1
|
Kurakin S, Ivankov O, Dushanov E, Murugova T, Ermakova E, Efimov S, Mukhametzyanov T, Smerdova S, Klochkov V, Kuklin A, Kučerka N. Calcium ions do not influence the Aβ(25-35) triggered morphological changes of lipid membranes. Biophys Chem 2024; 313:107292. [PMID: 39018778 DOI: 10.1016/j.bpc.2024.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
We have studied the effect of calcium ions (Ca2+) at various concentrations on the structure of lipid vesicles in the presence of amyloid-beta peptide Aβ(25-35). In particular, we have investigated the influence of calcium ions on the formation of recently documented bicelle-like structures (BLSs) emerged as a result of Aβ(25-35) triggered membrane disintegration. First, we have shown by using small-angle X-ray and neutron scattering that peptide molecules rigidify the lipid bilayer of gel phase DPPC unilamellar vesicles (ULVs), while addition of the calcium ions to the system hinders this effect of Aβ(25-35). Secondly, the Aβ(25-35) demonstrates a critical peptide concentration at which the BLSs reorganize from ULVs due to heating and cooling the samples through the lipid main phase transition temperature (Tm). However, addition of calcium ions does not affect noticeably the Aβ-induced formation of BLSs and their structural parameters, though the changes in peptide's secondary structure, e.g. the increased α-helix fraction, has been registered by circular dichroism spectroscopy. Finally, according to 31P nuclear magnetic resonance (NMR) measurements, calcium ions do not affect the lipid-peptide arrangement in BLSs and their ability to align in the magnetic field of NMR spectrometer. The influences of various concentrations of calcium ions on the lipid-peptide interactions may prove biologically important because their local concentrations vary widely in in-vivo conditions. In the present work, calcium ions were investigated as a possible tool aimed at regulating the lipid-peptide interactions that demonstrated the disruptive effect of Aβ(25-35) on lipid membranes.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Biophysics, Dubna State University, Universitetskaya 19, Dubna, Moscow Region 141982, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Elena Ermakova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Svetlana Smerdova
- Kazan National Research Technological University, Karl Marx 68, Kazan 420015, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Alexander Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Moscow Institute of Physics and Technology, Instytutskiy Pereulok 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
2
|
Kurakin S, Badreeva D, Dushanov E, Shutikov A, Efimov S, Timerova A, Mukhametzyanov T, Murugova T, Ivankov O, Mamatkulov K, Arzumanyan G, Klochkov V, Kučerka N. Arrangement of lipid vesicles and bicelle-like structures formed in the presence of Aβ(25-35) peptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184237. [PMID: 37820938 DOI: 10.1016/j.bbamem.2023.184237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (Tm) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state 31P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the Tm. Secondly, thanks to the BLS alignment we present their lipid structure. Lipids are found located not only in the flat bilayered part but also around its perimeter, which is corroborated by the results of coarse-grained (CG) MD simulations. Finally, peptides appear to mix randomly with lipids in SUVs while assuming predominantly unordered secondary structures revealed by circular dichroism (CD), Raman spectroscopy, and all-atom MD simulations. Importantly, the former is changing little when the system undergoes morphological transitions between BLSs and SUVs. Our structural results then offer a platform for studying and understanding mechanisms of morphological transformations caused by the disruptive effect of amyloid-beta peptides on the lipid bilayer.
Collapse
Affiliation(s)
- Sergei Kurakin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia.
| | - Dina Badreeva
- Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Ermuhammad Dushanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Artyom Shutikov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Sergey Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Ayzira Timerova
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Timur Mukhametzyanov
- Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Kahramon Mamatkulov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Grigory Arzumanyan
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia
| | - Vladimir Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow Region 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, Bratislava 832 32, Slovakia.
| |
Collapse
|
3
|
Amengual J, Notaro-Roberts L, Nieh MP. Morphological control and modern applications of bicelles. Biophys Chem 2023; 302:107094. [PMID: 37659154 DOI: 10.1016/j.bpc.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Bicellar systems have become popularized as their rich morphology can be applied in biochemistry, physical chemistry, and drug delivery technology. To the biochemical field, bicelles are powerful model membranes for the study of transmembrane protein behavior, membrane transport, and environmental interactions with the cell. Their morphological responses to environmental changes reveal a profound fundamental understanding of physical chemistry related to the principle of self-assembly. Recently, they have also drawn significant attention as theranostic nanocarriers in biopharmaceutical and diagnostic research due to their superior cellular uptake compared to liposomes. It is evident that applications are becoming broader, demanding to understand how the bicelle will form and behave in various environments. To consolidate current works on the bicelle's modern applications, this review will discuss various effects of composition and environmental conditions on the morphology, phase behavior, and stability. Furthermore, various applications such as payload entrapment and polymerization templating are presented to demonstrate their versatility and chemical nature.
Collapse
Affiliation(s)
- Justin Amengual
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States
| | - Luke Notaro-Roberts
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
4
|
Necelis M, McDermott C, Belcher Dufrisne M, Baryiames C, Columbus L. Solution NMR investigations of integral membrane proteins: Challenges and innovations. Curr Opin Struct Biol 2023; 82:102654. [PMID: 37542910 PMCID: PMC10529709 DOI: 10.1016/j.sbi.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 08/07/2023]
Abstract
Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.
Collapse
Affiliation(s)
- Matthew Necelis
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Connor McDermott
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | | | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Situ AJ, Ulmer TS. Comparison of Integrin αIIbβ3 Transmembrane Association in Vesicles and Bicelles. Biochemistry 2023. [PMID: 37279176 DOI: 10.1021/acs.biochem.3c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane proteins are commonly reconstituted in membrane mimics exhibiting discontinuous lipid bilayers. In contrast, the continuous membranes of cells are conceptually best represented by large unilamellar vesicles (LUVs). Here, we compared the thermodynamic stability of the integrin αIIbβ3 transmembrane (TM) complex between vesicles and bicelles to assess the consequence of this simplification. In LUVs, we further evaluated the strength of the αIIb(G972S)-β3(V700T) interaction that corresponds to the hydrogen bond interaction postulated for β2 integrins. An upper limit of 0.9 kcal/mol was estimated for superior TM complex stabilization in LUVs relative to bicelles. Compared to the αIIbβ3 TM complex stability in LUVs of 5.6 ± 0.2 kcal/mol, this limit is modest, indicating that bicelles performed well relative to LUVs. The implementation of β3(V700T) alleviated αIIb(G972S) destabilization by 0.4 ± 0.2 kcal/mol in confirmation of relatively weak hydrogen bonding. Interestingly, the hydrogen bond adjusts the TM complex stability to a level that is not achievable by merely varying the residue corresponding to αIIb(Gly972).
Collapse
Affiliation(s)
- Alan J Situ
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Tobias S Ulmer
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
6
|
Motov VV, Kot EF, Shabalkina AV, Goncharuk SA, Arseniev AS, Goncharuk MV, Mineev KS. Investigation of lipid/protein interactions in trifluoroethanol-water mixtures proposes the strategy for the refolding of helical transmembrane domains. JOURNAL OF BIOMOLECULAR NMR 2023; 77:15-24. [PMID: 36451032 DOI: 10.1007/s10858-022-00408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
Membrane proteins are one of the keystone objects in molecular biology, but their structural studies often require an extensive search for an appropriate membrane-like environment and an efficient refolding protocol for a recombinant protein. Isotropic bicelles are a convenient membrane mimetic used in structural studies of membrane proteins. Helical membrane domains are often transferred into bicelles from trifluoroethanol-water mixtures. However, the protocols for such a refolding are empirical and the process itself is still not understood in detail. In search of the optimal refolding approaches for helical membrane proteins, we studied here how membrane proteins, lipids, and detergents interact with each other at various trifluoroethanol-water ratios. Using high-resolution NMR spectroscopy and dynamic light scattering, we determined the key states of the listed compounds in the trifluoroethanol/water mixture, found the factors that could be critical for the efficiency of refolding, and proposed several most optimal protocols. These protocols were developed on the transmembrane domain of neurotrophin receptor TrkA and tested on two model helical membrane domains-transmembrane of Toll-like receptor TLR9 and voltage-sensing domain of a potassium channel KvAP.
Collapse
Affiliation(s)
- Vladislav V Motov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Alexandra V Shabalkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
| | - Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Ulitsa Miklukho-Maklaya, 16/10, Moscow, Russian Federation, 117997
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
7
|
Roux M, Legrand FX, Bil A, Bonnet V, Djedaini-Pilard F. Fragmentation of DMPC Membranes by a Wedge-Shaped Amphiphilic Cyclodextrin into Bicellar-like Aggregates. J Phys Chem B 2023; 127:2475-2487. [PMID: 36913407 DOI: 10.1021/acs.jpcb.2c07331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Small bilayer lipid aggregates such as bicelles provide useful isotropic or anisotropic membrane mimetics for structural studies of biological membranes. We have shown previously by deuterium NMR that a wedge-shaped amphiphilic derivative of trimethyl βcyclodextrin anchored in deuterated DMPC-d27 bilayers through a lauryl acyl chain (TrimβMLC) is able to induce magnetic orientation and fragmentation of the multilamellar membranes. The fragmentation process fully detailed in the present paper is observed with 20% cyclodextrin derivative below 37 °C, where pure TrimβMLC self-assembles in water into large giant micellar structures. After deconvolution of a broad composite 2H NMR isotropic component, we propose a model where the DMPC membranes are progressively disrupted by TrimβMLC into small and large micellar aggregates depending whether they are extracted from the outer or inner layers of the liposomes. Below the fluid-to-gel transition of pure DMPC-d27 membranes (Tc = 21.5 °C), the micellar aggregates vanish progressively until complete extinction at 13 °C, with a probable release of pure TrimβMLC micelles leaving lipid bilayers in the gel phase doped with only a small amount of the cyclodextrin derivative. Bilayer fragmentation between Tc and 13 °C was also observed with 10% and 5% of TrimβMLC, with NMR spectra suggesting possible interactions of micellar aggregates with fluid-like lipids of the Pβ' ripple phase. No membrane orientation and fragmentation was detected with unsaturated POPC membranes, which are able to accommodate the insertion of TrimβMLC without important perturbation. The data are discussed in relation to the formation of possible DMPC bicellar aggregates such as those known to occur after insertion of dihexanoylphosphatidylcholine (DHPC). These bicelles are in particular associated with similar deuterium NMR spectra exhibiting identical composite isotropic components which were never characterized before.
Collapse
Affiliation(s)
- Michel Roux
- Université Paris-Saclay, Institute for Integrative Biology of the Cell, URA CNRS 9198, F-91191 Gif sur Yvette CEDEX, France
| | | | - Abed Bil
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, (CNRS UMR 7378), Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France
| | - Véronique Bonnet
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, (CNRS UMR 7378), Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France
| | - Florence Djedaini-Pilard
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, (CNRS UMR 7378), Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France
| |
Collapse
|
8
|
Salnikov E, Bechinger B. Effect of lipid saturation on the topology and oligomeric state of helical membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184001. [PMID: 35817122 DOI: 10.1016/j.bbamem.2022.184001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural liquid crystalline membranes are made up of many different lipids carrying a mixture of saturated and unsaturated fatty acyl chains. Whereas in the past considerable attention has been paid to cholesterol content, the phospholipid head groups and the membrane surface charge the detailed fatty acyl composition was often considered less important. However, recent investigations indicate that the detailed fatty acyl chain composition has pronounced effects on the oligomerization of the transmembrane helical anchoring domains of the MHC II receptor or the membrane alignment of the cationic antimicrobial peptide PGLa. In contrast the antimicrobial peptides magainin 2 and alamethicin are less susceptible to lipid saturation. Using histidine-rich LAH4 designer peptides the high energetic contributions of lipid saturation in stabilizing transmembrane helical alignments are quantitatively evaluated. These observations can have important implications for the biological regulation of membrane proteins and should be taken into considerations during biophysical or structural experiments.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
9
|
Anada C, Ikeda K, Egawa A, Fujiwara T, Nakao H, Nakano M. Temperature- and composition-dependent conformational transitions of amphipathic peptide-phospholipid nanodiscs. J Colloid Interface Sci 2021; 588:522-530. [PMID: 33429348 DOI: 10.1016/j.jcis.2020.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
Nanodiscs are discoidal particles in which a lipid bilayer is encircled by amphipathic molecules such as proteins, peptides, or synthetic polymers. The apolipoprotein-A-I-derived peptide 18A is known to form nanodiscs in the presence of phospholipids, but the detailed mechanism of the formation and deformation of these nanodiscs in response to changes in the surrounding environment is not well understood. Here, we investigated the temperature- and composition-dependent structural changes of 18A-phosphatidylcholine complexes using fluorescence spectroscopy, dynamic light scattering, circular dichroism, static 31P NMR, and electron microscopy. We found that the nanodiscs in fast isotropic rotational motion increased in size above the gel-to-liquid-crystalline phase transition temperature of the lipid bilayers, resulting in the formation of enlarged nanodiscs and a lamellar phase. The lamellar phase was found to be oriented along the magnetic field. Further increase in temperature induced the formation of lipid vesicles. These transformations were explained using a transition model based on the migration of the peptide from the rim of the nanodiscs to the liquid-crystalline bilayer phase. The study outcomes provide a basis for understanding the design principles of discoidal nanostructures for structural biology and nanomedicine applications.
Collapse
Affiliation(s)
- Chiharu Anada
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | - Ayako Egawa
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
10
|
Kim M, Son J, Kim Y. Structural and Mechanismic Studies of Lactophoricin Analog, Novel Antibacterial Peptide. Int J Mol Sci 2021; 22:ijms22073734. [PMID: 33918526 PMCID: PMC8038340 DOI: 10.3390/ijms22073734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
Naturally derived antibacterial peptides exhibit excellent pharmacological action without the risk of resistance, suggesting a potential role as biologicals. Lactophoricin-I (LPcin-I), found in the proteose peptone component-3 (PP3; lactophorin) of bovine milk, is known to exhibit antibiotic activity against Gram-positive and Gram-negative bacteria. Accordingly, we derived a new antibacterial peptide and investigated its structure–function relationship. This study was initiated by designing antibacterial peptide analogs with better antibacterial activity, less cytotoxicity, and shorter amino acid sequences based on LPcin-I. The structural properties of antibacterial peptide analogs were investigated via spectroscopic analysis, and the antibacterial activity was confirmed by measurement of the minimal inhibitory concentration (MIC). The structure and mechanism of the antibacterial peptide analog in the cell membrane were also studied via solution-state nuclear magnetic resonance (NMR) and solid-state NMR spectroscopy. Through 15N one-dimensional and two-dimensional NMR experiments and 31P NMR experiments, we suggest the 3D morphology and antibacterial mechanism in the phospholipid bilayer of the LPcin analog. This study is expected to establish a system for the development of novel antibacterial peptides and to establish a theoretical basis for research into antibiotic substitutes.
Collapse
Affiliation(s)
| | | | - Yongae Kim
- Correspondence: ; Tel.: +82-31-330-4604; Fax: +82-31-330-4566
| |
Collapse
|
11
|
Hirota S, Nagao S. New Aspects of Cytochromec: 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
12
|
Kamimoto-Kuroki J, Yamashita M, Tanaka K, Kadomatsu Y, Tsukamoto D, Aramaki K, Adachi K, Konno Y. Formulation of bicelles with cholesterol using a semi-spontaneous method. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Gravel AE, Arnold AA, Fillion M, Auger M, Warschawski DE, Marcotte I. Magnetically-orientable Tween-based model membranes for NMR studies of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183379. [DOI: 10.1016/j.bbamem.2020.183379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
|
14
|
Dufourc EJ. Bicelles and nanodiscs for biophysical chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183478. [PMID: 32971065 DOI: 10.1016/j.bbamem.2020.183478] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023]
Abstract
Membrane nanoobjects are very important tools to study biomembrane properties. Two types are described herein: Bicelles and Nanodiscs. Bicelles are obtained by thorough water mixing of long chain and short chain lipids and may take the form of membranous discs of 10-50 nm. Temperature-composition-hydration diagrams have been established for Phosphatidylcholines and show limited domains of existence. Bicelles can be doped with charged lipids, surfactants or with cholesterol and offer a wide variety of membranous platforms for structural biology. Internal dynamics as measured by solid-state NMR is very similar to that of liposomes in their fluid phase. Because of the magnetic susceptibility anisotropy of the lipid chains, discs may be aligned along or perpendicular to the magnetic field. They may serve as weak orienting media to provide distance information in determining the 3D structure of soluble proteins. In different conditions they show strong orienting properties which may be used to study the 3D structure, topology and dynamics of membrane proteins. Lipid Bicelles with biphenyl chains or doped with lanthanides show long lasting remnant orientation after removing the magnetic field due to smectic-like properties. An alternative to pure lipid Bicelles is provided by nanodiscs where the half torus composed by short chain lipids is replaced by proteins. This renders the nano-objects less fragile as they can be used to stabilize membrane protein assemblies to be studied by electron microscopy. Internal dynamics is again similar to liposomes except that the phase transition is abolished, possibly due to lateral constrain imposed by the toroidal proteins limiting the disc size. Advantages and drawbacks of both nanoplatforms are discussed.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institute of Chemistry and Biology of membranes and Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Allée Geoffroy Saint Hilaire, 33600 Pessac, France.
| |
Collapse
|
15
|
Evans LS, Hussain R, Siligardi G, Williamson PT. Magnetically aligned membrane mimetics enabling comparable chiroptical and magnetic resonance spectroscopy studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183343. [DOI: 10.1016/j.bbamem.2020.183343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
16
|
Jeong JH, Kim M, Kim Y. NMR structural studies and mechanism of action of Lactophoricin analogs as antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183469. [PMID: 32871115 DOI: 10.1016/j.bbamem.2020.183469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides (AMPs) are effective alternatives to conventional antibiotics. They protect the host from the constant invasion of a broad range of infectious microorganisms. AMPs have been at the forefront of the response to multidrug-resistant microbial strains and appear to be ideal drug candidates. Lactophoricin (LPcin), naturally produced from bovine milk, is a typical cationic antimicrobial peptide. Three analog peptides, including LPcin-YK5, LPcin-YK8, and LPcin-YK11, with enhanced antimicrobial activity compared to the wild-type LPcin, were designed and expressed in our laboratory. We investigated the structure and antimicrobial mechanisms of action of the three novel antimicrobial peptide analogs derived from LPcin using solution NMR and solid-state NMR spectroscopy in membrane environments. Our results revealed that the three LPcin analogs exhibited helical structures with different tilt angles on the phospholipid membrane surface. We proposed three-dimensional conformations and antibacterial mechanisms of action of the three peptide analogs in the phospholipid bilayers using two-dimensional solid-state separated local field NMR experiments.
Collapse
Affiliation(s)
- Ji-Ho Jeong
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In 17035, Republic of Korea
| | - Minseon Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In 17035, Republic of Korea
| | - Yongae Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In 17035, Republic of Korea.
| |
Collapse
|
17
|
Jeong JH, Kim M, Son J, Kim Y. 1H-31P home-built solid-state NMR probe with a scroll coil for 400-MHz NB magnet for biological lossy sample. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Chen Q, Guan G, Deng F, Yang D, Wu P, Kang S, Sun R, Wang X, Zhou D, Dai W, Wang X, Zhang H, He B, Chen D, Zhang Q. Anisotropic active ligandations in siRNA-Loaded hybrid nanodiscs lead to distinct carcinostatic outcomes by regulating nano-bio interactions. Biomaterials 2020; 251:120008. [PMID: 32388031 DOI: 10.1016/j.biomaterials.2020.120008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Active targeting modification is one of the foremost nanomedicine strategies for the efficacy improvement. Compared to the homogeneous ligandation on spherical nanocarriers, non-spherical nanomedicines usually make the ligand modification more complicated. The modified ligands always exhibit anisotropy and heterogeneity. However, there is very little systematic study on these diversified anisotropic modifications. The efficacy difference and underlying mechanism were still unclear. Here, we separately fabricated hybrid nanodiscs (NDs) conjugated with cRGD on the edge and plane surfaces to engineer two anisotropic targeting nanocarriers (E-cRGD-NDs and P-cRGD-NDs, respectively) for gene delivery. The ligand anisotropy endowed NDs with diversified cellular interactions, and caused different efficacies between E-cRGD-NDs and P-cRGD-NDs. Of note, E-cRGD-NDs showed significant superiority in siRNA loading, cellular uptake, silence efficiency, protein expression and even in vivo efficacy. The mechanism investigation revealed the functional anisotropy specifically for E-cRGD-NDs. The edge modification of cRGD efficiently separated the targeting and siRNA loading domains, maximizing their respective functions. These findings reflected the unique effect of ligand anisotropy, also provided a new strategy for the targeting screening of extensive nanomedicines.
Collapse
Affiliation(s)
- Qing Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Guannan Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Peiyao Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shuangming Kang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; HONSAN Health Indutry Group, ShenZhen, 518000, China
| | - Ruimeng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiaoyou Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Demin Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
19
|
Suga K, Kitagawa K, Taguchi S, Okamoto Y, Umakoshi H. Evaluation of Molecular Ordering in Bicelle Bilayer Membranes Based on Induced Circular Dichroism Spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3242-3250. [PMID: 32163713 DOI: 10.1021/acs.langmuir.9b03710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bicelles are submicrometer-sized disc-shaped molecular self-assemblies that can be obtained in aqueous solution by dispersing mixtures of certain amphiphiles. Although phospholipid bicelle and phospholipid vesicle assemblies adopt similar lipid bilayer structures, the differences in bilayer characteristics, especially physicochemical properties such as bilayer fluidity, are not clearly understood. Herein, we report the lipid ordering properties of bicelle bilayer membranes based on induced circular dichroism (ICD) and fluorescence polarization analyses using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Bicelles were prepared by using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), while pure DMPC vesicles and pure DHPC micelles were used as references. At temperatures below the phase transition temperature of DMPC, the bicelles showed lower membrane fluidities, whereas DHPC micelles showed higher membrane fluidity, suggesting no significant differences in bilayer fluidity between the bicelle and vesicle assemblies. The ICD signals of DPH were induced only when the membrane was in ordered (solid-ordered or ripple-gel) phases. In the bicelle systems, the ICD of DPH was more significant than that of the DMPC vesicle. The induced chirality of DPH was dependent on the chirality of the bilayer lipid. Compared to that of the DMPC/DHPC bicelle, the ICD of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/DHPC bicelle was higher, while that of the bovine sphingomyelin/DHPC bicelle was lower. Because the lipids are tightly packed in the ordered phase, the ICD intensity reflects the molecular ordering state of the lipids in the bicelle bilayer.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Kazuki Kitagawa
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Shogo Taguchi
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 6712280, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| |
Collapse
|
20
|
F Dudás E, Wacha A, Bóta A, Bodor A. Peptide-bicelle interaction: Following variations in size and morphology by a combined NMR-SAXS approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183095. [PMID: 31672542 DOI: 10.1016/j.bbamem.2019.183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Changes in membrane properties occurring upon protein interaction are key questions in understanding membrane protein function. To report on the occurring size and shape variation we present here a combined NMR-SAXS method performed under physiological conditions using the same samples, enabling determination of a global parameter, the hydration radius (rH) and estimating the bicelle shape. We use zwitterionic (DMPC/DHPC) and negatively charged (DMPC/DHPC/DMPG) bicelles and investigate the interaction with model transmembrane and surface active peptides (KALP23 and melittin). 1H NMR measurements based mostly on the translational diffusion coefficient D determination are used to characterize cmc values of DHPC micelles under the investigated conditions, to describe DHPC distribution with exact determination of the q (long chain/short chain) lipid ratio, to estimate aggregation numbers and effective rH values. The scattering curve is used to fit a lenticular core-shell model enabling us to describe the bicelle shape in terms of ellipsoidal axis length parameters. For all studied systems formation of oblate ellipsoids is found. Even though the rG/rH ratio would be an elegant way to characterize shape variations, we show that changes occurring upon peptide-bicelle interaction in the "effective" size and in the measure on the anisometry - morphology - of the objects can be described by using rH and the simplistic ellipsoidal core-shell model. While the influence of the transmembrane KALP peptide is significant, effects upon addition of surface active melittin peptide seem negligible. This synergy of techniques under controlled conditions can provide information about bicellar shape modulation occurring during peptide-bicelle interactions.
Collapse
Affiliation(s)
- E F Dudás
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - A Wacha
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bóta
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| |
Collapse
|
21
|
Roux M, Bonnet V, Djedaïni-Pilard F. Ordering of Saturated and Unsaturated Lipid Membranes near Their Phase Transitions Induced by an Amphiphilic Cyclodextrin and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14376-14387. [PMID: 31564102 DOI: 10.1021/acs.langmuir.9b02082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
When inserted in membranes of dimyristoyl phosphatidylcholine (DMPC), methylated β-cyclodextrins with one (TrimβMLC) or two (TrimβDLC) lauryl acyl chains grafted onto the hydrophilic cavity exert a "cholesterol-like ordering effect", by straightening the acyl chains in the fluid phase at temperatures near the chain melting transition. This effect may be related to pretransitional events such as the "anomalous swelling" known to occur with saturated phosphatidylcholine membranes. To investigate this model, order profiles and bilayer thicknesses of DMPC and unsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) membranes containing amphiphilic cyclodextrins or cholesterol were determined by deuterium NMR. The pure lipid membranes display both a qualitatively similar chain ordering upon cooling in the fluid phase, more important at the chain extremity, which gets more pronounced near their fluid-to-gel transitions. Both membranes show a bilayer thickness increase by ∼0.5 Å just above their transition, as observed previously with saturated phosphatidylcholines of various chain lengths. Membrane-insertion of 5% TrimβMLC or cholesterol induces an important ordering of the DMPC acyl chains just above the transition, which is also more pronounced at the chain extremity. There is an additional increase of the bilayer thickness, most probably due to a deep insertion of these amphiphilic molecules, facilitated by increased bilayer softness in the anomalous swelling regime. These effects are more important with TrimβMLC than with cholesterol. By contrast, no enhanced acyl chain ordering was observed when approaching the transition of TrimβMLC-containing POPC membranes, as a possible consequence of an eventual lack of anomalous swelling in unsaturated lipid membranes. Insertion of higher concentrations of TrimβMLC was found to induce a magnetic orientation of the DMPC membranes in the fluid phase with 10% of this derivative, coupled with the appearance of a broad isotropic component when the concentration is raised to 20%. No membrane orientation or isotropic component was detected with TrimβMLC-containing POPC membranes.
Collapse
Affiliation(s)
- Michel Roux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Université Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex , France
| | - Véronique Bonnet
- LG2A, UMR7378 , Université de Picardie Jules Verne , F-80039 Amiens , France
| | | |
Collapse
|
22
|
Yang CH, Lin TL, Jeng US. Small-Angle X-ray Scattering Studies on the Structure of Disc-Shaped Bicelles Incorporated with Neutral PEGylated Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9483-9492. [PMID: 31287319 DOI: 10.1021/acs.langmuir.9b00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, small-angle X-ray scattering (SAXS) is successfully employed to investigate the structure of the DPPC/diC7PC disc-shaped bicelles incorporated with different amounts of C16-PEG2000-Ceramide lipids. The incorporation of the C16-PEG2000-Ceramide lipids could provide an antifouling capability to the bicelle for biomedical applications. However, traditionally it is believed that most of the incorporated PEGlylated lipids should lie in the rim of the disc-shaped bicelle. In this study, high sensitivity SAXS reveals the distribution of the added C16-PEG2000-Ceramide lipids in both the planar region and in the rim of the bicelle. The PEG brushes of C16-PEG2000-Ceramide lipids form a second shell outside the lipid headgroup shell of the bicelle. A double shell disc bicelle model is used in analyzing the SAXS data. The lipid density of C16-PEG2000-Ceramide in the rim is found to be about 1.7 times the C16-PEG2000-Ceramide lipid density in the planar region for all three C16-PEG2000-Ceramide concentrations, 1, 2, and 3 mM. Moreover, the bicelle core radius can be predicted well using the actual molecular ratio of lipids in the planar region to the lipids in the rim of the bicelles in the model calculation.
Collapse
Affiliation(s)
- Ching-Hsun Yang
- Department of Engineering and System Science , National Tsing Hua University , 101, Section 2, Kuangfu Road , Hsinchu , Taiwan 30013 , Republic of China
| | - Tsang-Lang Lin
- Department of Engineering and System Science , National Tsing Hua University , 101, Section 2, Kuangfu Road , Hsinchu , Taiwan 30013 , Republic of China
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center , No. 101, Hsin-Ann Road, Hsinchu Science Park , Hsinchu , Taiwan 30076 , Republic of China
- Department of Chemical Engineering , National Tsing Hua University , 101, Section 2, Kuangfu Road , Hsinchu , Taiwan 30013 , Republic of China
| |
Collapse
|
23
|
Visualizing Biological Membrane Organization and Dynamics. J Mol Biol 2019; 431:1889-1919. [DOI: 10.1016/j.jmb.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
|
24
|
Systematic Characterization of DMPC/DHPC Self-Assemblies and Their Phase Behaviors in Aqueous Solution. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assemblies composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) form several kinds of structures, such as vesicle, micelle, and bicelle. Their morphological properties have been studied widely, but their interfacial membrane properties have not been adequately investigated. Herein, we report a systematic characterization of DMPC/DHPC assemblies at 20 °C. To investigate the phase behavior, optical density OD500, size (by dynamic light scattering), membrane fluidity 1/PDPH (using 1,6-diphenyl-1,3,5-hexatriene), and membrane polarity GP340 (using 6-dodecanoyl-N,N-dimethyl-2-naphthylamine) were measured as a function of molar ratio of DHPC (XDHPC). Based on structural properties (OD500 and size), large and small assemblies were categorized into Region (i) (XDHPC < 0.4) and Region (ii) (XDHPC ≥ 0.4), respectively. The DMPC/DHPC assemblies with 0.33 ≤ XDHPC ≤ 0.67 (Region (ii-1)) showed gel-phase-like interfacial membrane properties, whereas DHPC-rich assemblies (XDHPC ≥ 0.77) showed disordered membrane properties (Region (ii-2)). Considering the structural and interfacial membrane properties, the DMPC/DHPC assemblies in Regions (i), (ii-1), and (ii-2) can be determined to be vesicle, bicelle, and micelle, respectively.
Collapse
|
25
|
Mortensen HG, Jensen GV, Hansen SK, Vosegaard T, Pedersen JS. Structure of Phospholipid Mixed Micelles (Bicelles) Studied by Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14597-14607. [PMID: 30383384 DOI: 10.1021/acs.langmuir.8b02704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mixed phospholipid micelles (bicelles) are widely applied in nuclear magnetic resonance (NMR) studies of membrane proteins in solution, as they can solubilize these proteins and provide a membrane-like environment. In this work, the structure of bicelles of dihexanoyl phosphatidyl choline (DHPC) and dimyristoyl phosphatidyl choline (DMPC) at different ratios was determined by small-angle X-ray scattering (SAXS) at 37 °C. Samples with concentrations as applied for NMR measurements with 28 wt % lipids were diluted to avoid concentration effects in the SAXS data. The DMPC/DHPC ratio within the bicelles was kept constant by diluting with solutions of finite DHPC concentrations, where the concentration of free DHPC is the same as in the original solution. Absolute-scale modeling of the SAXS data using molecular and concentration constraints reveals a relatively complex set of morphologies of the lipid aggregates as a function of the molar ratio Q of DMPC to DHPC. At Q = 0 (pure DHPC lipids), oblate core-shell micelles are present. At Q = 0.5, the bicelles have a tablet-shaped core-shell cylindrical form with an ellipsoidal cross section. For Q = 1, 2, 3.2, and 4, the bicelles have a rectangular cuboidal structure with a core and a shell, for which the overall length and width increase with Q. At Q = ∞ (pure DMPC), there is coexistence between multilamellar structures and free bilayers. For Q = 1-4, the hydrocarbon core is relatively narrow and the headgroup thickness on the flat areas is larger than that of, respectively, pure DHPC and DMPC, suggesting some mixing of DHPC into these areas and staggering of the molecules. This is further supported by comparisons of the ratio of the areas of rim and flat parts and estimates of the composition of the flat areas.
Collapse
Affiliation(s)
- Henriette G Mortensen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Grethe V Jensen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Sara K Hansen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Thomas Vosegaard
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Gustav Wieds Vej 14 , 8000 Aarhus C , Denmark
| |
Collapse
|
26
|
Miranda C, Booth VK, Morrow MR. Effects of Amphipathic Polypeptides on Membrane Organization Inferred from Studies Using Bicellar Lipid Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11759-11771. [PMID: 30196696 DOI: 10.1021/acs.langmuir.8b02257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
SP-B63-78, a lung surfactant protein fragment, and magainin 2, an antimicrobial peptide, are amphipathic peptides with the same overall charge but different biological functions. Deuterium nuclear magnetic resonance has been used to compare the interactions of these peptides with dispersions of 1,2-dimyristoyl- sn-glycero-3-phophocholine (DMPC)/1,2-dihexanoyl- sn-glycero-3-phophocholine (DHPC) (4:1) and DMPC/1,2-dimyristoyl- sn-glycero-3-phopho-(1'-rac-glycerol) (DMPG)/DHPC (3:1:1), two mixtures of long-chain and short-chain lipids that display bicellar behavior. This study exploited the sensitivity of a bicellar system structural organization to factors that modify partitioning of their lipid components between different environments. In small bicelle particles formed at low temperatures, short-chain components preferentially occupy curved rim environments around bilayer disks of the long-chain components. Changes in chain order and lipid mixing, on heating, can drive transitions to more extended assemblies including a magnetically orientable phase at intermediate temperature. In this work, neither peptide had a substantial effect on the behavior of the zwitterionic DMPC/DHPC mixture. For bicellar mixtures containing the anionic lipid DMPG, the peptide SP-B63-78 lowered the temperature at which magnetically orientable particles coalesced into more extended lamellar structures. SP-B63-78 did not promote partitioning of the zwitterionic and anionic long-chain lipid components into different environments. Magainin 2, on the other hand, was found to promote separation of the anionic lipid, DMPG, and the zwitterionic lipid, DMPC, into different environments for temperatures above 34 °C. The contrast between the effects of these two peptides on the lipid mixtures studied appears to be consistent with their functional roles in biological systems.
Collapse
Affiliation(s)
- Chris Miranda
- Department of Physics and Physical Oceanography , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada A1B 3X7
| | - Valerie K Booth
- Department of Biochemistry , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada A1B 3X9
| | - Michael R Morrow
- Department of Physics and Physical Oceanography , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada A1B 3X7
| |
Collapse
|
27
|
Carvalho V, Pronk JW, Engel AH. Characterization of Membrane Proteins Using Cryo-Electron Microscopy. ACTA ACUST UNITED AC 2018; 94:e72. [PMID: 30199146 DOI: 10.1002/cpps.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The steep increase of atomic scale structures determined by 3D cryo-electron microscopy (EM) deposited in the EMDataBank documents progress of a methodology that was frustratingly slow ten years ago. While sample vitrification on grids has been successfully used in all EM laboratories for decades, beam damage remains a road block. Developments in instrumentation and software to exploit the information carried by elastically scattered electrons made the task to achieve atomic scale resolution easier. This together with the development of fast single electron detecting cameras has resulted in unprecedented possibilities for structure determination by 3D cryo-EM. With such technologies in place, the purification of membrane protein complexes in a functional state is key to collecting atomic scale structural information and insight into the chemistry of physiological processes. Therefore, we focus here on the preparation of membrane proteins for structural analyses by 3D cryo-EM and the data acquisition of such vitrified samples. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Vanessa Carvalho
- Department of Bionanoscience, Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Joachim W Pronk
- Department of Bionanoscience, Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Andreas H Engel
- Department of Bionanoscience, Applied Sciences, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
28
|
Dos Santos Morais R, Delalande O, Pérez J, Mias-Lucquin D, Lagarrigue M, Martel A, Molza AE, Chéron A, Raguénès-Nicol C, Chenuel T, Bondon A, Appavou MS, Le Rumeur E, Combet S, Hubert JF. Human Dystrophin Structural Changes upon Binding to Anionic Membrane Lipids. Biophys J 2018; 115:1231-1239. [PMID: 30197181 DOI: 10.1016/j.bpj.2018.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 11/19/2022] Open
Abstract
Scaffolding proteins play important roles in supporting the plasma membrane (sarcolemma) of muscle cells. Among them, dystrophin strengthens the sarcolemma through protein-lipid interactions, and its absence due to gene mutations leads to the severe Duchenne muscular dystrophy. Most of the dystrophin protein consists of a central domain made of 24 spectrin-like coiled-coil repeats (R). Using small angle neutron scattering (SANS) and the contrast variation technique, we specifically probed the structure of the three first consecutive repeats 1-3 (R1-3), a part of dystrophin known to physiologically interact with membrane lipids. R1-3 free in solution was compared to its structure adopted in the presence of phospholipid-based bicelles. SANS data for the protein/lipid complexes were obtained with contrast-matched bicelles under various phospholipid compositions to probe the role of electrostatic interactions. When bound to anionic bicelles, large modifications of the protein three-dimensional structure were detected, as revealed by a significant increase of the protein gyration radius from 42 ± 1 to 60 ± 4 Å. R1-3/anionic bicelle complexes were further analyzed by coarse-grained molecular dynamics simulations. From these studies, we report an all-atom model of R1-3 that highlights the opening of the R1 coiled-coil repeat when bound to the membrane lipids. This model is totally in agreement with SANS and click chemistry/mass spectrometry data. We conclude that the sarcolemma membrane anchoring that occurs during the contraction/elongation process of muscles could be ensured by this coiled-coil opening. Therefore, understanding these structural changes may help in the design of rationalized shortened dystrophins for gene therapy. Finally, our strategy opens up new possibilities for structure determination of peripheral and integral membrane proteins not compatible with different high-resolution structural methods.
Collapse
Affiliation(s)
- Raphael Dos Santos Morais
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France; Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, France; SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Olivier Delalande
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Javier Pérez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Dominique Mias-Lucquin
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Mélanie Lagarrigue
- Université de Rennes, Rennes, France; Inserm U1085, Protim-Plate-forme Protéomique, Rennes, France
| | | | - Anne-Elisabeth Molza
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Angélique Chéron
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Céline Raguénès-Nicol
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Thomas Chenuel
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Arnaud Bondon
- CNRS 6226, Institut des Sciences Chimiques de Rennes, PRISM, Rennes, France
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany
| | - Elisabeth Le Rumeur
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, France.
| | - Jean-François Hubert
- Université de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France.
| |
Collapse
|
29
|
Caldwell TA, Baoukina S, Brock AT, Oliver RC, Root KT, Krueger JK, Glover KJ, Tieleman DP, Columbus L. Low- q Bicelles Are Mixed Micelles. J Phys Chem Lett 2018; 9:4469-4473. [PMID: 30024762 PMCID: PMC6353637 DOI: 10.1021/acs.jpclett.8b02079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bicelles are used in many membrane protein studies because they are thought to be more bilayer-like than micelles. We investigated the properties of "isotropic" bicelles by small-angle neutron scattering, small-angle X-ray scattering, fluorescence anisotropy, and molecular dynamics. All data suggest that bicelles with a q value below 1 deviate from the classic bicelle that contains lipids in the core and detergent in the rim. Thus not all isotropic bicelles are bilayer-like.
Collapse
Affiliation(s)
- Tracy A. Caldwell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ashton T. Brock
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ryan C. Oliver
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kyle T. Root
- Department of Chemistry, Lock Haven University, Lock Haven, Pennsylvania 17745, United States
| | - Joanna K. Krueger
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
30
|
Kot EF, Arseniev AS, Mineev KS. Behavior of Most Widely Spread Lipids in Isotropic Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8302-8313. [PMID: 29924628 DOI: 10.1021/acs.langmuir.8b01454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isotropic bicelles are a widely used membrane mimetic for structural studies of membrane proteins and their transmembrane domains. Simple and cheap in preparation, they contain a patch of lipid bilayer that reproduces the native environment of membrane proteins. Despite the obvious power of bicelles in reproducing the various kinds of environments, the vast majority of structural studies employ the single lipid/detergent system. On the other hand, even if the alternative bicelle composition is used, the properties of mixtures are not characterized, and the mere presence of lipid bilayer and discoidal shape of bicelle particles is not confirmed. Here we present an extensive investigation of various bicellar mixtures and describe the behavior of bicelles with lipids other than classical DMPC, namely sphingomyelins (SM), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), phosphatidylserines (PS), and cholesterol. These lipids are rarely used in modern structural biology, but can help a lot in understanding the influence of the membrane composition on the properties of both integral and peripheral membrane proteins. Additionally, the ability of diheptanoylphosphatidylcholine (DH7PC) to serve as a rim-forming agent was investigated. We followed the phase transitions as revealed by 31P NMR and size of particles measured by 1H NMR diffusion as the criteria of the proper morphology and structure of bicelles. As an outcome, we state that SM exclusively, and PG/PS in mixtures with zwitterionic lipids can form small isotropic bicelles, which reproduce the key features of lipid behavior in bilayers. Mixtures, containing exclusively the anionic lipids, fail to reveal the lipid phase transition and do not follow the size predicted for the ideal bicelle particles. PE and DH7PC are the unwanted components of bicellar mixtures, and cholesterol can be added to bicelles, however, with certain precautions. In combination with our several most recent works, this study provides a practical guide for the preparation of small isotropic bicelles.
Collapse
Affiliation(s)
- E F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10 , Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , Dolgoprudnyi 141700 , Russian Federation
| |
Collapse
|
31
|
Kot EF, Goncharuk SA, Arseniev AS, Mineev KS. Phase Transitions in Small Isotropic Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3426-3437. [PMID: 29486112 DOI: 10.1021/acs.langmuir.7b03610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isotropic phospholipid bicelles are one of the most prospective membrane mimetics for the structural studies of membrane proteins in solution. Recent works provided an almost full set of data regarding the properties of isotropic bicelles; however, one major aspect of their behavior is still under consideration: the possible mixing between the lipid and detergent in the bilayer area. This problem may be resolved by studying the lipid phase transitions in bicelle particles. In the present work, we investigate two effects: phase transitions of bilayer lipids and temperature-induced growth of isotropic bicelles using the NMR spectroscopy. We propose an approach to study the phase transitions in isotropic bicelles based on the properties of 31P NMR spectra of bilayer-forming lipids. We show that phase transitions in small bicelles are "fractional", particles with the liquid-crystalline and gel bilayers coexist in solution at certain temperatures. We study the effects of lipid fatty chain type and demonstrate that the behavior of various lipids in bilayers is reproduced in the isotropic bicelles. We show that the temperature-induced growth of isotropic bicelles is not related directly to the phase transition but is the result of the reversible fusion of bicelle particles. In accordance with our data, rim detergents also have an impact on phase transitions: detergents that resist the temperature-induced growth provide the narrowest and most expressed transitions at higher temperatures. We demonstrate clearly that phase transitions take place even in the smallest bicelles that are applicable for structural studies of membrane proteins by solution NMR spectroscopy. This last finding, together with other data draws a thick line under the long-lasting argument about the relevance of small isotropic bicelles. We show with certainty that the small bicelles can reproduce the most fundamental property of lipid membranes: the ability to undergo phase transition.
Collapse
Affiliation(s)
- Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10 , Moscow 117997 , Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , 141700 Dolgoprudnyi , Russian Federation
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10 , Moscow 117997 , Russian Federation
- Lomonosov Moscow State University , Leninskiye Gory, 1 , Moscow 119991 , Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10 , Moscow 117997 , Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , 141700 Dolgoprudnyi , Russian Federation
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10 , Moscow 117997 , Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9 , 141700 Dolgoprudnyi , Russian Federation
| |
Collapse
|
32
|
Isabettini S, Massabni S, Hodzic A, Durovic D, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Phys Chem Chem Phys 2018; 19:20991-21002. [PMID: 28745755 DOI: 10.1039/c7cp03994h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide ion (Ln3+) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy3+ and parallel alignment of those containing Tm3+. Moreover, samples with chelated Yb3+ were more alignable than the Tm3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dos Santos Morais R, Delalande O, Pérez J, Mouret L, Bondon A, Martel A, Appavou MS, Le Rumeur E, Hubert JF, Combet S. Contrast-Matched Isotropic Bicelles: A Versatile Tool to Specifically Probe the Solution Structure of Peripheral Membrane Proteins Using SANS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6572-6580. [PMID: 28581294 DOI: 10.1021/acs.langmuir.7b01369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Obtaining structural information on integral or peripheral membrane proteins is currently arduous due to the difficulty of their solubilization, purification, and crystallization (for X-ray crystallography (XRC) application). To overcome this challenge, bicelles are known to be a versatile tool for high-resolution structure determination, especially when using solution and/or solid state nuclear magnetic resonance (NMR) and, to a lesser extent, XRC. For proteins not compatible with these high-resolution methods, small-angle X-ray and neutron scattering (SAXS and SANS, respectively) are powerful alternatives to obtain structural information directly in solution. In particular, the SANS-based approach is a unique technique to obtain low-resolution structures of proteins in interactions with partners by contrast-matching the signal coming from the latter. In the present study, isotropic bicelles are used as a membrane mimic model for SANS-based structural studies of bound peripheral membrane proteins. We emphasize that the SANS signal coming from the deuterated isotropic bicelles can be contrast-matched in 100% D2O-based buffer, allowing us to separately and specifically focus on the signal coming from the protein in interaction with membrane lipids. We applied this method to the DYS-R11-15 protein, a fragment of the central domain of human dystrophin known to interact with lipids, and we were able to recover the signal from the protein alone. This approach gives rise to new perspectives to determine the solution structure of peripheral membrane proteins interacting with lipid membranes and might be extended to integral membrane proteins.
Collapse
Affiliation(s)
- Raphael Dos Santos Morais
- Université de Rennes 1 , F-35043 Rennes, France
- CNRS UMR 6290, Institut de Génétique et Développement de Rennes , F-35043 Rennes, France
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay , Gif-sur-Yvette F-91191, France
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers , BP48, Saint-Aubin, Gif-sur-Yvette F-91192, France
| | - Olivier Delalande
- Université de Rennes 1 , F-35043 Rennes, France
- CNRS UMR 6290, Institut de Génétique et Développement de Rennes , F-35043 Rennes, France
| | - Javier Pérez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers , BP48, Saint-Aubin, Gif-sur-Yvette F-91192, France
| | - Liza Mouret
- CNRS 6226, Institut des Sciences Chimiques de Rennes, PRISM , F-350043 Rennes, France
| | - Arnaud Bondon
- CNRS 6226, Institut des Sciences Chimiques de Rennes, PRISM , F-350043 Rennes, France
| | - Anne Martel
- Institut Laue-Langevin , F-38042 Grenoble, France
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH , Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Elisabeth Le Rumeur
- Université de Rennes 1 , F-35043 Rennes, France
- CNRS UMR 6290, Institut de Génétique et Développement de Rennes , F-35043 Rennes, France
| | - Jean-François Hubert
- Université de Rennes 1 , F-35043 Rennes, France
- CNRS UMR 6290, Institut de Génétique et Développement de Rennes , F-35043 Rennes, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay , Gif-sur-Yvette F-91191, France
| |
Collapse
|
34
|
Isabettini S, Baumgartner ME, Reckey PQ, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Kuster S. Methods for Generating Highly Magnetically Responsive Lanthanide-Chelating Phospholipid Polymolecular Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6363-6371. [PMID: 28594186 DOI: 10.1021/acs.langmuir.7b00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and its lanthanide ion (Ln3+) chelating phospholipid conjugate, 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA), assemble into highly magnetically responsive polymolecular assemblies such as DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1) bicelles. Their geometry and magnetic alignability is enhanced by introducing cholesterol into the bilayer in DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5). However, the reported fabrication procedures remain tedious and limit the generation of highly magnetically alignable species. Herein, a simplified procedure where freeze thawing cycles and extrusion are replaced by gentle heating and cooling cycles for the hydration of the dry lipid film was developed. Heating above the phase transition temperature Tm of the lipids composing the bilayer before cooling back below the Tm was essential to guarantee successful formation of the polymolecular assemblies composed of DMPC/DMPE-DTPA/Ln3+ (molar ratio 4:1:1). Planar polymolecular assemblies in the size range of hundreds of nanometers are achieved and deliver unprecedented gains in magnetic response. The proposed heating and cooling procedure further allowed to regenerate the highly magnetically alignable DMPC/Cholesterol/DMPE-DTPA/Ln3+ (molar ratio 16:4:5:5) species after storage for one month frozen at -18 °C. The simplicity and viability of the proposed fabrication procedure offers a new set of highly magnetically responsive lanthanide ion chelating phospholipid polymolecular assemblies as building blocks for the smart soft materials of tomorrow.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Mirjam E Baumgartner
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Pernille Q Reckey
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | | | | | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Erich J Windhab
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
35
|
Kolahdouzan K, Jackman JA, Yoon BK, Kim MC, Johal MS, Cho NJ. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5052-5064. [PMID: 28457139 DOI: 10.1021/acs.langmuir.7b00210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are widely studied model membrane platforms that are compatible with various surface-sensitive measurement techniques. SLBs are typically formed on silica-based materials, and there are numerous possible fabrication routes involving either bottom-up molecular self-assembly or vesicle adsorption and rupture. In between these two classes of fabrication strategies lies an emerging approach based on depositing quasi-two-dimensional lamellar, bicellar disks composed of a mixture of long-chain and short-chain phospholipids to promote the formation of SLBs. This approach takes advantage of the thermodynamic preference of long-chain phospholipids to form planar SLBs, whereas short-chain phospholipids have brief residence times. Although a few studies have shown that SLBs can be formed on silica-based materials from bicellar mixtures, outstanding questions remain about the self-assembly mechanism as well as the influence of the total phospholipid concentration, ratio of the two phospholipids (termed the "q-ratio"), and process of sample preparation. Herein, we address these questions through comprehensive quartz crystal microbalance-dissipation, fluorescence microscopy, and fluorescence recovery after photobleaching experiments. Our findings identify that optimal SLB formation occurs at lower total concentrations of phospholipids than previously used as short-chain phospholipids behave like membrane-destabilizing detergents at higher concentrations. Using lower phospholipid concentrations, we also discovered that the formation of SLBs proceeds through a two-step mechanism involving a critical coverage of bicellar disks akin to vesicle fusion. In addition, the results indicate that at least one cycle of freeze-thaw-vortexing is useful during the sample preparation process to produce SLBs. Taken together, the findings in this work identify optimal routes for fabricating SLBs from bicellar mixtures and reveal mechanistic details about the bicelle-mediated SLB formation process, which will aid further exploration of bicellar mixtures as tools for model membrane fabrication.
Collapse
Affiliation(s)
- Kavoos Kolahdouzan
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Malkiat S Johal
- Department of Chemistry, Pomona College , 645 North College Avenue, Claremont, California 91711, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
36
|
Liebau J, Ye W, Mäler L. Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:395-404. [PMID: 26662467 DOI: 10.1002/mrc.4399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Small isotropic bicelles are versatile membrane mimetics, which, in contrast to micelles, provide a lipid bilayer and are at the same time suitable for solution-state NMR studies. The lipid composition of the bilayer is flexible allowing for incorporation of various head groups and acyl chain types. In bicelles, lipids are solubilized by detergents, which are localized in the rim of the disk-shaped lipid bilayer. Bicelles have been characterized by a broad array of biophysical methods, pulsed-field gradient NMR (PFG NMR) being one of them. PFG NMR can readily be used to measure diffusion coefficients of macromolecules. It is thus employed to characterize bicelle size and morphology. Even more importantly, PFG NMR can be used to study the degree of protein association to membranes. Here, we present the advances that have been made in producing small, fast-tumbling isotropic bicelles from a variety of lipids and detergents, together with insights on the morphology of such mixtures gained from PFG NMR. Furthermore, we review approaches to study protein-membrane interaction by PFG NMR. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jobst Liebau
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Weihua Ye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
37
|
Beaugrand M, Arnold AA, Bourgault S, Williamson PTF, Marcotte I. Comparative study of the structure and interaction of the pore helices of the hERG and Kv1.5 potassium channels in model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:549-559. [PMID: 28314880 DOI: 10.1007/s00249-017-1201-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 10/19/2022]
Abstract
The hERG channel is a voltage-gated potassium channel found in cardiomyocytes that contributes to the repolarization of the cell membrane following the cardiac action potential, an important step in the regulation of the cardiac cycle. The lipids surrounding K+ channels have been shown to play a key role in their regulation, with anionic lipids shown to alter gating properties. In this study, we investigate how anionic lipids interact with the pore helix of hERG and compare the results with those from Kv1.5, which possesses a pore helix more typical of K+ channels. Circular dichroism studies of the pore helix secondary structure reveal that the presence of the anionic lipid DMPS within the bilayer results in a slight unfolding of the pore helices from both hERG and Kv1.5, albeit to a lesser extent for Kv1.5. In the presence of anionic lipids, the two pore helices exhibit significantly different interactions with the lipid bilayer. We demonstrate that the pore helix from hERG causes significant perturbation to the order in lipid bicelles, which contrasts with only small changes observed for Kv1.5. These observations suggest that the atypical sequence of the pore helix of hERG may play a key role in determining how anionic lipids influence its gating.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada
| | - Philip T F Williamson
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, PO Box 8888, Montreal, H3C 3P8, Canada.
| |
Collapse
|
38
|
Beaugrand M, Arnold AA, Juneau A, Gambaro AB, Warschawski DE, Williamson PTF, Marcotte I. Magnetically Oriented Bicelles with Monoalkylphosphocholines: Versatile Membrane Mimetics for Nuclear Magnetic Resonance Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13244-13251. [PMID: 27951690 DOI: 10.1021/acs.langmuir.6b03099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bicelles (bilayered micelles) are model membranes used in the study of peptide structure and membrane interactions. They are traditionally made of long- and short-chain phospholipids, usually dimyristoylphosphatidylcholine (D14PC) and dihexanoyl-PC (D6PC). They are attractive membrane mimetics because their composition and planar surface are similar to the native membrane environment. In this work, to improve the solubilization of membrane proteins and allow their study in bicellar systems, D6PC was replaced by detergents from the monoalkylphosphocholine (MAPCHO) family, of which dodecylphosphocholine (12PC) is known for its ability to solubilize membrane proteins. More specifically 12PC, tetradecyl- (14PC), and hexadecyl-PC (16PC) have been employed. To verify the possibility of making bicelles with different hydrophobic thicknesses to better accommodate membrane proteins, D14PC was also replaced by phospholipids with different alkyl chain lengths: dilauroyl-PC (D12PC), dipalmitoyl-PC (D16PC), distearoyl-PC (D18PC), and diarachidoyl-PC (D20PC). Results obtained by 31P solid-state nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) at several lipid-to-detergent molar ratios (q) and temperatures indicate that these new MAPCHO bicelles can be formed under a variety of conditions. The quality of their alignment is similar to that of classical bicelles, and the low critical micelle concentration (CMC) of the surfactants and their miscibility with phospholipids are likely to be advantageous for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Alexandre A Arnold
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Antoine Juneau
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Aline Balieiro Gambaro
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| | - Dror E Warschawski
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Philip T F Williamson
- Centre for Biological Sciences/Institute of Life Sciences, Highfield Campus, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Isabelle Marcotte
- Département de Chimie, Université du Québec à Montréal , P.O. Box 8888, Downtown Station, Montreal H3C 3P8, Canada
| |
Collapse
|
39
|
Schmidt T, Situ AJ, Ulmer TS. Direct Evaluation of Protein-Lipid Contacts Reveals Protein Membrane Immersion and Isotropic Bicelle Structure. J Phys Chem Lett 2016; 7:4420-4426. [PMID: 27776216 PMCID: PMC11027914 DOI: 10.1021/acs.jpclett.6b02159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The solvation of membrane proteins by both lipids and water makes their membrane immersion difficult to predict and the choice of a membrane mimic challenging. To characterize protein-lipid contacts and bicelle membrane mimics, we examined protein-lipid cross-relaxation of integrin αIIb and β3(A711P) transmembrane helices in isotropic phospholipid bicelles (q = 0.5 and 0.7). Long-chain bicelle lipids dominated contacts with central helix segments, whereas both short- and long-chain lipids contacted the terminal turns of each helix in corroboration of the mixed bicelle model. The saturation transfer profiles from long-chain lipids directly established helix midpoints in the lipid bilayer. Lipid headgroups and water molecules engaged the side chains of buried serine and threonine in competition with intrahelical hydrogen bonding, illustrating that polar side chains seek the most favorable electrostatic contacts.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
- Present address: Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan J. Situ
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Tobias S. Ulmer
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
40
|
Knight C, Rahmani A, Morrow MR. Effect of an Anionic Lipid on the Barotropic Behavior of a Ternary Bicellar Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10259-10267. [PMID: 27648612 DOI: 10.1021/acs.langmuir.6b02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dispersions of lipid mixtures comprising long- and short-chain phospholipids (bicellar mixtures) can form small isotropically reorienting particles (bilayered micelles), magnetically orientable stuctures, or unorientable lamellar structures. Application of hydrostatic pressure can also induce interdigitation of the long-chain lipid components. In this work, variable-pressure 2H NMR was used to study the effect of head group charge on the barotropic behavior of bicellar mixtures. Observations at pressures up to 152 MPa and temperatures up to 64 °C were combined with earlier observations at lower pressure and lower temperature to obtain a pressure-temperature phase diagram for DMPC-d54/DMPG/DHPC (3:1:1). In this phase diagram, a region corresponding to small, isotropically reorienting particles at lower temperature and higher pressure is separated from a region corresponding to unorientable lamellar organization, at higher temperature and lower pressure, by a band in which the magnetically orientable phase is stable below ∼100 MPa and in which an interdigitated gel phase is stable above ∼120 MPa. From ∼46 to ∼52 °C, the dispersion transforms directly from the unorientable lamellar to isotropically reorienting particle phases upon isothermal pressurization. The extent to which this behavior reflects the presence of anionic lipid in the long-chain fraction of this mixture is illustrated by comparison with spectral series obtained during isothermal pressurization of DMPC-d54/DHPC (4:1) and DMPC-d54/DMPG/DHPC (2.7:1.3:1) at selected temperatures. These observations show how electrostatic interactions at a bilayer surface can affect the balance between hydrophobic and hydrophilic interactions that is reflected by a dispersion's barotropic phase behavior.
Collapse
Affiliation(s)
- Collin Knight
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Ashkan Rahmani
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| |
Collapse
|
41
|
Kobayashi H, Nagao S, Hirota S. Characterization of the Cytochrome c
Membrane-Binding Site Using Cardiolipin-Containing Bicelles with NMR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hisashi Kobayashi
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Satoshi Nagao
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Shun Hirota
- Graduate School of Materials Science; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| |
Collapse
|
42
|
Kobayashi H, Nagao S, Hirota S. Characterization of the Cytochrome c Membrane-Binding Site Using Cardiolipin-Containing Bicelles with NMR. Angew Chem Int Ed Engl 2016; 55:14019-14022. [PMID: 27723218 DOI: 10.1002/anie.201607419] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Cytochrome (cyt) c transports electrons from Complex III to Complex IV in mitochondria. Cyt c is ordinarily anchored to the mitochondrial membrane through interaction with cardiolipin (CL), however its release into the cytosol initiates apoptosis. The cyt c interaction site with CL-containing bicelles was characterized by NMR spectroscopy. Chemical shift perturbations in cyt c signals upon interaction with bicelles revealed that a relatively wide region, which includes the A-site, the CXXCH motif, and the N- and C-terminal helices, and contains multiple Lys residues, interacts cooperatively with CL. The specific cyt c-CL interaction increased with increasing CL molecules in the bicelles. The location of the cyt c interaction site for CL was similar to those for Complex III and Complex IV, thus indicating that cyt c recognizes lipids and partner proteins in a similar way. In addition to elucidating the cyt c membrane-binding site, these results provide insight into the dynamic aspect of cyt c interactions in mitochondria.
Collapse
Affiliation(s)
- Hisashi Kobayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Satoshi Nagao
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
43
|
Schmidt T, Situ AJ, Ulmer TS. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization. Sci Rep 2016; 6:29809. [PMID: 27436065 PMCID: PMC4951694 DOI: 10.1038/srep29809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to understand the introduction of proline kinks in membrane proteins. In phospholipid bicelles, the A711P substitution in the center of the β3 TM helix changes the direction of adjacent helix segments to form a 35 ± 2° angle and predominantly repacks the segment in the inner membrane leaflet due to a swivel movement. This swivel repacks hydrophobic and electrostatic interhelical contacts within intracellular lipids, resulting in an overall TM complex stabilization of -0.82 ± 0.01 kcal/mol. Thus, proline substitutions can directly stabilize membrane proteins and such substitutions are proposed to follow the structural template of integrin αIIbβ3(A711P).
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Alan J Situ
- Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Tobias S Ulmer
- Department of Biochemistry &Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
44
|
Mineev KS, Nadezhdin KD, Goncharuk SA, Arseniev AS. Characterization of Small Isotropic Bicelles with Various Compositions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6624-6637. [PMID: 27285636 DOI: 10.1021/acs.langmuir.6b00867] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Structural studies of membrane proteins are of great importance and interest, with solution and solid state NMR spectroscopy being very promising tools for that task. However, such investigations are hindered by a number of obstacles, and in the first place by the fact that membrane proteins need an adequate environment that models the cell membrane. One of the most widely used and prospective membrane mimetics is isotropic bicelles. While large anisotropic bicelles are well-studied, the field of small bicelles contains a lot of "white spots". The present work reports the radii of particles and concentration of the detergents in the monomeric state in solutions of isotropic bicelles, formed by 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO), and sodium cholate, as a function of lipid/detergent ratio and temperature. These parameters were measured using (1)H NMR diffusion spectroscopy for the bicelles composed of lipids with saturated fatty chains of different length and lipids, containing unsaturated fatty acid residue. The influence of a model transmembrane protein (membrane domain of rat TrkA) on the properties of bicelles and the effect of the bicelle size and composition on the properties of the transmembrane protein were investigated with heteronuclear NMR and nuclear Overhauser effect spectroscopy. We show that isotropic bicelles that are applicable for solution NMR spectroscopy behave as predicted by the theoretical models and are likely to be bicelles rather than mixed micelles. Using the obtained data, we propose a simple approach to control the size of bicelles at low concentrations. On the basis of our results, we compared different rim-forming agents and selected CHAPS as a detergent of choice for structural studies in bicelles, if the deuteration of the detergent is not required.
Collapse
Affiliation(s)
- K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10, Moscow, 117997 Russian Federation
| | - K D Nadezhdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10, Moscow, 117997 Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9, 141700, Dolgoprudnyi, Russian Federation
| | - S A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10, Moscow, 117997 Russian Federation
- Lomonosov Moscow State University , Leninskiye Gory, 1, Moscow, 119991, Russian Federation
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS , str. Miklukho-Maklaya 16/10, Moscow, 117997 Russian Federation
- Moscow Institute of Physics and Technology , Institutsky per., 9, 141700, Dolgoprudnyi, Russian Federation
| |
Collapse
|
45
|
Shintani M, Matubayasi N. Morphology study of DMPC/DHPC mixtures by solution-state 1H, 31P NMR, and NOE measurements. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Danino D, Abezgauz L, Portnaya I, Dan N. From Discs to Ribbons Networks: The Second Critical Micelle Concentration in Nonionic Sterol Solutions. J Phys Chem Lett 2016; 7:1434-1439. [PMID: 27031669 DOI: 10.1021/acs.jpclett.6b00266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
At the critical micelle concentration (CMC), amphiphiles self-assemble into spherical micelles, typically followed by a transition at the second CMC to cylindrical micelles that are uniform in width but are polydispersed in length and have swollen ends. In this Letter, we report on a new structural path of self-assembly that is based on discoidal (coin-like), rather than spherical, geometry; the nonionic sterol ChEO10 is shown to form monodisperse equilibrium disc assemblies at the first CMC, transitioning at the second CMC into flat ribbons that (like the cylindrical micelles) have uniform width, polydispersed length, and swollen ends. Increase in ChEO10 concentration or the temperature leads to ribbon elongation, branching, and network formation. This self-assembly path reveals that (1) surfactants can form equilibrium nonspherical assemblies at the CMC and (2) aggregate progression around the second CMC is similar for the disc and sphere geometries.
Collapse
Affiliation(s)
- Dganit Danino
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Ludmila Abezgauz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Irina Portnaya
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Nily Dan
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
47
|
Cardoso AZ, Mears LLE, Cattoz BN, Griffiths PC, Schweins R, Adams DJ. Linking micellar structures to hydrogelation for salt-triggered dipeptide gelators. SOFT MATTER 2016; 12:3612-3621. [PMID: 26963370 DOI: 10.1039/c5sm03072b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Some functionalised dipeptides can form hydrogels when salts are added to solutions at high pH. We have used surface tension, conductivity, rheology, optical, confocal and scanning electron microscopy, (1)H NMR and UV-Vis spectroscopy measurements to characterise fully the phase behaviour of solutions of one specific gelator, 2NapFF, at 25 °C at pH 10.5. We show that this specific naphthalene-dipeptide undergoes structural transformations as the concentration is increased, initially forming spherical micelles, then worm-like micelles, followed by association of these worm-like micelles. On addition of a calcium salt, gels are generally formed as long as worm-like micelles are initially present in solution, although there are structural re-organisations that occur at lower concentrations, allowing gelation at lower than expected concentration. Using IR and SANS, we show the differences between the structures present in the solution and hydrogel phases.
Collapse
Affiliation(s)
- Andre Zamith Cardoso
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Laura L E Mears
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Beatrice N Cattoz
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Peter C Griffiths
- Department of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Ralf Schweins
- Institut Laue-Langevin, Large Scale Structures Group, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble CEDEX 9, France
| | - Dave J Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| |
Collapse
|
48
|
Schmidt ML, Davis JH. Liquid disordered–liquid ordered phase coexistence in bicelles containing unsaturated lipids and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:619-26. [DOI: 10.1016/j.bbamem.2015.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
49
|
Vestergaard M, Kraft JF, Vosegaard T, Thøgersen L, Schiøtt B. Bicelles and Other Membrane Mimics: Comparison of Structure, Properties, and Dynamics from MD Simulations. J Phys Chem B 2015; 119:15831-43. [PMID: 26610232 DOI: 10.1021/acs.jpcb.5b08463] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer. Properties such as lipid packing and properties related to embedding both an α-helical peptide and a transmembrane protein are investigated. The small bicelles are found to be very dynamic and mainly assume a prolate shape substantiating that small bicelles cannot be regarded as well-defined disclike structures. However, addition of a peptide results in an increased tendency to form disc-shaped bicelles. The small bicelles and the nanodiscs show increased peptide solvation and difference in peptide orientation compared to embedding in a bilayer. The large bicelle imitated a bilayer well with respect to both curvature and peptide solvation, although peripheral binding of short tailed lipids to the embedded proteins is observed, which could hinder ligand binding or multimer formation.
Collapse
Affiliation(s)
- Mikkel Vestergaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Johan F Kraft
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Danish Center for Ultrahigh-Field NMR Spectroscopy and Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University , Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Lea Thøgersen
- Center for Membrane Pumps in Cells and Disease (PUMPKIN), Bioinformatics Research Centre, Aarhus University , C.F. Møllers Alle 8, DK-8000 Aarhus C, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University , Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2910-7. [DOI: 10.1016/j.bbamem.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
|