1
|
Coquille S, Pereira CS, Roche J, Santoni G, Engilberge S, Brochier-Armanet C, Girard E, Sterpone F, Madern D. Allostery and Evolution: A Molecular Journey Through the Structural and Dynamical Landscape of an Enzyme Super Family. Mol Biol Evol 2025; 42:msae265. [PMID: 39834309 PMCID: PMC11747225 DOI: 10.1093/molbev/msae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon. By introducing a few of mutations associated to the emergence of allosteric LDHs into the non-allosteric MalDH from Methanopyrus kandleri, we have gradually shifted its enzymatic profile toward that typical of allosteric LDHs. We first investigated the process triggering homotropic activation. The structures of the resulting mutants show the typical compact organization of the R-active state of LDHs, but a distorted (T-like) catalytic site demonstrating that they corresponds to hybrid states. Molecular dynamics simulations and free energy calculations confirmed the capability of these mutants to sample the T-inactive state. By adding a final single mutation to fine-tune the flexibility of the catalytic site, we obtained an enzyme with both sigmoid (homotropic) and hyperbolic (heterotropic) substrate activation profiles. Its structure shows a typical extended T-state as in LDHs, whereas its catalytic state has as a restored configuration favorable for catalysis. Free energy calculations indicate that the T and R catalytic site configurations are in an equilibrium that depends on solvent conditions. We observed long-range communication between monomers as required for allosteric activation. Our work links the evolution of allosteric regulation in the LDH/MDH superfamily to the ensemble model of allostery at molecular level, and highlights the important role of the underlying protein dynamics.
Collapse
Affiliation(s)
| | - Caroline Simões Pereira
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Céline Brochier-Armanet
- Université Claude Bernard Lyon1, LBBE, UMR 5558 CNRS, VAS, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
2
|
Chen YL, Wang Y, Fang QY, Wang T, Chen C, Gao TY, Wu M, Zhang WP, Lu YB. PARP-1 inhibitor alleviates cerebral ischemia/reperfusion injury by reducing PARylation of HK-1 and LDH in mice. Eur J Pharmacol 2024; 967:176377. [PMID: 38346469 DOI: 10.1016/j.ejphar.2024.176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) activity significantly increases during cerebral ischemia/reperfusion. PARP-1 is an NAD+-consumption enzyme. PARP-1 hyperactivity causes intracellular NAD+ deficiency and bioenergetic collapse, contributing to neuronal death. Besides, the powerful trigger of PARP-1 causes the catalyzation of poly (ADP-ribosyl)ation (PARylation), a posttranslational modification of proteins. Here, we found that PARP-1 was activated in the ischemic brain tissue during middle-cerebral-artery occlusion and reperfusion (MCAO/R) for 24 h, and PAR accumulated in the neurons in mice. Using immunoprecipitation, Western blotting, liquid chromatography-mass spectrometry, and 3D-modeling analysis, we revealed that the activation of PARP-1 caused PARylation of hexokinase-1 and lactate dehydrogenase-B, which, therefore, caused the inhibition of these enzyme activities and the resulting cell energy metabolism collapse. PARP-1 inhibition significantly reversed the activity of hexokinase and lactate dehydrogenase, decreased infarct volume, and improved neuronal deficiency. PARP-1 inhibitor combined with pyruvate further alleviated MCAO/R-induced ischemic brain injury in mice. As such, we conclude that PARP-1 inhibitor alleviates neuronal death partly by inhibiting the PARylation of metabolic-related enzymes and reversing metabolism reprogramming during cerebral ischemia/reperfusion injury in mice. PARP-1 inhibitor combined with pyruvate might be a promising therapeutic approach against brain ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ya-Ling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiu-Yu Fang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Department of Thoracic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Tong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tong-Yao Gao
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Wei-Ping Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yun-Bi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
3
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
4
|
Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Protein Conformational Space at the Edge of Allostery: Turning a Non-allosteric Malate Dehydrogenase into an "Allosterized" Enzyme using Evolution Guided Punctual Mutations. Mol Biol Evol 2022; 39:6691310. [PMID: 36056899 PMCID: PMC9486893 DOI: 10.1093/molbev/msac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
5
|
Oluyemi WM, Samuel BB, Adewumi AT, Adekunle YA, Soliman MES, Krenn L. An Allosteric Inhibitory Potential of Triterpenes from Combretum racemosum on the Structural and Functional Dynamics of Plasmodium falciparum Lactate Dehydrogenase Binding Landscape. Chem Biodivers 2022; 19:e202100646. [PMID: 34982514 DOI: 10.1002/cbdv.202100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate-binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules' inhibitory mechanism bound to the substrate-binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate-binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co-factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co-factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA-bound pfLHD average RMSD (1.60 Å) relative to chloroquine-bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (-33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate-binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.
Collapse
Affiliation(s)
- Wande M Oluyemi
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Babatunde B Samuel
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Yemi A Adekunle
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria.,Department of Pharmaceutical Chemistry, Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Benin City, Nigeria
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
6
|
Manoj KM, Nirusimhan V, Parashar A, Edward J, Gideon DA. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J Cell Physiol 2021; 237:1902-1922. [PMID: 34927737 DOI: 10.1002/jcp.30661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
It is unresolved why lactate is transported to the liver for further utilization within the physiological purview of Cori cycle, when muscles have more lactate dehydrogenase (LDH) than liver. We point out that the answer lies in thermodynamics/equilibriums. While the utilization of NADH for the reduction of pyruvate to lactate can be mediated via the classical mechanism, the oxidation of lactate (with/without the uphill reduction of NAD+ ) necessitates alternative physiological approaches. The latter pathway occurs via interactive equilibriums involving the enzyme, protons and oxygen or diffusible reactive oxygen species (DROS). Since liver has high DROS, the murburn activity at LDH would enable the cellular system to tide over the unfavorable energy barriers of the forward reaction (~476 kJ/mol; earlier miscalculated as ~26 kJ/mole). Further, the new mechanism does not necessitate any "smart decision-making" or sophisticated control by/of proteins. The DROS-based murburn theory explains the invariant active-site structure of LDH isozymes and their multimeric nature. The theoretical insights, in silico evidence and analyses of literature herein also enrich our understanding of the underpinnings of "lactic acidosis" (lowering of physiological pH accompanied by lactate production), Warburg effect (increased lactate production at high pO2 by cancer cells) and approach for cancer therapy.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Vijay Nirusimhan
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Abhinav Parashar
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Jesucastin Edward
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
7
|
Khrapunov S, Waterman A, Persaud R, Chang EP. Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Biochemistry 2021; 60:3582-3595. [PMID: 34747601 DOI: 10.1021/acs.biochem.1c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Temperature adaptation is ubiquitous among all living organisms, yet the molecular basis for this process remains poorly understood. It can be assumed that for parasite-host systems, the same enzymes found in both organisms respond to the same selection factor (human body temperature) with similar structural changes. Herein, we report the existence of a reversible temperature-dependent structural transition for the glycolytic enzyme lactate dehydrogenase (LDH) from the malaria parasite Plasmodium falciparum (pfLDH) and human heart (hhLDH) occurring in the temperature range of human fever. This transition is observed for LDHs from psychrophiles, mesophiles, and moderate thermophiles in their operating temperature range. Thermodynamic analysis reveals unique thermodynamic signatures of the LDH-substrate complexes defining a specific temperature range to which human LDH is adapted and parasite LDH is not, despite their common mesophilic nature. The results of spectroscopic analysis combined with the available crystallographic data reveal the existence of an active center within pfLDH that imparts psychrophilic structural properties to the enzyme. This center consists of two pockets, one formed by the five amino acids (5AA insert) within the substrate specificity loop and the other by the active site, that mutually regulate one another in response to temperature and induce structural and functional changes in the Michaelis complex. Our findings pave the way toward a new strategy for malaria treatments and drug design using therapeutic agents that inactivate malarial LDH selectively at a specific temperature range of the cyclic malaria paroxysm.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Akiba Waterman
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Rudra Persaud
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| |
Collapse
|
8
|
Rumfeldt J, Kurttila M, Takala H, Ihalainen JA. The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study. Photochem Photobiol Sci 2021; 20:1173-1181. [PMID: 34460093 DOI: 10.1007/s43630-021-00090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.
Collapse
Affiliation(s)
- Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
9
|
Matić M, Saurabh S, Hamacek J, Piazza F. Crowding-Induced Uncompetitive Inhibition of Lactate Dehydrogenase: Role of Entropic Pushing. J Phys Chem B 2020; 124:727-734. [PMID: 31917571 DOI: 10.1021/acs.jpcb.9b09596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cell is an extremely complex environment, notably highly crowded, segmented, and confining. Overall, there is overwhelming and ever-growing evidence that to understand how biochemical reactions proceed in vivo, one cannot separate the biochemical actors from their environment. Effects such as excluded volume, obstructed diffusion, weak nonspecific interactions, and fluctuations all team up to steer biochemical reactions often very far from what is observed in ideal conditions. In this paper, we use Ficoll PM70 and PEG 6000 to build an artificial crowded milieu of controlled composition and density in order to assess how such environments influence the biocatalytic activity of lactate dehydrogenase (LDH). Our measurements show that the normalized apparent affinity and maximum velocity decrease in the same fashion, a behavior reminiscent of uncompetitive inhibition, with PEG resulting in the largest reduction. In line with previous studies on other enzymes of the same family, and in agreement with the known role of a surface loop involved in enzyme isomerization and regulation of access to the active site, we suggest that the crowding matrix interferes with the conformational ensemble of the enzyme. This likely results in both impaired enzyme-complex isomerization and thwarted product release. Molecular dynamics simulations confirm that excluded-volume effects lead to an entropic force that effectively tends to push the loop closed, thereby effectively shifting the conformational ensemble of the enzyme in favor of a more stable complex isoform. Overall, our study substantiates the idea that most biochemical kinetics cannot be fully explained without including the subtle action of the environment where they take place naturally, in particular accounting for important factors such as excluded-volume effects and also weak nonspecific interactions when present, confinement, and fluctuations.
Collapse
Affiliation(s)
- Marin Matić
- Université d'Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301 , Rue Charles Sadron CS 80054 , 45071 Orléans , France
| | - Suman Saurabh
- Université d'Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301 , Rue Charles Sadron CS 80054 , 45071 Orléans , France
| | - Josef Hamacek
- Université d'Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301 , Rue Charles Sadron CS 80054 , 45071 Orléans , France
| | - Francesco Piazza
- Université d'Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301 , Rue Charles Sadron CS 80054 , 45071 Orléans , France
| |
Collapse
|
10
|
Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR. The Effect of Hypothermia on Some Structural and Functional Characteristics of Lactate Dehydrogenase of the Rat Brain. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Deng H, Ke S, Callender R, Balakrishnan G, Spiro TG, May ER, Brooks CL. Computational Studies of Catalytic Loop Dynamics in Yersinia Protein Tyrosine Phosphatase Using Pathway Optimization Methods. J Phys Chem B 2019; 123:7840-7851. [PMID: 31437399 PMCID: PMC6752976 DOI: 10.1021/acs.jpcb.9b06759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Yersinia Protein Tyrosine Phosphatase (YopH) is the most efficient enzyme among all known PTPases and relies on its catalytic loop movements for substrate binding and catalysis. Fluorescence, NMR, and UV resonance Raman (UVRR) techniques have been used to study the thermodynamic and dynamic properties of the loop motions. In this study, a computational approach based on the pathway refinement methods nudged elastic band (NEB) and harmonic Fourier beads (HFB) has been developed to provide structural interpretations for the experimentally observed kinetic processes. In this approach, the minimum potential energy pathways for the loop open/closure conformational changes were determined by NEB using a one-dimensional global coordinate. Two dimensional data analyses of the NEB results were performed as an efficient method to qualitatively evaluate the energetics of transitions along several specific physical coordinates. The free energy barriers for these transitions were then determined more precisely using the HFB method. Kinetic parameters were estimated from the energy barriers using transition state theory and compared against experimentally determined kinetic parameters. When the calculated energy barriers are calibrated by a simple "scaling factor", as have been done in our previous vibrational frequency calculations to explain the ligand frequency shift upon its binding to protein, it is possible to make structural interpretations of several observed enzyme dynamic rates. For example, the nanosecond kinetics observed by fluorescence anisotropy may be assigned to the translational motion of the catalytic loop and microsecond kinetics observed in fluorescence T-jump can be assigned to the loop backbone dihedral angle flipping. Furthermore, we can predict that a Trp354 conformational conversion associated with the loop movements would occur on the tens of nanoseconds time scale, to be verified by future UVRR T-jump studies.
Collapse
Affiliation(s)
- Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Shan Ke
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | | | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, USA 06269
| | - Charles L. Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Machilin A Inhibits Tumor Growth and Macrophage M2 Polarization Through the Reduction of Lactic Acid. Cancers (Basel) 2019; 11:cancers11070963. [PMID: 31324019 PMCID: PMC6678097 DOI: 10.3390/cancers11070963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Lactate dehydrogenase A (LDHA) is an important enzyme responsible for cancer growth and energy metabolism in various cancers via the aerobic glycolytic pathway. Here, we report that machilin A (MA), which acts as a competitive inhibitor by blocking the nicotinamide adenine dinucleotide (NAD) binding site of LDHA, suppresses growth of cancer cells and lactate production in various cancer cell types, including colon, breast, lung, and liver cancers. Furthermore, MA markedly decreased LDHA activity, lactate production, and intracellular adenosine triphosphate (ATP) levels induced by hypoxia-induced LDHA expression in cancer cells, and significantly inhibited colony formation, leading to reduced cancer cell survival. In mouse models inoculated with murine Lewis lung carcinoma, MA significantly suppressed tumor growth as observed by a reduction of tumor volume and weight; resulting from the inhibition of LDHA activity. Subsequently, the suppression of tumor-derived lactic acid in MA-treated cancer cells resulted in decrease of neovascularization through the regulation of alternatively activated macrophages (M2) polarization in macrophages. Taken together, we suggest that the reduction of lactate by MA in cancer cells directly results in a suppression of cancer cell growth. Furthermore, macrophage polarization and activation of endothelial cells for angiogenesis were indirectly regulated preventing lactate production in MA-treated cancer cells.
Collapse
|
13
|
Al-Ayoubi SR, Schummel PH, Cisse A, Seydel T, Peters J, Winter R. Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization. Phys Chem Chem Phys 2019; 21:12806-12817. [PMID: 31165827 DOI: 10.1039/c9cp02310k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a study of the combined effects of natural cosolvents (TMAO, glycine, urea) and pressure on the activity of the tetrameric enzyme lactate dehydrogenase (LDH). To this end, high-pressure stopped-flow methodology in concert with fast UV/Vis spectroscopic detection of product formation was applied. To reveal possible pressure effects on the stability and dynamics of the enzyme, FTIR spectroscopic and neutron scattering measurements were carried out. In neat buffer solution, the catalytic turnover number of the enzyme, kcat, increases up to 1000 bar, the pressure range where dissociation of the tetrameric species to dimers sets in. Accordingly, we obtain a negative activation volume, ΔV# = -45.3 mL mol-1. Further, the enzyme substrate complex has a larger volume compared to the enzyme and substrate in the unbound state. The neutron scattering data show that changes in the fast internal dynamics of the enzyme are not responsible for the increase of kcat upon compression. Whereas the magnitude of kcat is similar in the presence of the osmolytes, the pressure of deactivation is modulated by the addition of cosolvents. TMAO and glycine increase the pressure of deactivation, and in accordance with the observed stabilizing effect both cosolvents exhibit against denaturation and/or dissociation of proteins. While urea does not markedly affect the magnitude of the Michaelis constant, KM, both 1 M TMAO and 1 M glycine exhibit smaller KM values of about 0.07 mM and 0.05 mM below about 1 kbar. Such positive effect on the substrate affinity could be rationalized by the effect the two cosolutes impose on the thermodynamic activities of the reactants, which reflect changes in water-mediated intermolecular interactions. Our data show that the intracellular milieu, i.e., the solution conditions that have evolved, may be sufficient to maintain enzymatic activity under extreme environmental conditions, including the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Samy R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Niu X, Chen YJ, Crawford PA, Patti GJ. Transport-exclusion pharmacology to localize lactate dehydrogenase activity within cells. Cancer Metab 2018; 6:19. [PMID: 30559963 PMCID: PMC6290536 DOI: 10.1186/s40170-018-0192-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recent in vitro and in vivo work has shown that lactate provides an important source of carbon for metabolic reactions in cancer cell mitochondria. An interesting question is whether lactate is oxidized by lactate dehydrogenase (LDH) in the cytosol and/or in mitochondria. Since metabolic processes in the cytosol and mitochondria are affected by redox balance, the location of LDH may have important regulatory implications in cancer metabolism. METHODS Within most mammalian cells, metabolic processes are physically separated by membrane-bound compartments. Our general understanding of this spatial organization and its role in cellular function, however, suffers from the limited number of techniques to localize enzymatic activities within a cell. Here, we describe an approach to assess metabolic compartmentalization by monitoring the activity of pharmacological inhibitors that cannot be transported into specific cellular compartments. RESULTS Oxamate, which chemically resembles pyruvate, is transported into mitochondria and inhibits LDH activity in purified mitochondria. GSK-2837808A, in contrast, is a competitive inhibitor of NAD, which cannot cross the inner mitochondrial membrane. GSK-2837808A did not inhibit the LDH activity of intact mitochondria, but GSK-2837808A did inhibit LDH activity after the inner mitochondrial membrane was disrupted. CONCLUSIONS Our results are consistent with some mitochondrial LDH that is accessible to oxamate, but inaccessible to GSK-2837808A until mitochondria are homogenized. This strategy of using inhibitors with selective access to subcellular compartments, which we refer to as transport-exclusion pharmacology, is broadly applicable to localize other metabolic reactions within cells.
Collapse
Affiliation(s)
- Xiangfeng Niu
- Department of Chemistry, Washington University, St. Louis, USA
| | - Ying-Jr Chen
- Department of Chemistry, Washington University, St. Louis, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University, St. Louis, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
15
|
Zhang SL, He Y, Tam KY. Targeting cancer metabolism to develop human lactate dehydrogenase ( h LDH)5 inhibitors. Drug Discov Today 2018; 23:1407-1415. [DOI: 10.1016/j.drudis.2018.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
|
16
|
Andreeßen C, Wolf N, Cramer B, Humpf HU, Steinbüchel A. In vitro biosynthesis of 3-mercaptolactate by lactate dehydrogenases. Enzyme Microb Technol 2018; 108:1-10. [DOI: 10.1016/j.enzmictec.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
|
17
|
Peng HL, Callender R. Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes. Photochem Photobiol 2017; 93:1193-1203. [PMID: 28391608 PMCID: PMC5603363 DOI: 10.1111/php.12775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
Abstract
Fluorescence of Reduced Nicotinamide Adenine Dinucleotide (NADH) is extensively employed in studies of oxidoreductases. A substantial amount of static and kinetic work has focused on the binding of pyruvate or substrate mimic oxamate to the binary complex of lactate dehydrogenase (LDH)-NADH where substantial fluorescence quenching is typically observed. However, the quenching mechanism is not well understood limiting structural interpretation. Based on time-dependent density functional theory (TDDFT) computations with cam-B3LYP functional in conjunction with the analysis of previous experimental results, we propose that bound oxamate acts as an electron acceptor in the quenching of fluorescence of NADH in the ternary complex, where a charge transfer (CT) state characterized by excitation from the highest occupied molecular orbital (HOMO) of the nicotinamide moiety of NADH to the lowest unoccupied molecular orbital (LUMO) of oxamate exists close to the locally excited (LE) state involving only the nicotinamide moiety. Efficient quenching in the encounter complex like in pig heart LDH requires that oxamate forms a salt bridge with Arg-171 and hydrogen bonds with His-195, Thr-246 and Asn-140. Further structural rearrangement and loop closure, which also brings about another hydrogen bond between oxamate and Arg-109, will increase the rate of fluorescence quenching as well.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine, New
York, NY 10461, USA
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, New
York, NY 10461, USA
| |
Collapse
|
18
|
Reddish MJ, Callender R, Dyer RB. Resolution of Submillisecond Kinetics of Multiple Reaction Pathways for Lactate Dehydrogenase. Biophys J 2017; 112:1852-1862. [PMID: 28494956 DOI: 10.1016/j.bpj.2017.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022] Open
Abstract
Enzymes are known to exhibit conformational flexibility. An important consequence of this flexibility is that the same enzyme reaction can occur via multiple reaction pathways on a reaction landscape. A model enzyme for the study of reaction landscapes is lactate dehydrogenase. We have previously used temperature-jump (T-jump) methods to demonstrate that the reaction landscape of lactate dehydrogenase branches at multiple points creating pathways with varied reactivity. A limitation of this previous work is that the T-jump method makes only small perturbations to equilibrium and may not report conclusively on all steps in a reaction. Therefore, interpreting T-jump results of lactate dehydrogenase kinetics has required extensive computational modeling work. Rapid mixing methods offer a complementary approach that can access large perturbations from equilibrium; however, traditional enzyme mixing methods like stopped-flow do not allow for the observation of fast protein dynamics. In this report, we apply a microfluidic rapid mixing device with a mixing time of <100 μs that allows us to study these fast dynamics and the catalytic redox step of the enzyme reaction. Additionally, we report UV absorbance and emission T-jump results with improved signal-to-noise ratio at fast times. The combination of mixing and T-jump results yields an unprecedented view of lactate dehydrogenase enzymology, confirming the timescale of substrate-induced conformational change and presence of multiple reaction pathways.
Collapse
Affiliation(s)
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Khrapunov S, Chang E, Callender RH. Thermodynamic and Structural Adaptation Differences between the Mesophilic and Psychrophilic Lactate Dehydrogenases. Biochemistry 2017. [PMID: 28627164 DOI: 10.1021/acs.biochem.7b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamics of substrate binding and enzymatic activity of a glycolytic enzyme, lactate dehydrogenase (LDH), from both porcine heart, phLDH (Sus scrofa; a mesophile), and mackerel icefish, cgLDH (Chamapsocephalus gunnari; a psychrophile), were investigated. Using a novel and quite sensitive fluorescence assay that can distinguish protein conformational changes close to and distal from the substrate binding pocket, a reversible global protein structural transition preceding the high-temperature transition (denaturation) was surprisingly found to coincide with a marked change in enzymatic activity for both LDHs. A similar reversible structural transition of the active site structure was observed for phLDH but not for cgLDH. An observed lower substrate binding affinity for cgLDH compared to that for phLDH was accompanied by a larger contribution of entropy to ΔG, which reflects a higher functional plasticity of the psychrophilic cgLDH compared to that of the mesophilic phLDH. The natural osmolyte, trimethylamine N-oxide (TMAO), increases stability and shifts all structural transitions to higher temperatures for both orthologs while simultaneously reducing catalytic activity. The presence of TMAO causes cgLDH to adopt catalytic parameters like those of phLDH in the absence of the osmolyte. Our results are most naturally understood within a model of enzyme dynamics whereby different conformations of the enzyme that have varied catalytic parameters (i.e., binding and catalytic proclivity) and whose population profiles are temperature-dependent and influenced by osmolytes interconvert among themselves. Our results also show that adaptation can be achieved by means other than gene mutations and complements the synchronic evolution of the cellular milieu.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert H Callender
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
20
|
Nie B, Lodewyks K, Deng H, Desamero RZB, Callender R. Active-Loop Dynamics within the Michaelis Complex of Lactate Dehydrogenase from Bacillus stearothermophilus. Biochemistry 2016; 55:3803-14. [PMID: 27319381 DOI: 10.1021/acs.biochem.6b00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laser-induced temperature-jump relaxation spectroscopy was used to study the active site mobile-loop dynamics found in the binding of the NADH nucleotide cofactor and oxamate substrate mimic to lactate dehydrogenase in Bacillus stearothermophilus thermophilic bacteria (bsLDH). The kinetic data can be best described by a model in which NADH can bind only to the open-loop apoenzyme, oxamate can bind only to the bsLDH·NADH binary complex in the open-loop conformation, and oxamate binding is followed by closing of the active site loop preventing oxamate unbinding. The open and closed states of the loop are in dynamic equilibrium and interconvert on the submillisecond time scale. This interconversion strongly accelerates with an increase in temperature because of significant enthalpy barriers. Binding of NADH to bsLDH results in minor changes of the loop dynamics and does not shift the open-closed equilibrium, but binding of the oxamate substrate mimic shifts this equilibrium to the closed state. At high excess oxamate concentrations where all active sites are nearly saturated with the substrate mimic, all active site mobile loops are mainly closed. The observed active-loop dynamics for bsLDH is very similar to that previously observed for pig heart LDH.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Kara Lodewyks
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Ruel Z B Desamero
- Department of Chemistry, York College-CUNY, The CUNY Institute for Macromolecular Assemblies, and Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York , Jamaica, New York 11451, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
21
|
Dong X, Fan Y, Zhang H, Zhong Y, Yang Y, Miao J, Hua S. Inhibitory effects of ionic liquids on the lactic dehydrogenase activity. Int J Biol Macromol 2016; 86:155-61. [PMID: 26802246 DOI: 10.1016/j.ijbiomac.2016.01.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) were widely used in scientific and industrial application and have been reported to possess potential toxicity to the environment and human health. The effects of six typical N-methylimidazolium-based ILs ([Cnmim]X, n=4, 6, 8; X=Br(-), Cl(-), BF4(-), CF3SO3(-)) on the lactic dehydrogenase (LDH) activity and the molecular interaction mechanism of ILs and the LDH were investigated with the aid of spectroscopic techniques. Experimental results showed that the LDH activity was inhibited in the presence of ILs. For the ILs with the same anion but different cations, their inhibitory ability on the LDH activity increased with increasing the alkyl chain length on the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of LDH with the addition of ILs. Both positive ΔH and ΔS suggested that hydrophobicity was the major driven force in the interaction process as expected.
Collapse
Affiliation(s)
- Xing Dong
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yunchang Fan
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Heng Zhang
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yingying Zhong
- Technology Center of Ningbo Entry-Exit Inspection and Quarantine Bureau, Ningbo 315012, China
| | - Yang Yang
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Juan Miao
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shaofeng Hua
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
22
|
Peng HL, Egawa T, Chang E, Deng H, Callender R. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases. J Phys Chem B 2015; 119:15256-62. [PMID: 26556099 DOI: 10.1021/acs.jpcb.5b09909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced β-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Tsuyoshi Egawa
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
23
|
Screening of novel inhibitors targeting lactate dehydrogenase A via four molecular docking strategies and dynamics simulations. J Mol Model 2015; 21:133. [PMID: 25934158 DOI: 10.1007/s00894-015-2675-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/01/2015] [Indexed: 01/14/2023]
Abstract
Lactate dehydrogenase A (LDHA) is a metabolic enzyme which catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway, thus playing key roles in aerobic glycolysis. The inhibition of LDHA by small molecules has become an attractive strategy for anticancer therapy in recent years. However, very few LDHA inhibitors have been reported, even though a great deal of effort has directed into identifying LDHA inhibitors using structure-based approaches. Therefore, high-throughput and high-accuracy screening approaches are still urgently needed in order to target LDHA effectively. In the present work, after establishing that our docking strategies performed well using test datasets, we screened 32791 Specs products for their docking scores with the substrate-binding pocket and, separately, the cofactor-binding pocket of LDHA. We subsequently identified 76 hits (i.e., ligands that show low docking scores) for the cofactor-binding pocket and 27 hits for the substrate-binding pocket. Two representative compounds, ZINC20036549 and ZINC19369718, were then chosen for further MD simulation analysis, and we found that these compounds maintained their inhibitory activity during the MD simulations. Meanwhile, we found that ZINC19369718 interacts with a novel binding site close to the active site, and that this interaction may inhibit the catalytic activity of LDHA. Together, these results offer not only a new paradigm for identifying Specs drug-like products for novel therapeutic use but they also provide further opportunity to adopt LDHA inhibition as a strategy for cancer therapy.
Collapse
|
24
|
Wong MKL, Krycer JR, Burchfield JG, James DE, Kuncic Z. A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems. FEBS Open Bio 2015; 5:226-39. [PMID: 25859426 PMCID: PMC4383669 DOI: 10.1016/j.fob.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022] Open
Abstract
We propose the dQSSA model as a novel way of modelling complex biological networks. No low enzyme concentration assumption, covering more biological settings. Reduces the number of parameters, which simplifies optimisation. dQSSA was validated both in silico and in vitro. Both biochemical and signalling pathways can be modelled accurately and simply.
Quasi steady-state enzyme kinetic models are increasingly used in systems modelling. The Michaelis Menten model is popular due to its reduced parameter dimensionality, but its low-enzyme and irreversibility assumption may not always be valid in the in vivo context. Whilst the total quasi-steady state assumption (tQSSA) model eliminates the reactant stationary assumptions, its mathematical complexity is increased. Here, we propose the differential quasi-steady state approximation (dQSSA) kinetic model, which expresses the differential equations as a linear algebraic equation. It eliminates the reactant stationary assumptions of the Michaelis Menten model without increasing model dimensionality. The dQSSA was found to be easily adaptable for reversible enzyme kinetic systems with complex topologies and to predict behaviour consistent with mass action kinetics in silico. Additionally, the dQSSA was able to predict coenzyme inhibition in the reversible lactate dehydrogenase enzyme, which the Michaelis Menten model failed to do. Whilst the dQSSA does not account for the physical and thermodynamic interactions of all intermediate enzyme-substrate complex states, it is proposed to be suitable for modelling complex enzyme mediated biochemical systems. This is due to its simpler application, reduced parameter dimensionality and improved accuracy.
Collapse
Affiliation(s)
- Martin Kin Lok Wong
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia ; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia ; Diabetes and Metabolism Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - James Robert Krycer
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia ; Diabetes and Metabolism Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia ; School of Biotechnology and Biomolecular Sciences, The University of New South Wales Australia, Sydney 2052, Australia
| | - James Geoffrey Burchfield
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia ; Diabetes and Metabolism Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - David Ernest James
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia ; School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia ; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Zdenka Kuncic
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia ; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Abstract
![]()
As is well-known,
enzymes are proteins designed to accelerate specific life essential
chemical reactions by many orders of magnitude. A folded protein is
a highly dynamical entity, best described as a hierarchy or ensemble
of interconverting conformations on all time scales from femtoseconds
to minutes. We are just beginning to learn what role these dynamics
play in the mechanism of chemical catalysis by enzymes due to extraordinary
difficulties in characterizing the conformational space, that is,
the energy landscape, of a folded protein. It seems clear now that
their role is crucially important. Here we discuss approaches, based
on vibrational spectroscopies of various sorts, that can reveal the
energy landscape of an enzyme–substrate (Michaelis) complex
and decipher which part of the typically very complicated landscape
is relevant to catalysis. Vibrational spectroscopy is quite sensitive
to small changes in bond order and bond length, with a resolution
of 0.01 Å or less. It is this sensitivity that is crucial to
its ability to discern bond reactivity. Using isotope edited
IR approaches, we have studied in detail the role of conformational
heterogeneity and dynamics in the catalysis of hydride transfer by
LDH (lactate dehydrogenase). Upon the binding of substrate, the LDH·substrate
system undergoes a search through conformational space to find a range
of reactive conformations over the microsecond to millisecond time
scale. The ligand is shuttled to the active site via first forming
a weakly bound enzyme·ligand complex, probably consisting of
several heterogeneous structures. This complex undergoes numerous
conformational changes spread throughout the protein that shuttle
the enzyme·substrate complex to a range of conformations where
the substrate is tightly bound. This ensemble of conformations all
have a propensity toward chemistry, but some are much more facile
for carrying out chemistry than others. The search for these tightly
bound states is clearly directed by the forces that the protein can
bring to bear, very much akin to the folding process to form native
protein in the first place. In fact, the conformational subspace of
reactive conformations of the Michaelis complex can be described as
a “collapse” of reactive substates compared with that
found in solution, toward a much smaller and much more reactive set. These studies reveal how dynamic disorder in the protein structure
can modulate the on-enzyme reactivity. It is very difficult to account
for how the dynamical nature of the ground state of the Michaelis
complex modulates function by transition state concepts since dynamical
disorder is not a starting feature of the theory. We find that dynamical
disorder may well play a larger or similar sized role in the measured
Gibbs free energy of a reaction compared with the actual energy barrier
involved in the chemical event. Our findings are broadly compatible
with qualitative concepts of evolutionary adaptation of function such
as adaptation to varying thermal environments. Our work suggests a
methodology to determine the important dynamics of the Michaelis complex.
Collapse
Affiliation(s)
- Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - R. Brian Dyer
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Reddish MJ, Peng HL, Deng H, Panwar KS, Callender R, Dyer RB. Direct evidence of catalytic heterogeneity in lactate dehydrogenase by temperature jump infrared spectroscopy. J Phys Chem B 2014; 118:10854-62. [PMID: 25149276 PMCID: PMC4167064 DOI: 10.1021/jp5050546] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein conformational heterogeneity and dynamics are known to play an important role in enzyme catalysis, but their influence has been difficult to observe directly. We have studied the effects of heterogeneity in the catalytic reaction of pig heart lactate dehydrogenase using isotope edited infrared spectroscopy, laser-induced temperature jump relaxation, and kinetic modeling. The isotope edited infrared spectrum reveals the presence of multiple reactive conformations of pyruvate bound to the enzyme, with three major reactive populations having substrate C2 carbonyl stretches at 1686, 1679, and 1674 cm(-1), respectively. The temperature jump relaxation measurements and kinetic modeling indicate that these substates form a heterogeneous branched reaction pathway, and each substate catalyzes the conversion of pyruvate to lactate with a different rate. Furthermore, the rate of hydride transfer is inversely correlated with the frequency of the C2 carbonyl stretch (the rate increases as the frequency decreases), consistent with the relationship between the frequency of this mode and the polarization of the bond, which determines its reactivity toward hydride transfer. The enzyme does not appear to be optimized to use the fastest pathway preferentially but rather accesses multiple pathways in a search process that often selects slower ones. These results provide further support for a dynamic view of enzyme catalysis where the role of the enzyme is not just to bring reactants together but also to guide the conformational search for chemically competent interactions.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | | | | | | | | | |
Collapse
|
27
|
Ergel B, Gill ML, Brown L, Yu B, Palmer AG, Hunt JF. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB. J Biol Chem 2014; 289:29584-601. [PMID: 25043760 DOI: 10.1074/jbc.m114.575647] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A central goal of enzymology is to understand the physicochemical mechanisms that enable proteins to catalyze complex chemical reactions with high efficiency. Recent methodological advances enable the contribution of protein dynamics to enzyme efficiency to be explored more deeply. Here, we utilize enzymological and biophysical studies, including NMR measurements of conformational dynamics, to develop a quantitative mechanistic scheme for the DNA repair enzyme AlkB. Like other iron/2-oxoglutarate-dependent dioxygenases, AlkB employs a two-step mechanism in which oxidation of 2-oxoglutarate generates a highly reactive enzyme-bound oxyferryl intermediate that, in the case of AlkB, slowly hydroxylates an alkylated nucleobase. Our results demonstrate that a microsecond-to-millisecond time scale conformational transition facilitates the proper sequential order of substrate binding to AlkB. Mutations altering the dynamics of this transition allow generation of the oxyferryl intermediate but promote its premature quenching by solvent, which uncouples 2-oxoglutarate turnover from nucleobase oxidation. Therefore, efficient catalysis by AlkB depends upon the dynamics of a specific conformational transition, establishing another paradigm for the control of enzyme function by protein dynamics.
Collapse
Affiliation(s)
- Burçe Ergel
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| | - Michelle L Gill
- the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032-3702
| | - Lewis Brown
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| | - Bomina Yu
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| | - Arthur G Palmer
- the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032-3702
| | - John F Hunt
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| |
Collapse
|
28
|
Peng HL, Deng H, Dyer RB, Callender R. Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism. Biochemistry 2014; 53:1849-57. [PMID: 24576110 PMCID: PMC3985751 DOI: 10.1021/bi500215a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Lactate
dehydrogenase (LDH) catalyzes the interconversion between
pyruvate and lactate with nicotinamide adenine dinucleotide (NAD)
as a cofactor. Using isotope-edited difference Fourier transform infrared
spectroscopy on the “live” reaction mixture (LDH·NADH·pyruvate
⇌ LDH·NAD+·lactate) for the wild-type
protein and a mutant with an impaired catalytic efficiency, a set
of interconverting conformational substates within the pyruvate side
of the Michaelis complex tied to chemical activity is revealed. The
important structural features of these substates include (1) electronic
orbital overlap between pyruvate’s C2=O bond
and the nicotinamide ring of NADH, as shown from the observation of
a delocalized vibrational mode involving motions from both moieties,
and (2) a characteristic hydrogen bond distance between the pyruvate
C2=O group and active site residues, as shown by
the observation of at least four C2=O stretch bands
indicating varying degrees of C2=O bond polarization.
These structural features form a critical part of the expected reaction
coordinate along the reaction path, and the ability to quantitatively
determine them as well as the substate population ratios in the Michaelis
complex provides a unique opportunity to probe the structure–activity
relationship in LDH catalysis. The various substates have a strong
variance in their propensity toward on enzyme chemistry. Our results
suggest a physical mechanism for understanding the LDH-catalyzed chemistry
in which the bulk of the rate enhancement can be viewed as arising
from a stochastic search through an available phase space that, in
the enzyme system, involves a restricted ensemble of more reactive
conformational substates as compared to the same chemistry in solution.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | |
Collapse
|
29
|
Human lactate dehydrogenase a inhibitors: a molecular dynamics investigation. PLoS One 2014; 9:e86365. [PMID: 24466056 PMCID: PMC3895040 DOI: 10.1371/journal.pone.0086365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that rely on anaerobic respiration even under normal oxygen concentrations. This renders LDHA a promising molecular target for the treatment of various cancers. Several efforts have been made recently to develop LDHA inhibitors with nanomolar inhibition and cellular activity, some of which have been studied in complex with the enzyme by X-ray crystallography. In this work, we present a molecular dynamics (MD) study of the binding interactions of selected ligands with human LDHA. Conventional MD simulations demonstrate different binding dynamics of inhibitors with similar binding affinities, whereas steered MD simulations yield discrimination of selected LDHA inhibitors with qualitative correlation between the in silico unbinding difficulty and the experimental binding strength. Further, our results have been used to clarify ambiguities in the binding modes of two well-known LDHA inhibitors.
Collapse
|
30
|
Birrell JA, Hirst J. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides. Biochemistry 2013; 52:4048-55. [PMID: 23683271 PMCID: PMC3680915 DOI: 10.1021/bi3016873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
NADH:ubiquinone
oxidoreductase (complex I) is a complicated respiratory
enzyme that conserves the energy from NADH oxidation, coupled to ubiquinone
reduction, as a proton motive force across the mitochondrial inner
membrane. During catalysis, NADH oxidation by a flavin mononucleotide
is followed by electron transfer to a chain of iron–sulfur
clusters. Alternatively, the flavin may be reoxidized by hydrophilic
electron acceptors, by artificial electron acceptors in kinetic studies,
or by oxygen and redox-cycling molecules to produce reactive oxygen
species. Here, we study two steps in the mechanism of NADH oxidation
by complex I. First, molecular fragments of NAD(H), tested as flavin-site
inhibitors or substrates, reveal that the adenosine moiety is crucial
for binding. Nicotinamide-containing fragments that lack the adenosine
do not bind, and ADP-ribose binds more strongly than NAD+, suggesting that the nicotinamide is detrimental to binding. Second,
the primary kinetic isotope effects from deuterated nicotinamide nucleotides
confirm that hydride transfer is from the pro-S position
and reveal that hydride transfer, along with NAD+ dissociation,
is partially rate-limiting. Thus, the transition state energies are
balanced so that no single step in NADH oxidation is completely rate-limiting.
Only at very low NADH concentrations does weak NADH binding limit
NADH:ubiquinone oxidoreduction, and at the high nucleotide concentrations
of the mitochondrial matrix, weak nucleotide binding constants assist
product dissociation. Using fast nucleotide reactions and a balance
between the nucleotide binding constants and concentrations, complex
I combines fast and energy-conserving NADH oxidation with minimal
superoxide production from the nucleotide-free site.
Collapse
Affiliation(s)
- James A Birrell
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
31
|
Masterson JE, Schwartz SD. Changes in protein architecture and subpicosecond protein dynamics impact the reaction catalyzed by lactate dehydrogenase. J Phys Chem A 2013; 117:7107-13. [PMID: 23441954 DOI: 10.1021/jp400376h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously established the importance of a promoting vibration, a subpicosecond protein motion that propagates through a specific axis of residues, in the reaction coordinate of lactate dehydrogenase (LDH). To test the effect that perturbation of this motion would have on the enzymatic reaction, we employ transition path sampling to obtain transition path ensembles for four independent LDH enzymatic systems: the wild type enzyme, a version of the enzyme expressing heavy isotopic substitution, and two enzymes with mutations in the promoting vibration axis. We show that even slight changes in the promoting vibration of LDH result in dramatic changes in enzymatic chemistry. In the "heavy" version of the enzyme, we find that the dampening of the subpicosecond dynamics from heavy isotopic substitution leads to a drastic increase in the time of barrier crossing. Furthermore, we see that mutation of the promoting vibration axis causes a decrease in the variability of transition paths available to the enzymatic reaction. The combined results reveal the importance of the protein architecture of LDH in enzymatic catalysis by establishing how the promoting vibration is finely tuned to facilitate chemistry.
Collapse
Affiliation(s)
- Jean E Masterson
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, USA
| | | |
Collapse
|
32
|
Nie B, Deng H, Desamero R, Callender R. Large scale dynamics of the Michaelis complex in Bacillus stearothermophilus lactate dehydrogenase revealed by a single-tryptophan mutant study. Biochemistry 2013; 52:1886-92. [PMID: 23428201 DOI: 10.1021/bi3017125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site. This suggests that a large portion of the protein-substrate complex moves in a rather concerted fashion to bring about catalysis. The catalytically important surface loop undergoes two distinct movements, both needed for a competent enzyme. Our results also suggest that what is called "loop motion" is not just localized to the loop and active site residues. Rather, it involves the motion of atoms spread over the protein, even some quite distal from the active site. How these results bear on the catalytic mechanism of bsLDH is discussed.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | |
Collapse
|
33
|
Deriving TC50 values of nanoparticles from electrochemical monitoring of lactate dehydrogenase activity indirectly. Methods Mol Biol 2013. [PMID: 22975960 DOI: 10.1007/978-1-62703-002-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanotoxicity assessment methods for nanoparticles (NPs) such as carbon nanotubes (CNTs), nano-Al(2)O(3), and tridecameric aluminum polycation or nanopolynuclear (nano-Al(13)), particularly lactate dehydrogenase (LDH) assays are reviewed. Our researches on electrochemically monitoring the variations of LDH activity indirectly in the presence of multiwalled carbon nanotubes (MWCNTs), nano-Al(13), and nano-Al(2)O(3) separately to derive toxic concentrations of NPs altering LDH activity by 50% (TC(50)) values are discussed. TC(50) values indicated that the toxicity order was Al (III)> MWCNTs > nano-Al(13) > nano-Al(2)O(3). Zeta potentials (ζ) data of these NPs in the literature proved that the surfaces of these NPs are charged negatively. Negatively charged surfaces might be a main cause in the reduction of LDH activity. Therefore, the classic LDH assays are doubtful to underestimate the nanotoxicities when they are applied to those NPs with negatively charged surfaces. These observations highlight and reconcile some contradictory results at present such as medium-dependent toxicity of NPs among the literature and develop novel analytical methods for evaluation of toxicities of NPs.
Collapse
|
34
|
Kohlmann A, Zech SG, Li F, Zhou T, Squillace RM, Commodore L, Greenfield MT, Lu X, Miller DP, Huang WS, Qi J, Thomas RM, Wang Y, Zhang S, Dodd R, Liu S, Xu R, Xu Y, Miret JJ, Rivera V, Clackson T, Shakespeare WC, Zhu X, Dalgarno DC. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors. J Med Chem 2013; 56:1023-40. [PMID: 23302067 DOI: 10.1021/jm3014844] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.
Collapse
Affiliation(s)
- Anna Kohlmann
- ARIAD Pharmaceuticals, Inc., 26 Landsdowne Street, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ke S, Ho MC, Zhadin N, Deng H, Callender R. Investigation of catalytic loop structure, dynamics, and function relationship of Yersinia protein tyrosine phosphatase by temperature-jump relaxation spectroscopy and X-ray structural determination. J Phys Chem B 2012; 116:6166-76. [PMID: 22564106 DOI: 10.1021/jp3037846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Yersinia protein tyrosine phosphatase (YopH) is the most efficient enzyme among all PTPases. YopH is hyperactive compared to human PTPases, interfering with mammalian cellular pathways to achieve the pathogenicity of Yersinia. Two properties related to the catalytic loop structure differences have been proposed to affect its dynamics and enzyme efficiency. One is the ability of the loop to form stabilizing interactions to bound ligand after loop closure, which has long been recognized. In addition, the loop flexibility/mobility was suggested in a previous study to be a factor as well, based on the observation that incremental changes in PTPase loop structure by single point mutations to alanine often induce incremental changes in enzyme catalytic efficiency. In this study, the temperature jump relaxation spectroscopy (T-jump) has been used to discern the subtle changes of the loop dynamics due to point loop mutations. As expected, our results suggest a correlation between loop dynamics and the size of the residue on the catalytic loop. The stabilization of the enzyme-ligand complex is often enthalpy driven, achieved by formation of additional favorable hydrogen bonding/ionic interactions after loop closure. Interestingly, our T-jump and X-ray crystallography studies on YopH suggest that the elimination of some ligand-protein interactions by mutation does not necessarily destabilize the ligand-enzyme complex after loop closure, since the increased entropy in the forms of more mobile protein residues may be sufficient to compensate the free energy loss due to lost interactions and may even lead to enhanced efficiency of the enzyme catalysis. How these competing loop properties may affect loop dynamics and enzyme function are discussed.
Collapse
Affiliation(s)
- Shan Ke
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | | | |
Collapse
|
36
|
Riera TV, Zheng L, Josephine HR, Min D, Yang W, Hedstrom L. Allosteric activation via kinetic control: potassium accelerates a conformational change in IMP dehydrogenase. Biochemistry 2011; 50:8508-18. [PMID: 21870820 PMCID: PMC3186055 DOI: 10.1021/bi200785s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allosteric activators are generally believed to shift the equilibrium distribution of enzyme conformations to favor a catalytically productive structure; the kinetics of conformational exchange is seldom addressed. Several observations suggested that the usual allosteric mechanism might not apply to the activation of IMP dehydrogenase (IMPDH) by monovalent cations. Therefore, we investigated the mechanism of K(+) activation in IMPDH by delineating the kinetic mechanism in the absence of monovalent cations. Surprisingly, the K(+) dependence of k(cat) derives from the rate of flap closure, which increases by ≥65-fold in the presence of K(+). We performed both alchemical free energy simulations and potential of mean force calculations using the orthogonal space random walk strategy to computationally analyze how K(+) accelerates this conformational change. The simulations recapitulate the preference of IMPDH for K(+), validating the computational models. When K(+) is replaced with a dummy ion, the residues of the K(+) binding site relax into ordered secondary structure, creating a barrier to conformational exchange. K(+) mobilizes these residues by providing alternate interactions for the main chain carbonyls. Potential of mean force calculations indicate that K(+) changes the shape of the energy well, shrinking the reaction coordinate by shifting the closed conformation toward the open state. This work suggests that allosteric regulation can be under kinetic as well as thermodynamic control.
Collapse
Affiliation(s)
- Thomas V. Riera
- Graduate Program in Biochemistry, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| | - Lianqing Zheng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
| | - Helen R. Josephine
- Department of Biology, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| | - Donghong Min
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
| | - Wei Yang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
- Department of Chemistry, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| |
Collapse
|
37
|
Zhang F, Wang N, Kong J, Dai J, Chang F, Feng G, Bi S. Multi-walled carbon nanotubes decrease lactate dehydrogenase activity in enzymatic reaction. Bioelectrochemistry 2011; 82:74-8. [DOI: 10.1016/j.bioelechem.2011.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 03/19/2011] [Accepted: 04/21/2011] [Indexed: 11/25/2022]
|
38
|
Eggert MW, Byrne ME, Chambers RP. Impact of high pyruvate concentration on kinetics of rabbit muscle lactate dehydrogenase. Appl Biochem Biotechnol 2011; 165:676-86. [PMID: 21625872 DOI: 10.1007/s12010-011-9287-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/11/2011] [Indexed: 11/25/2022]
Abstract
In order to evaluate the effectiveness of L: -lactate dehydrogenase (LDH) from rabbit muscle as a regenerative catalyst of the biologically important cofactor nicotinamide adenine dinucleotide (NAD), the kinetics over broad concentrations were studied to develop a suitable kinetic rate expression. Despite robust literature describing the intricate complexations, the mammalian rabbit muscle LDH lacks a quantitative kinetic rate expression accounting for simultaneous inhibition parameters, specifically at high pyruvate concentrations. Product inhibition by L: -lactate was observed to reduce activity at concentrations greater than 25 mM, while expected substrate inhibition by pyruvate was significant above 4.3 mM concentration. The combined effect of ternary and binary complexes of pyruvate and the coenzymes led to experimental rates as little as a third of expected activity. The convenience of the statistical software package JMP allowed for effective determination of experimental kinetic constants and simplification to a suitable rate expression: [formula: see text] where the last three terms represent the inhibition complex terms for lactate, pyruvate, and pyruvate-NAD, respectively. The corresponding values of K (I-Lac), K (I-Pyr), and K (I-Pyr-NAD) for rabbit muscle LDH are 487.33 mM(-1) and 29.91 mM and 97.47 mM at 22 °C and pH 7.8.
Collapse
Affiliation(s)
- Matthew Warren Eggert
- Department of Chemical Engineering, Auburn University, 240 Ross Hall, Auburn, AL 36849, USA
| | | | | |
Collapse
|
39
|
Zhadin N, Callender R. Effect of osmolytes on protein dynamics in the lactate dehydrogenase-catalyzed reaction. Biochemistry 2011; 50:1582-9. [PMID: 21306147 DOI: 10.1021/bi1018545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.
Collapse
Affiliation(s)
- Nickolay Zhadin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|
40
|
Ghanem M, Zhadin N, Callender R, Schramm VL. Loop-tryptophan human purine nucleoside phosphorylase reveals submillisecond protein dynamics. Biochemistry 2009; 48:3658-68. [PMID: 19191546 DOI: 10.1021/bi802339c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human PNP is a homotrimer containing three tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The catalytic sites of PNP are located near the subunit-subunit interfaces where F159 is a catalytic site residue donated from an adjacent subunit. F159 covers the top (beta) surface of the ribosyl group at the catalytic site. QM/MM calculations of human PNP have shown that F159 is the center of the most mobile region of the protein providing access to the substrate in the active site. F159 is also the key residue in a cluster of hydrophobic residues that shield catalytic site ligands from bulk solvent. Trp-free human PNP (Leuko-PNP) was previously engineered by replacing the three Trp residues of native PNP with Tyr. From this active construct, a single Trp residue was placed in the catalytic site loop (F159W-Leuko-PNP) as a reporter group for the ribosyl region of the catalytic site. The F159W-Leuko-PNP fluorescence is red shifted compared to native PNP, suggesting a solvent-exposed Trp residue. Upon ligand binding (hypoxanthine), the 3-fold fluorescence quench confirms conformational packing of the catalytic site pocket hydrophobic cluster. F159W-Leuko-PNP has an on-enzyme thermodynamic equilibrium constant (Keq) near unity in the temperature range between 20 and 30 degrees C and nonzero enthalpic components, making it suitable for laser-induced T-jump analyses. T-jump relaxation kinetics of F159W-Leuko-PNP in equilibrium with substrates and/or products indicate the conformational equilibria of at least two ternary complex intermediates in the nano- to millisecond time scale (1000-10000 s-1) that equilibrate prior to the slower chemical step (approximately 200 s-1). F159W-Leuko-PNP provides a novel protein platform to investigate the protein conformational dynamics occurring prior to transition state formation.
Collapse
Affiliation(s)
- Mahmoud Ghanem
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
41
|
Kubelka J. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem Photobiol Sci 2009; 8:499-512. [DOI: 10.1039/b819929a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 2008; 28:6248-61. [PMID: 18710947 DOI: 10.1128/mcb.00795-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recruitment and differentiation of circulating stem/progenitor cells (SPCs) in subcutaneous Matrigel in mice was assessed. There were over one million CD34(+) SPCs per Matrigel plug 18 h after Matrigel implantation, and including a polymer to elevate the lactate concentration increased the number of SPCs by 3.6-fold. Intricate CD34(+) cell-lined channels were linked to the systemic circulation, and lactate accelerated cell differentiation as evaluated based on surface marker expression and cell cycle entry. CD34(+) SPCs from lactate-supplemented Matrigel exhibited significantly higher concentrations of thioredoxin 1 (Trx1) and hypoxia-inducible factor 1 (HIF-1) than cells from unsupplemented Matrigel, whereas Trx1 and HIF-1 in CD45(+) leukocytes were not elevated by lactate. Results obtained using small inhibitory RNA (siRNA) specific to HIF-1 and mice with conditionally HIF-1 null myeloid cells indicated that SPC recruitment and lactate-mediated effects were dependent on HIF-1. Cells from lactate-supplemented Matrigel had higher concentrations of phosphorylated extracellular signal-regulated kinases 1 and 2, Trx1, Trx reductase (TrxR), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) than cells from unsupplemented Matrigel. SPC recruitment and protein changes were inhibited by siRNA specific to lactate dehydrogenase, TrxR, or HIF-1 and by oxamate, apocynin, U0126, N-acetylcysteine, dithioerythritol, and antibodies to VEGF or SDF-1. Oxidative stress from lactate metabolism by SPCs accelerated further SPC recruitment and differentiation through Trx1-mediated elevations in HIF-1 levels and the subsequent synthesis of HIF-1-dependent growth factors.
Collapse
|
43
|
Blinova K, Levine RL, Boja ES, Griffiths GL, Shi ZD, Ruddy B, Balaban RS. Mitochondrial NADH fluorescence is enhanced by complex I binding. Biochemistry 2008; 47:9636-45. [PMID: 18702505 DOI: 10.1021/bi800307y] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several-fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10-fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state.
Collapse
Affiliation(s)
- Ksenia Blinova
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The dynamic nature of the interconversion of pyruvate to lactate as catalyzed by lactate dehydrogenase (LDH) is characterized by laser-induced temperature jump relaxation spectroscopy with a resolution of 20 ns. An equilibrium system of LDH.NADH plus pyruvate and LDH.NAD+ plus lactate is perturbed by a sudden T-jump, and the relaxation of the system is monitored by NADH emission and absorption changes. The substrate binding pathway is observed to be similar, although not identical, to previous work on substrate mimics: an encounter complex is formed between LDH.NADH and pyruvate, which collapses to the active Michaelis complex. The previously unresolved hydride transfer event is characterized and separated from other unimolecular isomerizations of the protein important for the catalytic mechanism, such as loop closure, a slower step, and faster events on the nanosecond-microsecond timescales whose structural basis is not understood. The results of this study show that this approach can be applied quite generally to enzyme systems and report on the dynamic nature of proteins over a very wide time range.
Collapse
|
45
|
On the pathway of forming enzymatically productive ligand-protein complexes in lactate dehydrogenase. Biophys J 2008; 95:804-13. [PMID: 18390601 DOI: 10.1529/biophysj.108.128884] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have carried out a series of studies on the binding of a substrate mimic to the enzyme lactate dehydrogenase (LDH) using advanced kinetic approaches, which begin to provide a molecular picture of the dynamics of ligand binding for this protein. Binding proceeds via a binding-competent subpopulation of the nonligated form of the protein (the LDH/NADH binary complex) to form a protein-ligand encounter complex. The work here describes the collapse of the encounter complex to form the catalytically competent Michaelis complex. Isotope-edited static Fourier transform infrared studies on the bound oxamate protein complex reveal two kinds of oxamate environments: 1), a major populated structure wherein all significant hydrogen-bonding patterns are formed at the active site between protein and bound ligand necessary for the catalytically productive Michaelis complex and 2), a minor structure in a configuration of the active site that is unfavorable to carry out catalyzed chemistry. This latter structure likely simulates a dead-end complex in the reaction mixture. Temperature jump isotope-edited transient infrared studies on the binding of oxamate with LDH/NADH suggest that the evolution of the encounter complex between LDH/NADH and oxamate collapses via a branched reaction pathway to form the major and minor bound species. The production of the catalytically competent protein-substrate complex has strong similarities to kinetic pathways found in two-state protein folding processes. Once the encounter complex is formed between LDH/NADH and substrate, the ternary protein-ligand complex appears to "fold" to form a compact productive complex in an all or nothing like fashion with all the important molecular interactions coming together at the same time.
Collapse
|
46
|
Ghanem M, Saen-oon S, Zhadin N, Wing C, Cahill SM, Schwartz SD, Callender R, Schramm VL. Tryptophan-free human PNP reveals catalytic site interactions. Biochemistry 2008; 47:3202-15. [PMID: 18269249 DOI: 10.1021/bi702491d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.
Collapse
Affiliation(s)
- Mahmoud Ghanem
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhao GJ, Han KL. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys J 2007; 94:38-46. [PMID: 17827245 PMCID: PMC2134880 DOI: 10.1529/biophysj.107.113738] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The site-specific solvation of the photoexcited protochlorophyllide a (Pchlide a) in methanol solvent was investigated using the time-dependent density functional theory method for the first time to our knowledge. The intermolecular site-specific coordination and hydrogen-bonding interactions between Pchlide a and methanol molecules play a very important role in the steady-state and time-resolved spectra. All the calculated absorption and fluorescence spectra of the isolated Pchlide a and its coordinated and hydrogen-bonded complexes with methanol demonstrate that the novel fluorescence shoulder at approximately 690 nm of Pchlide a in methanol should be ascribed to the coordinated and hydrogen-bonded Pchlide a-(MeOH)(4) complex. This coordinated and hydrogen-bonded complex can also account for the intermediate state found in the time-resolved spectroscopic studies. Herein, we have theoretically confirmed that the intermolecular coordination and hydrogen bonds between Pchlide a and methanol molecules can be strengthened in the electronically excited state of Pchlide a. Furthermore, the site-specific solvation of the photoexcited Pchlide a can be induced by the intermolecular coordination and hydrogen-bond strengthening upon photoexcitation. Then the hydrogen-bonded intermediate state is formed in 22-27 ps timescales after the site-specific solvation. All the steady-state and time-resolved spectral features of Pchlide a in different solvents can be explained by the formation of this hydrogen-bonded intermediate state after the site-specific solvation, which is induced by the coordination and hydrogen-bond strengthening.
Collapse
Affiliation(s)
- Guang-Jiu Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| | | |
Collapse
|
48
|
Qiu L, Gulotta M, Callender R. Lactate dehydrogenase undergoes a substantial structural change to bind its substrate. Biophys J 2007; 93:1677-86. [PMID: 17483169 PMCID: PMC1948838 DOI: 10.1529/biophysj.107.109397] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH.substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 +/- 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior.
Collapse
Affiliation(s)
- Linlin Qiu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
49
|
Abstract
Recent experimental studies suggest that lactate dehydrogenase (LDH) binds its substrate via the formation of a LDH/NADH.substrate encounter complex through a select-fit mechanism, whereby only a minority population of LDH/NADH is binding-competent. In this study, we perform molecular dynamics calculations to explore the variations in structure accessible to the binary complex with a focus on identifying structures that seem likely to be binding-competent and which are in accord with the known experimental characterization of forming binding-competent species. We find that LDH/NADH samples quite a range of protein conformations within our 2.148 ns calculations, some of which yield quite facile access of solvent to the active site. The results suggest that the mobile loop of LDH is perhaps just partially open in these conformations and that multiple open conformations, yielding multiple binding pathways, are likely. These open conformations do not require large-scale unfolding/melting of the binary complex. Rather, open versus closed conformations are due to subtle protein and water rearrangements. Nevertheless, the large heat capacity change observed between binding-competent and binding-incompetent can be explained by changes in solvation and an internal rearrangement of hydrogen bonds. We speculate that such a strategy for binding may be necessary to get a ligand efficiently to a binding pocket that is located fairly deep within the protein's interior.
Collapse
|
50
|
Khajehpour M, Wu L, Liu S, Zhadin N, Zhang ZY, Callender R. Loop dynamics and ligand binding kinetics in the reaction catalyzed by the Yersinia protein tyrosine phosphatase. Biochemistry 2007; 46:4370-8. [PMID: 17352459 DOI: 10.1021/bi602335x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Yersinia protein tyrosine phosphatase (YopH) contains a loop of ten amino acids (the WPD loop) that covers the entrance of the active site of the enzyme during substrate binding. In this work the substrate mimicking competitive inhibitor p-nitrocatechol sulfate (PNC) is used as a probe of the active site. The dynamics of the WPD loop was determined by subjecting an equilibrated system containing YopH, PNC, and YopH bound to PNC to a laser induced temperature jump, and subsequently following the change in equilibrium due to the perturbation. Using this methodology the dynamics associated with substrate binding in YopH have been determined. These results indicate that substrate binding is coupled to the WPD loop motion, and WPD loop dynamics occur in the sub-millisecond time scale. The significance of these dynamic results is interpreted in terms of the catalytic cycle of the enzyme.
Collapse
Affiliation(s)
- Mazdak Khajehpour
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|