initial step in the "alternating hydrolysis" mechanism and is consistent with measurements of nucleotide-binding stoichiometries. Principal components analysis of the simulation of BtuCD reveals motions that are comparable to those suggested in current transport models.
Collapse
Affiliation(s)
- Anthony Ivetac
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | |
Collapse
|
31
|
Sonne J, Kandt C, Peters GH, Hansen FY, Jensen MØ, Tieleman DP. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD. Biophys J 2007; 92:2727-34. [PMID: 17208973 PMCID: PMC1831707 DOI: 10.1529/biophysj.106.097972] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.
Collapse
Affiliation(s)
- Jacob Sonne
- Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Oloo EO, Kandt C, O'Mara ML, Tieleman DP. Computer simulations of ABC transporter componentsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:900-11. [PMID: 17215877 DOI: 10.1139/o06-182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current computer simulation techniques provide robust tools for studying the detailed structure and functional dynamics of proteins, as well as their interaction with each other and with other biomolecules. In this minireview, we provide an illustration of recent progress and future challenges in computer modeling by discussing computational studies of ATP-binding cassette (ABC) transporters. ABC transporters have multiple components that work in a well coordinated fashion to enable active transport across membranes. The mechanism by which members of this superfamily execute transport remains largely unknown. Molecular dynamics simulations initiated from high-resolution crystal structures of several ABC transporters have proven to be useful in the investigation of the nature of conformational coupling events that may drive transport. In addition, fruitful efforts have been made to predict unknown structures of medically relevant ABC transporters, such as P-glycoprotein, using homology-based computational methods. The various techniques described here are also applicable to gaining an atomically detailed understanding of the functional mechanisms of proteins in general.
Collapse
Affiliation(s)
- Eliud O Oloo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
33
|
Dalmas O, Orelle C, Foucher AE, Geourjon C, Crouzy S, Di Pietro A, Jault JM. The Q-loop Disengages from the First Intracellular Loop during the Catalytic Cycle of the Multidrug ABC Transporter BmrA. J Biol Chem 2005; 280:36857-64. [PMID: 16107340 DOI: 10.1074/jbc.m503266200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette is the most abundant family of transporters including many medically relevant members and gathers both importers and exporters involved in the transport of a wide variety of substrates. Although three high resolution three-dimensional structures have been obtained for a prototypic exporter, MsbA, two have been subjected to much criticism. Here, conformational changes of BmrA, a multidrug bacterial transporter structurally related to MsbA, have been studied. A three-dimensional model of BmrA, based on the "open" conformation of Escherichia coli MsbA, was probed by simultaneously introducing two cysteine residues, one in the first intracellular loop of the transmembrane domain and the other in the Q-loop of the nucleotide-binding domain (NBD). Intramolecular disulfide bonds could be created in the absence of any effectors, which prevented both drug transport and ATPase activity. Interestingly, addition of ATP/Mg plus vanadate strongly prevented this bond formation in a cysteine double mutant, whereas ATP/Mg alone was sufficient when the ATPase-inactive E504Q mutation was also introduced, in agreement with additional BmrA models where the ATP-binding sites are positioned at the NBD/NBD interface. Furthermore, cross-linking between the two cysteine residues could still be achieved in the presence of ATP/Mg plus vanadate when homobifunctional cross-linkers separated by more than 13 Angstrom were added. Altogether, these results give support to the existence, in the resting state, of a monomeric conformation of BmrA similar to that found within the open MsbA dimer and show that a large motion is required between intracellular loop 1 and the nucleotide-binding domain for the proper functioning of a multidrug ATP-binding cassette transporter.
Collapse
Affiliation(s)
- Olivier Dalmas
- Institut de Biologie et Chimie des Protéines, Unité Mixte de Recherche 5086 CNRS-UCBL1 and IFR 128, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Campbell JD, Sansom MSP. Nucleotide binding to the homodimeric MJ0796 protein: a computational study of a prokaryotic ABC transporter NBD dimer. FEBS Lett 2005; 579:4193-9. [PMID: 16038903 DOI: 10.1016/j.febslet.2005.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 05/23/2005] [Accepted: 06/15/2005] [Indexed: 12/19/2022]
Abstract
Transport by ABC proteins requires a cycle of ATP-driven conformational changes of the nucleotide binding domains (NBDs). We compare three molecular dynamics simulations of dimeric MJ0796: with ATP was present at both NBDs; with ATP at one NBD but ADP at the other; and without any bound ATP. In the simulation with ATP present at both NBDs, the dimeric protein interacts with the nucleotides in a symmetrical manner. However, if ADP is present at one binding site then both NBD-NBD and protein-ATP interactions are enhanced at the opposite site.
Collapse
Affiliation(s)
- Jeff D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
35
|
Gupta S, Chakraborti PK, Sarkar D. Nucleotide-induced conformational change in the catalytic subunit of the phosphate-specific transporter from M. tuberculosis: implications for the ATPase structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:112-21. [PMID: 15936994 DOI: 10.1016/j.bbapap.2005.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/18/2005] [Accepted: 02/08/2005] [Indexed: 01/30/2023]
Abstract
The nucleotide binding subunit of the phosphate-specific transporter (PstB) from Mycobacterium tuberculosis is a member of the ABC family of permeases, which provides energy for transport through ATP hydrolysis. We utilized the intrinsic fluorescence of the single tryptophan containing protein to study the structural and conformational changes that occur upon nucleotide binding. ATP binding appeared to lead to a conformation in which the tryptophan residue had a higher degree of solvent exposure and fluorescence quenching. Substantial alteration in the proteolysis profile of PstB owing to nucleotide binding was used to decipher conformational change in the protein. In limited proteolysis experiments, we found that ATP or its nonhydrolyzable analog provided significant protection of the native protein, indicating that the effect of nucleotide on PstB conformation is directly associated with nucleotide binding. Taken together, these results indicate that nucleotide binding to PstB is accompanied by a global conformational change of the protein, which involves the helical domain from Arg137 to Trp150. Results reported here provide evidence that the putative movement of the alpha-helical sub-domain relative to the core sub-domain, until now only inferred from X-ray structures and modeling, is indeed a physiological phenomenon and is nucleotide dependent.
Collapse
Affiliation(s)
- Sankalp Gupta
- Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | | | | |
Collapse
|