1
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. J Mol Biol 2024; 436:168502. [PMID: 38417672 PMCID: PMC11384659 DOI: 10.1016/j.jmb.2024.168502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577102. [PMID: 38328168 PMCID: PMC10849727 DOI: 10.1101/2024.01.24.577102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved SNARE complex assembly, and control multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Jagiellonian University, Faculty of Chemistry, Department of Organic Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
3
|
Stepien KP, Xu J, Zhang X, Bai XC, Rizo J. SNARE assembly enlightened by cryo-EM structures of a synaptobrevin-Munc18-1-syntaxin-1 complex. SCIENCE ADVANCES 2022; 8:eabo5272. [PMID: 35731863 PMCID: PMC9216511 DOI: 10.1126/sciadv.abo5272] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 05/16/2023]
Abstract
Munc18-1 forms a template to organize assembly of the neuronal SNARE complex that triggers neurotransmitter release, binding first to a closed conformation of syntaxin-1 where its amino-terminal region interacts with the SNARE motif, and later binding to synaptobrevin. However, the mechanism of SNARE complex assembly remains unclear. Here, we report two cryo-EM structures of Munc18-1 bound to cross-linked syntaxin-1 and synaptobrevin. The structures allow visualization of how syntaxin-1 opens and reveal how part of the syntaxin-1 amino-terminal region can help nucleate interactions between the amino termini of the syntaxin-1 and synaptobrevin SNARE motifs, while their carboxyl termini bind to distal sites of Munc18-1. These observations, together with mutagenesis, SNARE complex assembly experiments, and fusion assays with reconstituted proteoliposomes, support a model whereby these interactions are critical to initiate SNARE complex assembly and multiple energy barriers enable diverse mechanisms for exquisite regulation of neurotransmitter release.
Collapse
Affiliation(s)
- Karolina P. Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Camacho M, Quade B, Trimbuch T, Xu J, Sari L, Rizo J, Rosenmund C. Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C 1C 2B region. eLife 2021; 10:e72030. [PMID: 34779770 PMCID: PMC8648301 DOI: 10.7554/elife.72030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022] Open
Abstract
Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C1C2B region with the plasma membrane: (i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and (ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here, we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.
Collapse
Affiliation(s)
- Marcial Camacho
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Thorsten Trimbuch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Levent Sari
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical CenterDallasUnited States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Christian Rosenmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
5
|
Voleti R, Bali S, Guerrero J, Smothers J, Springhower C, Acosta GA, Brewer KD, Albericio F, Rizo J. Evaluation of the tert-butyl group as a probe for NMR studies of macromolecular complexes. JOURNAL OF BIOMOLECULAR NMR 2021; 75:347-363. [PMID: 34505210 PMCID: PMC9482097 DOI: 10.1007/s10858-021-00380-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/04/2023]
Abstract
The development of methyl transverse relaxation optimized spectroscopy has greatly facilitated the study of macromolecular assemblies by solution NMR spectroscopy. However, limited sample solubility and stability has hindered application of this technique to ongoing studies of complexes formed on membranes by the neuronal SNAREs that mediate neurotransmitter release and synaptotagmin-1, the Ca2+ sensor that triggers release. Since the 1H NMR signal of a tBu group attached to a large protein or complex can be observed with high sensitivity if the group retains high mobility, we have explored the use of this strategy to analyze presynaptic complexes involved in neurotransmitter release. For this purpose, we attached tBu groups at single cysteines of fragments of synaptotagmin-1, complexin-1 and the neuronal SNAREs by reaction with 5-(tert-butyldisulfaneyl)-2-nitrobenzoic acid (BDSNB), tBu iodoacetamide or tBu acrylate. The tBu resonances of the tagged proteins were generally sharp and intense, although tBu groups attached with BDSNB had a tendency to exhibit somewhat broader resonances that likely result because of the shorter linkage between the tBu and the tagged cysteine. Incorporation of the tagged proteins into complexes on nanodiscs led to severe broadening of the tBu resonances in some cases. However, sharp tBu resonances could readily be observed for some complexes of more than 200 kDa at low micromolar concentrations. Our results show that tagging of proteins with tBu groups provides a powerful approach to study large biomolecular assemblies of limited stability and/or solubility that may be applicable even at nanomolar concentrations.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jaime Guerrero
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jared Smothers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charis Springhower
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Alicat Scientific, Tucson, AZ, 85743, USA
| | - Gerardo A Acosta
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Kyle D Brewer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Otrin L, Witkowska A, Marušič N, Zhao Z, Lira RB, Kyrilis FL, Hamdi F, Ivanov I, Lipowsky R, Kastritis PL, Dimova R, Sundmacher K, Jahn R, Vidaković-Koch T. En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Nat Commun 2021; 12:4972. [PMID: 34404795 PMCID: PMC8371082 DOI: 10.1038/s41467-021-25294-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
A variety of artificial cells springs from the functionalization of liposomes with proteins. However, these models suffer from low durability without repair and replenishment mechanisms, which can be partly addressed by replacing the lipids with polymers. Yet natural membranes are also dynamically remodeled in multiple cellular processes. Here, we show that synthetic amphiphile membranes also undergo fusion, mediated by the protein machinery for synaptic secretion. We integrated fusogenic SNAREs in polymer and hybrid vesicles and observed efficient membrane and content mixing. We determined bending rigidity and pore edge tension as key parameters for fusion and described its plausible progression through cryo-EM snapshots. These findings demonstrate that dynamic membrane phenomena can be reconstituted in synthetic materials, thereby providing new tools for the assembly of synthetic protocells.
Collapse
Affiliation(s)
- Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Agata Witkowska
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rafael B Lira
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
7
|
Voleti R, Jaczynska K, Rizo J. Ca 2+-dependent release of synaptotagmin-1 from the SNARE complex on phosphatidylinositol 4,5-bisphosphate-containing membranes. eLife 2020; 9:57154. [PMID: 32808925 PMCID: PMC7498268 DOI: 10.7554/elife.57154] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
The Ca2+ sensor synaptotagmin-1 and the SNARE complex cooperate to trigger neurotransmitter release. Structural studies elucidated three distinct synaptotagmin-1-SNARE complex binding modes involving 'polybasic', 'primary' and 'tripartite' interfaces of synaptotagmin-1. We investigated these interactions using NMR and fluorescence spectroscopy. Synaptotagmin-1 binds to the SNARE complex through the polybasic and primary interfaces in solution. Ca2+-free synaptotagmin-1 binds to SNARE complexes anchored on PIP2-containing nanodiscs. R398Q/R399Q and E295A/Y338W mutations at the primary interface, which strongly impair neurotransmitter release, disrupt and enhance synaptotagmin-1-SNARE complex binding, respectively. Ca2+ induces tight binding of synaptotagmin-1 to PIP2-containing nanodiscs, disrupting synaptotagmin-1-SNARE interactions. Specific effects of mutations in the polybasic region on Ca2+-dependent synaptotagmin-1-PIP2-membrane interactions correlate with their effects on release. Our data suggest that synaptotagmin-1 binds to the SNARE complex through the primary interface and that Ca2+ releases this interaction, inducing PIP2/membrane binding and allowing cooperation between synaptotagmin-1 and the SNAREs in membrane fusion to trigger release.
Collapse
Affiliation(s)
- Rashmi Voleti
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
8
|
Magdziarek M, Bolembach AA, Stepien KP, Quade B, Liu X, Rizo J. Re-examining how Munc13-1 facilitates opening of syntaxin-1. Protein Sci 2020; 29:1440-1458. [PMID: 32086964 DOI: 10.1002/pro.3844] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/06/2022]
Abstract
Munc13-1 is crucial for neurotransmitter release and, together with Munc18-1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin-1, SNAP-25, and synaptobrevin. Assembly starts with syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13-1 is believed to catalyze the opening of syntaxin-1 to facilitate SNARE complex formation. However, different types of Munc13-1-syntaxin-1 interactions have been reported to underlie this activity, and the critical nature of Munc13-1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13-1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin-1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13-1 fragments, even though binding of this linker region to Munc13-1 is barely detectable. Conversely, the syntaxin-1 SNARE motif clearly binds to Munc13-1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13-1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13-1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin-1 via interactions with the linker.
Collapse
Affiliation(s)
- Magdalena Magdziarek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
SU YY, LI CY, LI D. Progress in Membrane Fusion and Its Application in Drug Delivery. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Munc18-1 is crucial to overcome the inhibition of synaptic vesicle fusion by αSNAP. Nat Commun 2019; 10:4326. [PMID: 31548544 PMCID: PMC6757032 DOI: 10.1038/s41467-019-12188-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022] Open
Abstract
Munc18-1 and Munc13-1 orchestrate assembly of the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, allowing exquisite regulation of neurotransmitter release. Non-regulated neurotransmitter release might be prevented by αSNAP, which inhibits exocytosis and SNARE-dependent liposome fusion. However, distinct mechanisms of inhibition by αSNAP were suggested, and it is unknown how such inhibition is overcome. Using liposome fusion assays, FRET and NMR spectroscopy, here we provide a comprehensive view of the mechanisms underlying the inhibitory functions of αSNAP, showing that αSNAP potently inhibits liposome fusion by: binding to syntaxin-1, hindering Munc18-1 binding; binding to syntaxin-1-SNAP-25 heterodimers, precluding SNARE complex formation; and binding to trans-SNARE complexes, preventing fusion. Importantly, inhibition by αSNAP is avoided only when Munc18-1 binds first to syntaxin-1, leading to Munc18-1-Munc13-1-dependent liposome fusion. We propose that at least some of the inhibitory activities of αSNAP ensure that neurotransmitter release occurs through the highly-regulated Munc18-1-Munc13-1 pathway at the active zone. Munc18-1 and Munc13-1 are key for the exquisite regulation of neurotransmitter release. Here biophysical experiments show how αSNAP inhibits liposome fusion mediated by the neuronal SNAREs and how Munc18-1 overcomes this inhibition, ensuring that release depends on Munc18-1 and Munc13-1.
Collapse
|
11
|
Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs. Biophys J 2019; 115:300-312. [PMID: 30021106 DOI: 10.1016/j.bpj.2018.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) control vital cellular signaling pathways. GPCR oligomerization is proposed to increase signaling diversity. However, many reports have arrived at disparate conclusions regarding the existence, stability, and stoichiometry of GPCR oligomers, partly because of cellular complexity and ensemble averaging of intrareconstitution heterogeneities that complicate the interpretation of oligomerization data. To overcome these limitations, we exploited fluorescence-microscopy-based high-content analysis of single proteoliposomes. This allowed multidimensional quantification of intrinsic monomer-monomer interactions of three class A GPCRs (β2-adrenergic receptor, cannabinoid receptor type 1, and opsin). Using a billion-fold less protein than conventional assays, we quantified oligomer stoichiometries, association constants, and the influence of two ligands and membrane curvature on oligomerization, revealing key similarities and differences for three GPCRs with decidedly different physiological functions. The assays introduced here will assist with the quantitative experimental observation of oligomerization for transmembrane proteins in general.
Collapse
|
12
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
13
|
Arachidonic acid and lysophosphatidylcholine inhibit multiple late steps of regulated exocytosis. Biochem Biophys Res Commun 2019; 515:261-267. [PMID: 31126681 DOI: 10.1016/j.bbrc.2019.05.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
The canonical Phospholipase A2 (PLA2) metabolites lysophosphatidylcholine (LPC) and arachidonic acid (ARA) affect regulated exocytosis in a wide variety of cells and are proposed to directly influence membrane merger owing to their respective spontaneous curvatures. According to the Stalk-pore hypothesis, negative curvature ARA inhibits and promotes bilayer merger upon introduction into the distal or proximal monolayers, respectively; in contrast, with positive curvature, LPC has the opposite effects. Using fully primed, release-ready native cortical secretory vesicles (CV), well-established fusion assays and standardized lipid analyses, we show that exogenous ARA and LPC, as well as their non-metabolizable analogous, ETYA and ET-18-OCH3, inhibit the docking/priming and membrane merger steps, respectively, of regulated exocytosis.
Collapse
|
14
|
Jiang X, Zhang Z, Cheng K, Wu Q, Jiang L, Pielak GJ, Liu M, Li C. Membrane-mediated disorder-to-order transition of SNAP25 flexible linker facilitates its interaction with syntaxin-1 and SNARE-complex assembly. FASEB J 2019; 33:7985-7994. [PMID: 30916996 DOI: 10.1096/fj.201802796r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex comprises synaptosome-associated protein of 25 kDa (SNAP25), syntaxin-1a (syx-1), and synaptobrevin 2, which is essential for many physiologic processes requiring membrane fusion. Several studies imply that the loop region of SNAP25 plays important roles in SNARE-complex assembly. However, why and how the flexible loop facilitates the complex assembly remains poorly understood because it is purposely deleted in almost all structural studies. By using NMR spectroscopy and circular dichroism spectropolarimetry, we characterized SNAP25 structure and interactions with other SNAREs in aqueous buffer and in the membrane. We found that the N-terminal of the SNAP25 loop region binds with membrane, and this interaction induced a disorder-to-order conformational change of the loop, resulting in enhanced interaction between the C-terminal of the SNAP25 loop and syx-1. We further proved that SNARE-complex assembly efficiency decreased when we disrupted the electrostatic interaction between C-terminal of the SNAP25 loop and syx-1, suggesting that the SNAP25 loop region facilitates SNARE-complex assembly through promoting prefusion SNARE binary complex formation. Our work elucidates the role of the flexible loop and the membrane environment in SNARE-complex assembly at the residue level, which helps to understand membrane fusion, a fundamental transport and communication process in cells.-Jiang, X., Zhang, Z., Cheng, K., Wu, Q., Jiang, L., Pielak, G. J., Liu, M., Li, C. Membrane-mediated disorder-to-order transition of SNAP25 flexible linker facilitates its interaction with syntaxin-1 and SNARE-complex assembly.
Collapse
Affiliation(s)
- Xin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Gary J Pielak
- Department of Chemistry and Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Quade B, Camacho M, Zhao X, Orlando M, Trimbuch T, Xu J, Li W, Nicastro D, Rosenmund C, Rizo J. Membrane bridging by Munc13-1 is crucial for neurotransmitter release. eLife 2019; 8:42806. [PMID: 30816091 PMCID: PMC6407922 DOI: 10.7554/elife.42806] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
Munc13-1 plays a crucial role in neurotransmitter release. We recently proposed that the C-terminal region encompassing the C1, C2B, MUN and C2C domains of Munc13-1 (C1C2BMUNC2C) bridges the synaptic vesicle and plasma membranes through interactions involving the C2C domain and the C1-C2B region. However, the physiological relevance of this model has not been demonstrated. Here we show that C1C2BMUNC2C bridges membranes through opposite ends of its elongated structure. Mutations in putative membrane-binding sites of the C2C domain disrupt the ability of C1C2BMUNC2C to bridge liposomes and to mediate liposome fusion in vitro. These mutations lead to corresponding disruptive effects on synaptic vesicle docking, priming, and Ca2+-triggered neurotransmitter release in mouse neurons. Remarkably, these effects include an almost complete abrogation of release by a single residue substitution in this 200 kDa protein. These results show that bridging the synaptic vesicle and plasma membranes is a central function of Munc13-1.
Collapse
Affiliation(s)
- Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcial Camacho
- Institut für Neurophysiologie, Charité - Universitätsmedizin, Berlin, Germany.,NeuroCure Cluster of Excellence, Berlin, Germany
| | - Xiaowei Zhao
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marta Orlando
- Institut für Neurophysiologie, Charité - Universitätsmedizin, Berlin, Germany.,NeuroCure Cluster of Excellence, Berlin, Germany
| | - Thorsten Trimbuch
- Institut für Neurophysiologie, Charité - Universitätsmedizin, Berlin, Germany.,NeuroCure Cluster of Excellence, Berlin, Germany
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Wei Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daniela Nicastro
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Christian Rosenmund
- Institut für Neurophysiologie, Charité - Universitätsmedizin, Berlin, Germany.,NeuroCure Cluster of Excellence, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
16
|
Zheng T, Chen Y, Shi Y, Feng H. High efficiency liposome fusion induced by reducing undesired membrane peptides interaction. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA full membrane fusion model which attains both complete lipid mixing and content mixing liposomal membranes mediated by coiled-coil forming lipopeptides LPK [L-PEG12-(KIAALKE)3] and LPE [L-PEG12-(EIAALEK)3] is presented. The electrostatic effects of lipid anchored peptides on fusion efficiency was investigated. For this, the original amino acid sequence of the membrane bound LPK was varied at its ‘f’-position of the helical structure, i.e. via mutating the anionic glutamate residues by either neutral serines or cationic lysines. Both CD and fluorescence measurements showed that replacing the negatively charged glutamate did not significantly alter the peptide ability to form a coiled coil, but lipid mixing and content mixing assays showed more efficient liposome-liposome fusion resulting in almost quantitative content mixing for the lysine mutated analogue (LPKK) in conjunction with LPE. A mechanism is proposed for a fusion model triggered by membrane destabilizing effects mediated by the membrane destabilizing activety of LPK in cooperation with the electrostatic activity of LPE. This new insight may enlightens the further development of a promising nano carrier tool for biomedical applications.
Collapse
Affiliation(s)
- Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518036 Shenzhen, Shenzhen, China
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Yun Chen
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Yu Shi
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
17
|
Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP. eLife 2019; 8:38880. [PMID: 30657450 PMCID: PMC6353594 DOI: 10.7554/elife.38880] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release requires formation of trans-SNARE complexes between the synaptic vesicle and plasma membranes, which likely underlies synaptic vesicle priming to a release-ready state. It is unknown whether Munc18-1, Munc13-1, complexin-1 and synaptotagmin-1 are important for priming because they mediate trans-SNARE complex assembly and/or because they prevent trans-SNARE complex disassembly by NSF-αSNAP, which can lead to de-priming. Here we show that trans-SNARE complex formation in the presence of NSF-αSNAP requires both Munc18-1 and Munc13-1, as proposed previously, and is facilitated by synaptotagmin-1. Our data also show that Munc18-1, Munc13-1, complexin-1 and likely synaptotagmin-1 contribute to maintaining assembled trans-SNARE complexes in the presence of NSF-αSNAP. We propose a model whereby Munc18-1 and Munc13-1 are critical not only for mediating vesicle priming but also for precluding de-priming by preventing trans-SNARE complex disassembly; in this model, complexin-1 also impairs de-priming, while synaptotagmin-1 may assist in priming and hinder de-priming.
Collapse
Affiliation(s)
- Eric A Prinslow
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
18
|
Koukalová A, Pokorná Š, Boyle AL, Lopez Mora N, Kros A, Hof M, Šachl R. Distinct roles of SNARE-mimicking lipopeptides during initial steps of membrane fusion. NANOSCALE 2018; 10:19064-19073. [PMID: 30288507 DOI: 10.1039/c8nr05730c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A model system for membrane fusion, inspired by SNARE proteins and based on two complementary lipopeptides CPnE4 and CPnK4, has been recently developed. It consists of cholesterol (C), a poly(ethylene glycol) linker (Pn) and either a cationic peptide K4 (KIAALKE)4 or an anionic peptide E4 (EIAALEK)4. In this paper, fluorescence spectroscopy is used to decipher distinct but complementary roles of these lipopeptides during early stages of membrane fusion. Molecular evidence is provided that different distances of E4 in CPnE4 and K4 in CPnK4 from the bilayer represent an important mechanism, which enables fusion. Whereas E4 is exposed to the bulk and solely promotes membrane binding of CPnK4, K4 loops back to the lipid-water interface where it fulfills two distinct roles: it initiates bilayer contact by binding to CPnE4 containing bilayers; and it initiates fusion by modulating the bilayer properties. The interaction between CPnE4 and CPnK4 is severely down-regulated by binding of K4 to the bilayer and possible only if the lipopeptides approach each other as constituents of different bilayers. When the complementary lipopeptides are localized in the same bilayer, hetero-coiling is disabled. These data provide crucial insights as to how fusion is initiated and highlight the importance of both peptides in this process.
Collapse
Affiliation(s)
- Alena Koukalová
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Prague, 182 23, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
19
|
Jumeaux C, Wahlsten O, Block S, Kim E, Chandrawati R, Howes PD, Höök F, Stevens MM. MicroRNA Detection by DNA-Mediated Liposome Fusion. Chembiochem 2018; 19:434-438. [PMID: 29333674 PMCID: PMC5861668 DOI: 10.1002/cbic.201700592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Olov Wahlsten
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Stephan Block
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
- Present address: Department of Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Eunjung Kim
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Rona Chandrawati
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Present address: School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Philip D. Howes
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Fredrik Höök
- Department of PhysicsChalmers University of Technology41296GöteborgSweden
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
20
|
Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning. Int J Mol Sci 2018; 19:ijms19010211. [PMID: 29320427 PMCID: PMC5796160 DOI: 10.3390/ijms19010211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
A minimal model system for membrane fusion, comprising two complementary peptides dubbed "E" and "K" joined to a cholesterol anchor via a polyethyleneglycol spacer, has previously been developed in our group. This system promotes the fusion of large unilamellar vesicles and facilitates liposome-cell fusion both in vitro and in vivo. Whilst several aspects of the system have previously been investigated to provide an insight as to how fusion is facilitated, anchor positioning has not yet been considered. In this study, the effects of placing the anchor at either the N-terminus or in the center of the peptide are investigated using a combination of circular dichroism spectroscopy, dynamic light scattering, and fluorescence assays. It was discovered that anchoring the "K" peptide in the center of the sequence had no effect on its structure, its ability to interact with membranes, or its ability to promote fusion, whereas anchoring the 'E' peptide in the middle of the sequence dramatically decreases fusion efficiency. We postulate that anchoring the 'E' peptide in the middle of the sequence disrupts its ability to form homodimers with peptides on the same membrane, leading to aggregation and content leakage.
Collapse
|
21
|
Liu X, Tian F, Yue T, Zhang X, Zhong C. Pulling force and surface tension drive membrane fusion. J Chem Phys 2017; 147:194703. [PMID: 29166098 DOI: 10.1063/1.4997393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite catalyzed by fusion proteins of quite different molecular architectures, intracellular, viral, and cell-to-cell fusions are found to have the essential common features and the nearly same nature of transition states. The similarity inspires us to find a more general catalysis mechanism for membrane fusion that minimally depends on the specific structures of fusion proteins. In this work, we built a minimal model for membrane fusion, and by using dissipative particle dynamics simulations, we propose a mechanism that the pulling force generated by fusion proteins initiates the fusion process and the membrane tension regulates the subsequent fusion stages. The model shows different features compared to previous computer simulation studies: the pulling force catalyzes membrane fusion through lipid head overcrowding in the contacting region, leading to an increase in the head-head repulsion and/or the unfavorable head-tail contacts from opposing membranes, both of which destabilize the contacting leaflets and thus promote membrane fusion or vesicle rupture. Our simulations produce a variety of shapes and intermediates, closely resembling cases seen experimentally. Our work strongly supports the view that the tight pulling mechanism is a conserved feature of fusion protein-mediated fusion and that the membrane tension plays an essential role in fusion.
Collapse
Affiliation(s)
- Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Falin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
22
|
Wickner W, Rizo J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 2017; 28:707-711. [PMID: 28292915 PMCID: PMC5349777 DOI: 10.1091/mbc.e16-07-0517] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 11/11/2022] Open
Abstract
Recent studies suggest revisions to the SNARE paradigm of membrane fusion. Membrane tethers and/or SNAREs recruit proteins of the Sec 1/Munc18 family to catalyze SNARE assembly into trans-complexes. SNARE-domain zippering draws the bilayers into immediate apposition and provides a platform to position fusion triggers such as Sec 17/α-SNAP and/or synaptotagmin, which insert their apolar "wedge" domains into the bilayers, initiating the lipid rearrangements of fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 )
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390 )
| |
Collapse
|
23
|
Liu X, Seven AB, Xu J, Esser V, Su L, Ma C, Rizo J. Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion. Nat Protoc 2017; 12:2014-2028. [PMID: 28858288 PMCID: PMC6163043 DOI: 10.1038/nprot.2017.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This protocol describes reconstitution assays to study how the neurotransmitter release machinery triggers Ca2+-dependent synaptic vesicle fusion. The assays monitor fusion between proteoliposomes containing the synaptic vesicle SNARE synaptobrevin (with or without the Ca2+ sensor synaptotagmin-1) and proteoliposomes initially containing the plasma membrane SNAREs syntaxin-1 and soluble NSF attachment protein (SNAP)-25. Lipid mixing (from fluorescence de-quenching of Marina-Blue-labeled lipids) and content mixing (from development of fluorescence resonance energy transfer (FRET) between phycoerythrin-biotin (PhycoE-Biotin) and Cy5-streptavidin trapped in the two proteoliposome populations) are measured simultaneously to ensure that true, nonleaky membrane fusion is monitored. This protocol is based on a method developed to study yeast vacuolar fusion. In contrast to other protocols used to study the release machinery, this assay incorporates N-ethylmaleimide sensitive factor (NSF) and α-SNAP, which disassemble syntaxin-1 and SNAP-25 heterodimers. As a result, fusion requires Munc18-1, which binds to the released syntaxin-1, and Munc13-1, which, together with Munc18-1, orchestrates SNARE complex assembly. The protocol can be readily adapted to investigation of other types of intracellular membrane fusion by using appropriate alternative proteins. Total time required for one round of the assay is 4 d.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alpay Burak Seven
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
24
|
Sitarska E, Xu J, Park S, Liu X, Quade B, Stepien K, Sugita K, Brautigam CA, Sugita S, Rizo J. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion. eLife 2017; 6. [PMID: 28477408 PMCID: PMC5464772 DOI: 10.7554/elife.24278] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Munc18-1 orchestrates SNARE complex assembly together with Munc13-1 to mediate neurotransmitter release. Munc18-1 binds to synaptobrevin, but the relevance of this interaction and its relation to Munc13 function are unclear. NMR experiments now show that Munc18-1 binds specifically and non-specifically to synaptobrevin. Specific binding is inhibited by a L348R mutation in Munc18-1 and enhanced by a D326K mutation designed to disrupt the ‘furled conformation’ of a Munc18-1 loop. Correspondingly, the activity of Munc18-1 in reconstitution assays that require Munc18-1 and Munc13-1 for membrane fusion is stimulated by the D326K mutation and inhibited by the L348R mutation. Moreover, the D326K mutation allows Munc13-1-independent fusion and leads to a gain-of-function in rescue experiments in Caenorhabditis elegans unc-18 nulls. Together with previous studies, our data support a model whereby Munc18-1 acts as a template for SNARE complex assembly, and autoinhibition of synaptobrevin binding contributes to enabling regulation of neurotransmitter release by Munc13-1. DOI:http://dx.doi.org/10.7554/eLife.24278.001 Nerve cells communicate with other nerve cells by releasing small molecules called neurotransmitters. The neurotransmitters are first packaged inside bubble-like structures called vesicles, which fuse with the membrane of the nerve cell when it is stimulated. Once the vesicle and membrane have fused, the neurotransmitters are released outside the nerve cell and are detected when they bind to proteins on the surface of other nearby nerve cells. A machinery of different proteins controls membrane fusion. Amongst these proteins are five called Munc18-1, Munc13-1, syntaxin-1, synaptobrevin and SNAP-25. The last three form a tight bundle called SNARE complex that brings the vesicle and cell membrane together and is essential for the two to fuse. Munc18-1 and Munc13-1 orchestrate the assembly of the SNARE complex. Previous studies suggested that Munc18-1 binds to synaptobrevin, providing a template to bring syntaxin-1 and synaptobrevin together and thereby helping the SNARE complex to form. However, the importance of the interaction between Munc18-1 and synaptobrevin was not clearly established, and it was not known how Munc13-1 is involved. Sitarska, Xu et al. have now measured how mutated versions of Munc18-1 bind to synaptobrevin and tested how the mutations affect membrane fusion. A mutation in Munc18-1 that increased binding to synaptobrevin increased membrane fusion too, while a mutation that decreased binding had the opposite effect and reduced fusion. The results support the idea that Munc18-1 provides a template for the SNARE complex to form. One mutation stimulated Munc18-1 so that Munc13-1 was no longer needed for fusion when the mutant Munc18-1 was tested in fusion assays with artificial membranes. This mutation was designed to perturb the structure of a region of Munc18-1 protein that normally inhibits the binding of synaptobrevin. These results suggest that by adopting a state where it cannot bind synaptobrevin, Munc18-1 can only be stimulated to form the SNARE complex and trigger release of neurotransmitter when Munc13-1 is present. This provides a way for Munc13-1, which is regulated by many factors, to fine-tune the release of neurotransmitter. Future work will test whether these proteins work in the same way in living animals. This will help us understand how communication between neurons is finely controlled to enable the brain to carry out its many different tasks. DOI:http://dx.doi.org/10.7554/eLife.24278.002
Collapse
Affiliation(s)
- Ewa Sitarska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Seungmee Park
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kyoko Sugita
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shuzo Sugita
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
25
|
RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. Biochem J 2017; 474:1205-1220. [PMID: 28202712 DOI: 10.1042/bcj20160886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.
Collapse
|
26
|
Assay of Flippase Activity in Proteoliposomes Using Fluorescent Lipid Derivatives. Methods Mol Biol 2016; 1377:181-91. [PMID: 26695033 DOI: 10.1007/978-1-4939-3179-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Specific membrane proteins, termed lipid flippases, play a central role in facilitating the movement of lipids across cellular membranes. In this protocol, we describe the reconstitution of ATP-driven lipid flippases in liposomes and the analysis of their in vitro flippase activity based on the use of fluorescent lipid derivatives. Working with purified and reconstituted systems provides a well-defined experimental setup and allows to directly characterize these membrane proteins at the molecular level.
Collapse
|
27
|
Liu X, Seven AB, Camacho M, Esser V, Xu J, Trimbuch T, Quade B, Su L, Ma C, Rosenmund C, Rizo J. Functional synergy between the Munc13 C-terminal C1 and C2 domains. eLife 2016; 5. [PMID: 27213521 PMCID: PMC4927299 DOI: 10.7554/elife.13696] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion. DOI:http://dx.doi.org/10.7554/eLife.13696.001 In the brain, neurons communicate with each other using small molecules called neurotransmitters. Electrical signals in one neuron trigger the release of the neurotransmitters, which then bind to receptor proteins on another neuron nearby. Neurotransmitters are packaged into small compartments called synaptic vesicles and are released from the neuron when these vesicles fuse with the membrane that surrounds the cell. Many proteins are involved in regulating this process to ensure that neurotransmitters are released at the right place and time. A large protein called Munc13 plays an important role in the release of neurotransmitters. It contains many different regions, including a long domain called MUN and three additional domains called C1, C2B and C2C among others. However, it is not clear how all these domains work together to control neurotransmitter release. Here Liu, Seven et al. address this question using purified proteins inserted into membranes as well as experiments in neurons from mice. The experiments show that the C1, C2B and C2C domains all play key roles in neurotransmitter release. Together with the MUN domain, these three domains help to form bridges between synaptic vesicles and the membrane surrounding the neuron. These bridges could help other proteins involved in neurotransmitter release to form a group that induces vesicle fusion. Liu, Seven et al.’s findings also suggest that Munc13 proteins cooperate with other proteins to form a 'primed' state in which a synaptic vesicle is ready to rapidly fuse with a neuron’s membrane when triggered to do so by an electrical signal. A future challenge is to find out how the proteins that form this primed state promote vesicle fusion. DOI:http://dx.doi.org/10.7554/eLife.13696.002
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alpay Burak Seven
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcial Camacho
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Thorsten Trimbuch
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Rosenmund
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
28
|
Woo SY, Lee H. All-atom simulations and free-energy calculations of coiled-coil peptides with lipid bilayers: binding strength, structural transition, and effect on lipid dynamics. Sci Rep 2016; 6:22299. [PMID: 26926570 PMCID: PMC4772085 DOI: 10.1038/srep22299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/11/2016] [Indexed: 01/04/2023] Open
Abstract
Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.
Collapse
Affiliation(s)
- Sun Young Woo
- Department of Chemical Engineering, Dankook University, Yongin, 448-701, South Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin, 448-701, South Korea
| |
Collapse
|
29
|
Lee M, Ko YJ, Moon Y, Han M, Kim HW, Lee SH, Kang K, Jun Y. SNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae. J Cell Biol 2015. [PMID: 26216899 PMCID: PMC4523606 DOI: 10.1083/jcb.201501043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were required for Sey1p-mediated ER fusion. Consistently, ER fusion was significantly reduced by inhibition of Sec18p and Sec17p, which regulate SNARE-mediated membrane fusion. The involvement of SNAREs in Sey1p-dependent ER fusion was further supported by the physical interaction of Sey1p with Sec22p and Ufe1p, another ER SNARE. Furthermore, our estimation of the concentration of Sey1p on isolated microsomes, together with the lack of fusion between Sey1p proteoliposomes even with a 25-fold excess of the physiological concentration of Sey1p, suggests that Sey1p requires additional factors to support ER fusion in vivo. Collectively, our data strongly suggest that SNARE-mediated membrane fusion is involved in atlastin-initiated homotypic ER fusion.
Collapse
Affiliation(s)
- Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Young-Joon Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Minsoo Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Seoul 143-747, Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 501-759, Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 440-746, Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Integrative Aging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
30
|
Brunger AT, Cipriano DJ, Diao J. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit Rev Biochem Mol Biol 2015; 50:231-41. [PMID: 25788028 PMCID: PMC4673598 DOI: 10.3109/10409238.2015.1023252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed.
Collapse
|
31
|
Fuhrmans M, Marelli G, Smirnova YG, Müller M. Mechanics of membrane fusion/pore formation. Chem Phys Lipids 2015; 185:109-28. [DOI: 10.1016/j.chemphyslip.2014.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 11/27/2022]
|
32
|
Su L, Quade B, Wang H, Sun L, Wang X, Rizo J. A plug release mechanism for membrane permeation by MLKL. Structure 2014; 22:1489-500. [PMID: 25220470 DOI: 10.1016/j.str.2014.07.014] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Abstract
MLKL is crucial for necroptosis, permeabilizing membranes through its N-terminal region upon phosphorylation of its kinase-like domain by RIP3. However, the mechanism underlying membrane permeabilization is unknown. The solution structure of the MLKL N-terminal region determined by nuclear magnetic resonance spectroscopy reveals a four-helix bundle with an additional helix at the top that is likely key for MLKL function, and a sixth, C-terminal helix that interacts with the top helix and with a poorly packed interface within the four-helix bundle. Fluorescence spectroscopy measurements indicate that much of the four-helix bundle inserts into membranes, but not the C-terminal helix. Moreover, we find that the four-helix bundle is sufficient to induce liposome leakage and that the C-terminal helix inhibits this activity. These results suggest that the four-helix bundle mediates membrane breakdown during necroptosis and that the sixth helix acts as a plug that prevents opening of the bundle and is released upon RIP3 phosphorylation.
Collapse
Affiliation(s)
- Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Huayi Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Liming Sun
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex drives the majority of intracellular and exocytic membrane fusion events. Whether and how SNAREs cooperate to mediate fusion has been a subject of intense study, with estimates ranging from a single SNARE complex to 15. Here we show that there is no universally conserved number of SNARE complexes involved as revealed by our observation that this varies greatly depending on membrane curvature. When docking rates of small (∼40 nm) and large (∼100 nm) liposomes reconstituted with different synaptobrevin (the SNARE present in synaptic vesicles) densities are taken into account, the lipid mixing efficiency was maximal with small liposomes with only one synaptobrevin, whereas 23-30 synaptobrevins were necessary for efficient lipid mixing in large liposomes. Our results can be rationalized in terms of strong and weak cooperative coupling of SNARE complex assembly where each mode implicates different intermediate states of fusion that have been recently identified by electron microscopy. We predict that even higher variability in cooperativity is present in different physiological scenarios of fusion, and we further hypothesize that plasticity of SNAREs to engage in different coupling modes is an important feature of the biologically ubiquitous SNARE-mediated fusion reactions.
Collapse
|
34
|
Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nat Methods 2014; 11:931-4. [PMID: 25086504 DOI: 10.1038/nmeth.3062] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/27/2014] [Indexed: 02/07/2023]
Abstract
Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional heterogeneities can severely skew ensemble-average proteoliposome measurements but also enable ultraminiaturized high-content screens. We took advantage of this screening capability to map the oligomerization energy of the β2-adrenergic receptor using ∼10(9)-fold less protein than conventional assays.
Collapse
|
35
|
Önel SF, Rust MB, Jacob R, Renkawitz-Pohl R. Tethering membrane fusion: common and different players in myoblasts and at the synapse. J Neurogenet 2014; 28:302-15. [PMID: 24957080 PMCID: PMC4245166 DOI: 10.3109/01677063.2014.936014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion.
Collapse
Affiliation(s)
- Susanne Filiz Önel
- Developmental Biology, Philipps University of Marburg , 35043 Marburg , Germany
| | | | | | | |
Collapse
|
36
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Application of nucleic acid-lipid conjugates for the programmable organisation of liposomal modules. Adv Colloid Interface Sci 2014; 207:290-305. [PMID: 24461711 DOI: 10.1016/j.cis.2013.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
We present a critical review of recent work related to the assembly of multicompartment liposome clusters using nucleic acids as a specific recognition unit to link liposomal modules. The asymmetry in nucleic acid binding to its non-self complementary strand allows the controlled association of different compartmental modules into composite systems. These biomimetic multicompartment architectures could have future applications in chemical process control, drug delivery and synthetic biology. We assess the different methods of anchoring DNA to lipid membrane surfaces and discuss how lipid and DNA properties can be tuned to control the morphology and properties of liposome superstructures. We consider different methods for chemical communication between the contents of liposomal compartments within these clusters and assess the progress towards making this chemical mixing efficient, switchable and chemically specific. Finally, given the current state of the art, we assess the outlook for future developments towards functional modular networks of liposomes.
Collapse
|
38
|
Mooney J, Thakur S, Kahng P, Trapani JG, Poccia D. Quantification of exocytosis kinetics by DIC image analysis of cortical lawns. J Chem Biol 2014; 7:43-55. [PMID: 24711858 DOI: 10.1007/s12154-013-0104-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Cortical lawns prepared from sea urchin eggs have offered a robust in vitro system for study of regulated exocytosis and membrane fusion events since their introduction by Vacquier almost 40 years ago (Vacquier in Dev Biol 43:62-74, 1975). Lawns have been imaged by phase contrast, darkfield, differential interference contrast, and electron microscopy. Quantification of exocytosis kinetics has been achieved primarily by light scattering assays. We present simple differential interference contrast image analysis procedures for quantifying the kinetics and extent of exocytosis in cortical lawns using an open vessel that allows rapid solvent equilibration and modification. These preparations maintain the architecture of the original cortices, allow for cytological and immunocytochemical analyses, and permit quantification of variation within and between lawns. When combined, these methods can shed light on factors controlling the rate of secretion in a spatially relevant cellular context. We additionally provide a subroutine for IGOR Pro® that converts raw data from line scans of cortical lawns into kinetic profiles of exocytosis. Rapid image acquisition reveals spatial variations in time of initiation of individual granule fusion events with the plasma membrane not previously reported.
Collapse
Affiliation(s)
- James Mooney
- Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Saumitra Thakur
- Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Peter Kahng
- Department of Biology, Amherst College, Amherst, MA 01002 USA
| | - Josef G Trapani
- Department of Biology, Amherst College, Amherst, MA 01002 USA ; Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Dominic Poccia
- Department of Biology, Amherst College, Amherst, MA 01002 USA ; Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| |
Collapse
|
39
|
van Lengerich B, Rawle RJ, Bendix PM, Boxer SG. Individual vesicle fusion events mediated by lipid-anchored DNA. Biophys J 2014; 105:409-19. [PMID: 23870262 DOI: 10.1016/j.bpj.2013.05.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022] Open
Abstract
Membrane fusion consists of a complex rearrangement of lipids and proteins that results in the merger of two lipid bilayers. We have developed a model system that employs synthetic DNA-lipid conjugates as a surrogate for the membrane proteins involved in the biological fusion reaction. We previously showed that complementary DNA-lipids, inserted into small unilamellar vesicles, can mediate membrane fusion in bulk. Here, we use a model membrane architecture developed in our lab to directly observe single-vesicle fusion events using fluorescence microscopy. In this system, a planar tethered membrane patch serves as the target membrane for incoming vesicles. This allows us to quantify the kinetics and characteristics of individual fusion events from the perspective of the lipids or the DNA-lipids involved in the process. We find that the fusion pathways are heterogeneous, with an arrested hemi-fusion state predominating, and we quantitate the outcome and rate of fusion events to construct a mechanistic model of DNA-mediated vesicle fusion. The waiting times between docking and fusion are distributed exponentially, suggesting that fusion occurs in a single step. Our analysis indicates that when two lipid bilayers are brought into close proximity, fusion occurs spontaneously, with little or no dependence on the number of DNA hybrids formed.
Collapse
|
40
|
Kiessling V, Ahmed S, Domanska MK, Holt MG, Jahn R, Tamm LK. Rapid fusion of synaptic vesicles with reconstituted target SNARE membranes. Biophys J 2013; 104:1950-8. [PMID: 23663838 DOI: 10.1016/j.bpj.2013.03.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022] Open
Abstract
Neurotransmitter release at neuronal synapses occurs on a timescale of 1 ms or less. Reconstitution of vesicle fusion from purified synaptic proteins and lipids has played a major role in elucidating the synaptic exocytotic fusion machinery with ever increasing detail. However, one limitation of most reconstitution approaches has been the relatively slow rate of fusion that can be produced in these systems. In a related study, a notable exception is an approach measuring fusion of single reconstituted vesicles bearing the vesicle fusion protein synaptobrevin with supported planar membranes harboring the presynaptic plasma membrane proteins syntaxin and SNAP-25. Fusion times of ∼20 ms were achieved in this system. Despite this advance, an important question with reconstituted systems is how well they mimic physiological systems they are supposed to reproduce. In this work, we demonstrate that purified synaptic vesicles from rat brain fuse with acceptor-SNARE containing planar bilayers equally fast as equivalent reconstituted vesicles and that their fusion efficiency is increased by divalent cations. Calcium boosts fusion through a combined general electrostatic and synaptotagmin-specific mechanism.
Collapse
Affiliation(s)
- Volker Kiessling
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
42
|
Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex. J Mol Biol 2013; 425:3461-75. [PMID: 23845424 DOI: 10.1016/j.jmb.2013.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 01/12/2023]
Abstract
Ca²⁺-triggered neurotransmitter release depends on the formation of SNARE complexes that bring the synaptic vesicle and plasma membranes together, on the Ca²⁺ sensor synaptotagmin-1 and on complexins, which play active and inhibitory roles. Release of the complexin inhibitory activity by binding of synaptotagmin-1 to the SNARE complex, causing complexin displacement, was proposed to trigger exocytosis. However, the validity of this model was questioned based on the observation of simultaneous binding of complexin-I and a fragment containing the synaptotagmin-1 C2 domains (C2AB) to membrane-anchored SNARE complex. Using diverse biophysical techniques, here we show that C2AB and complexin-I do not bind to each other but can indeed bind simultaneously to the SNARE complex in solution. Hence, the SNARE complex contains separate binding sites for both proteins. However, total internal reflection fluorescence microscopy experiments show that C2AB can displace a complexin-I fragment containing its central SNARE-binding helix and an inhibitory helix (Cpx26-83) from membrane-anchored SNARE complex under equilibrium conditions. Interestingly, full-length complexin-I binds more tightly to membrane-anchored SNARE complex than Cpx26-83, and it is not displaced by C2AB. These results show that interactions of N- and/or C-terminal sequences of complexin-I with the SNARE complex and/or phospholipids increase the affinity of complexin-I for the SNARE complex, hindering dissociation induced by C2AB. We propose a model whereby binding of synaptotagmin-1 to the SNARE complex directly or indirectly causes a rearrangement of the complexin-I inhibitory helix without inducing complexin-I dissociation, thus relieving the inhibitory activity and enabling cooperation between synaptotagmin-1 and complexin-I in triggering release.
Collapse
|
43
|
A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 2013; 7:921-34. [PMID: 22582418 DOI: 10.1038/nprot.2012.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are a highly regulated class of membrane proteins that drive the efficient merger of two distinct lipid bilayers into one interconnected structure. This protocol describes our fluorescence resonance energy transfer (FRET)-based single vesicle-vesicle fusion assays for SNAREs and accessory proteins. Both lipid-mixing (with FRET pairs acting as lipophilic dyes in the membranes) and content-mixing assays (with FRET pairs present on a DNA hairpin that becomes linear via hybridization to a complementary DNA) are described. These assays can be used to detect substages such as docking, hemifusion, and pore expansion and full fusion. The details of flow cell preparation, protein-reconstituted vesicle preparation, data acquisition and analysis are described. These assays can be used to study the roles of various SNARE proteins, accessory proteins and effects of different lipid compositions on specific fusion steps. The total time required to finish one round of this protocol is 3–6 d.
Collapse
|
44
|
Ma C, Su L, Seven AB, Xu Y, Rizo J. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 2012; 339:421-5. [PMID: 23258414 DOI: 10.1126/science.1230473] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurotransmitter release depends critically on Munc18-1, Munc13, the Ca(2+) sensor synaptotagmin-1, and the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs) syntaxin-1, synaptobrevin, and SNAP-25. In vitro reconstitutions have shown that syntaxin-1-SNAP-25 liposomes fuse efficiently with synaptobrevin liposomes in the presence of synaptotagmin-1-Ca(2+), but neurotransmitter release also requires Munc18-1 and Munc13 in vivo. We found that Munc18-1 could displace SNAP-25 from syntaxin-1 and that fusion of syntaxin-1-Munc18-1 liposomes with synaptobrevin liposomes required Munc13, in addition to SNAP-25 and synaptotagmin-1-Ca(2+). Moreover, when starting with syntaxin-1-SNAP-25 liposomes, NSF-α-SNAP disassembled the syntaxin-1-SNAP-25 heterodimers and abrogated fusion, which then required Munc18-1 and Munc13. We propose that fusion does not proceed through syntaxin-1-SNAP-25 heterodimers but starts with the syntaxin-1-Munc18-1 complex; Munc18-1 and Munc13 then orchestrate membrane fusion together with the SNAREs and synaptotagmin-1-Ca(2+) in an NSF- and SNAP-resistant manner.
Collapse
Affiliation(s)
- Cong Ma
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | |
Collapse
|
45
|
Rizo J, Südhof TC. The Membrane Fusion Enigma: SNAREs, Sec1/Munc18 Proteins, and Their Accomplices—Guilty as Charged? Annu Rev Cell Dev Biol 2012; 28:279-308. [DOI: 10.1146/annurev-cellbio-101011-155818] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305;
| |
Collapse
|
46
|
Risselada HJ, Grubmüller H. How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 2012; 22:187-96. [PMID: 22365575 DOI: 10.1016/j.sbi.2012.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 10/28/2022]
Abstract
SNARE molecules are the core constituents of the protein machinery that facilitate fusion of synaptic vesicles with the presynaptic plasma membrane, resulting in the release of neurotransmitter. On a molecular level, SNARE complexes seem to play a quite versatile and involved role during all stages of fusion. In addition to merely triggering fusion by forcing the opposing membranes into close proximity, SNARE complexes are now seen to also overcome subsequent fusion barriers and to actively guide the fusion reaction up to the expansion of the fusion pore. Here, we review recent advances in the understanding of SNARE-mediated membrane fusion by molecular simulations.
Collapse
Affiliation(s)
- Herre Jelger Risselada
- Theoretical Molecular Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
47
|
Koch M, Holt M. Coupling exo- and endocytosis: an essential role for PIP₂ at the synapse. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1114-32. [PMID: 22387937 DOI: 10.1016/j.bbalip.2012.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Marta Koch
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease and K.U. Leuven Center for Human Genetics, O&N4 Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
48
|
Alpadi K, Kulkarni A, Comte V, Reinhardt M, Schmidt A, Namjoshi S, Mayer A, Peters C. Sequential analysis of trans-SNARE formation in intracellular membrane fusion. PLoS Biol 2012; 10:e1001243. [PMID: 22272185 PMCID: PMC3260307 DOI: 10.1371/journal.pbio.1001243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022] Open
Abstract
SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Q(a), Q(b), and Q(c)) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Q(a) SNARE, leaving behind a Q(bc)R subcomplex. This subcomplex serves as an acceptor for a Q(a) SNARE from the opposite membrane, leading to Q(a)-Q(bc)R trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the Q(bc)R cis-complex and the formation of the Q(a)-Q(bc)R trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.
Collapse
Affiliation(s)
- Kannan Alpadi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aditya Kulkarni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Veronique Comte
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Monique Reinhardt
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Andrea Schmidt
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Sarita Namjoshi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Epalinges, Switzerland
| | - Christopher Peters
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Smith EA, Weisshaar JC. Docking, not fusion, as the rate-limiting step in a SNARE-driven vesicle fusion assay. Biophys J 2011; 100:2141-50. [PMID: 21539781 DOI: 10.1016/j.bpj.2011.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022] Open
Abstract
In vitro vesicle fusion assays that monitor lipid mixing between t-SNARE and v-SNARE vesicles in bulk solution exhibit remarkably slow fusion on the nonphysiological timescale of tens of minutes to several hours. Here, single-vesicle, fluorescence resonance energy transfer-based assays cleanly separate docking and fusion steps for individual vesicle pairs containing full-length SNAREs. Docking is extremely inefficient and is the rate-limiting step. Of importance, the docking and fusion kinetics are comparable in the two assays (one with v-SNARE vesicles tethered to a surface and the other with v-SNARE vesicles free in solution). Addition of the V(C) peptide synaptobrevin-2 (syb(57-92)) increases the docking efficiency by a factor of ∼30, but docking remains rate-limiting. In the presence of V(C) peptide, the fusion step occurs on a timescale of ∼10 s. In previous experiments involving bulk fusion assays in which the addition of synaptotagmin/Ca(2+), Munc-18, or complexin accelerated the observed lipid-mixing rate, the enhancement may have arisen from the docking step rather than the fusion step.
Collapse
Affiliation(s)
- Elizabeth A Smith
- Graduate Program in Molecular Biophysics, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
50
|
Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Proc Natl Acad Sci U S A 2011; 108:12723-8. [PMID: 21768342 DOI: 10.1073/pnas.1105128108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SNARE proteins play a critical role in intracellular membrane fusion by forming tight complexes that bring two membranes together and involve sequences called SNARE motifs. These motifs have a high tendency to form amphipathic coiled-coils that assemble into four-helix bundles, and often precede transmembrane regions. NMR studies in dodecylphosphocholine (DPC) micelles suggested that the N-terminal half of the SNARE motif from the neuronal SNARE synaptobrevin binds to membranes, which appeared to contradict previous biophysical studies of synaptobrevin in liposomes. NMR analyses of synaptobrevin reconstituted into nanodiscs and into liposomes now show that most of its SNARE motif, except for the basic C terminus, is highly flexible, exhibiting cross-peak patterns and transverse relaxation rates that are very similar to those observed in solution. Considering the proximity to the bilayer imposed by membrane anchoring, our data show that most of the synaptobrevin SNARE motif has a remarkable reluctance to bind membranes. This conclusion is further supported by NMR experiments showing that the soluble synaptobrevin SNARE motif does not bind to liposomes, even though it does bind to DPC micelles. These results show that nanodiscs provide a much better membrane model than DPC micelles in this system, and that most of the SNARE motif of membrane-anchored synaptobrevin is accessible for SNARE complex formation. We propose that the charge and hydrophobicity of SNARE motifs is optimized to enable formation of highly stable SNARE complexes while at the same time avoiding membrane binding, which could hinder SNARE complex assembly.
Collapse
|