1
|
Liu X, Rao L, Qiu W, Berger F, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. Nat Commun 2024; 15:6564. [PMID: 39095439 PMCID: PMC11297315 DOI: 10.1038/s41467-024-50990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. In this study, we investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA. Our findings reveal that both motors are non-processive, producing single load-dependent power strokes per MT encounter, with estimated load-free power strokes of ~30 and ~35 nm, respectively. Each homodimeric motor generates forces of ~0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Notably, the cooperative activity among multiple motors leads to increased MT-sliding velocities. These results quantitatively elucidate the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weihong Qiu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, CH, Utrecht, The Netherlands
| | - Florian Berger
- Department of Biochemistry & Biophysics and Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Mostafazadeh N, Peng Z. Microstructure-based nuclear lamina constitutive model. Cytoskeleton (Hoboken) 2024; 81:297-309. [PMID: 38345187 DOI: 10.1002/cm.21835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 08/20/2024]
Abstract
The nuclear lamina is widely recognized as the most crucial component in providing mechanical stability to the nucleus. However, it is still a significant challenge to model the mechanics of this multilayered protein network. We developed a constitutive model of the nuclear lamina network based on its microstructure, which accounts for the deformation phases at the dimer level, as well as the orientational arrangement and density of lamin filaments. Instead of relying on homology modeling in the previous studies, we conducted molecular simulations to predict the force-extension response of a highly accurate lamin dimer structure obtained through X-ray diffraction crystallography experimentation. Furthermore, we devised a semiflexible worm-like chain extension-force model of lamin dimer as a substitute, incorporating phases of initial stretching, uncoiling of the dimer coiled-coil, and transition of secondary structures. Subsequently, we developed a 2D network continuum model for the nuclear lamina by using our extension-force lamin dimer model and derived stress resultants. By comparing with experimentally measured lamina modulus, we found that the lamina network has sharp initial strain-hardening behavior. This also enabled us to carry out finite element simulations of the entire nucleus with an accurate microstructure-based nuclear lamina model. Finally, we conducted simulations of transendothelial transmigration of a nucleus and investigated the impact of varying network density and uncoiling constants on the critical force required for successful transmigration. The model allows us to incorporate the microstructure characteristics of the nuclear lamina into the nucleus model, thereby gaining insights into how laminopathies and mutations affect nuclear mechanics.
Collapse
Affiliation(s)
- Nima Mostafazadeh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Quedan D, Singh R, Akel A, Bernardino AL, Thang C, Bhaskaruni M, Haldankar A, Tanner BCW, Root DD. Cooperative & competitive binding of anti-myosin tail antibodies revealed by super-resolution microscopy. Arch Biochem Biophys 2023; 747:109753. [PMID: 37714251 DOI: 10.1016/j.abb.2023.109753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
The MF30 monoclonal antibody, which binds to the myosin subfragment-2 (S2), was found to increase the extent of myofibril shortening. Yet, previous observations found no effect of this antibody on actin sliding over myosin during in vitro motility assays with purified proteins in which myosin binding protein C (MyBPC) was absent. MF30 is hypothesized to enhance the availability of myosin heads (subfragment-1 or S1) to bind actin by destabilizing the myosin S2 coiled-coil and sterically blocking S2 from binding S1. The mechanism of action likely includes MF30's substantial size, thereby inhibiting S1 heads and MyBPC from binding S2. Hypothetically, MF30 should enhance the ON state of myosin, thereby increasing muscle contraction. Our findings indicate that MF30 binds preferentially to the unfolded heavy chains of S2, displaying positive cooperativity. However, the dose-response curve of MF30's enhancement of myofibril shortening did not suggest complex interactions with S2. Single, double, and triple-stained myofibrils with increasing amounts of antibodies against myosin rods indicate a possible competition with MyBPC. Additional assays revealed decreased fluorescence intensity at the C-zone (central zone in the sarcomere, where MyBPC is located), where MyBPC may inhibit MF30 binding. Another monoclonal antibody named MF20, which binds to the light meromyosin (LMM) without affecting myofibril contraction, showed less reduction in fluorescence intensity at the C-zone in expansion microscopy than MF30. Expansion microscopy images of myofibrils labeled with MF20 revealed labeling of the A-band (anisotropic band) and a slight reduction in the labeling at the C-zone. The staining pattern obtained from the expansion microscopy image was consistent with images from photolocalization microscopy which required the synthesis of unique photoactivatable quantum dots, and Zeiss Airyscan imaging as well as alternative expansion microscopy digestion methods. Consistent with the hypothesis that MF30 competes with MyBPC binding to S2, cardiac tissue from MyBPC knockout mice was stained more intensely, especially in the C-zone, by MF30 compared to the wild type.
Collapse
Affiliation(s)
- Dua'a Quedan
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Rohit Singh
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Amal Akel
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Andrea L Bernardino
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Christopher Thang
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Mithilesh Bhaskaruni
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Anushka Haldankar
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Douglas D Root
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
4
|
Yoon T, Shin H, Park W, Kim Y, Na S. Biochemical mechanism involved in the enhancement of the Young's modulus of silk by the SpiCE protein. J Mech Behav Biomed Mater 2023; 143:105878. [PMID: 37207525 DOI: 10.1016/j.jmbbm.2023.105878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Silk fibers are known for their superior mechanical properties, with the strongest possessing over seven times the toughness of kevlar. Recently, low molecular weight non-spidroin protein, spider-silk constituting element (SpiCE), has been reported to enhance the mechanical properties of silk; however, its specific action mechanism has not yet been elucidated. Here, we explored the mechanism by which SpiCE strengthened the mechanical properties of major ampullate spidroin 2 (MaSp2) silk through hydrogen bonds and salt bridges of the silk structure via all-atom molecular dynamics simulations. Tensile pulling simulation on silk fiber with SpiCE protein revealed that the SpiCE protein enhanced the Young's modulus by up to 40% more than that of the wild type. Bond characteristic analysis revealed that SpiCE and MaSp2 formed more hydrogen bonds and salt bridges than the MaSp2 wild-type model. Sequence analysis of MaSp2 silk fiber and SpiCE protein revealed that SpiCE protein contained more amino acids that could act as hydrogen bond acceptors/donors and salt bridge partners. Our results provide insights into the mechanism by which non-spidroin proteins strengthen the properties of silk fibers and lay the groundwork for the development of material selection criteria for the design of de novo artificial silk fibers.
Collapse
Affiliation(s)
- Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea
| | - Hongchul Shin
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea
| | - Wooboum Park
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Khare E, Grewal DS, Buehler MJ. Bond clusters control rupture force limit in shear loaded histidine-Ni 2+ metal-coordinated proteins. NANOSCALE 2023; 15:8578-8588. [PMID: 37092811 DOI: 10.1039/d3nr01287e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic noncovalent interactions are pivotal to the structure and function of biological proteins and have been used in bioinspired materials for similar roles. Metal-coordination bonds, in particular, are especially tunable and enable control over static and dynamic properties when incorporated into synthetic materials. Despite growing efforts to engineer metal-coordination bonds to produce strong, tough, and self-healing materials, the systematic characterization of the exact contribution of these bonds towards mechanical strength and the effect of geometric arrangements is missing, limiting the full design potential of these bonds. In this work, we engineer the cooperative rupture of metal-coordination bonds to increase the rupture strength of metal-coordinated peptide dimers. Utilizing all-atom steered molecular dynamics simulations on idealized bidentate histidine-Ni2+ coordinated peptides, we show that histidine-Ni2+ bonds can rupture cooperatively in groups of two to three bonds. We find that there is a strength limit, where adding additional coordination bonds does not contribute to the additional increase in the protein rupture strength, likely due to the highly heterogeneous rupture behavior exhibited by the coordination bonds. Further, we show that this coordination bond limit is also found natural metal-coordinated biological proteins. Using these insights, we quantitatively suggest how other proteins can be rationally designed with dynamic noncovalent interactions to exhibit cooperative bond breaking behavior. Altogether, this work provides a quantitative analysis of the cooperativity and intrinsic strength limit for metal-coordination bonds with the aim of advancing clear guiding molecular principles for the mechanical design of metal-coordinated materials.
Collapse
Affiliation(s)
- Eesha Khare
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Darshdeep S Grewal
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Alix JJP, Plesia M, Hool SA, Coldicott I, Kendall CA, Shaw PJ, Mead RJ, Day JC. Fibre optic Raman spectroscopy for the evaluation of disease state in Duchenne muscular dystrophy: an assessment using the mdx model and human muscle. Muscle Nerve 2022; 66:362-369. [PMID: 35762576 PMCID: PMC9541045 DOI: 10.1002/mus.27671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022]
Abstract
Introduction/Aims Raman spectroscopy is an emerging technique for the evaluation of muscle disease. In this study we evaluate the ability of in vivo intramuscular Raman spectroscopy to detect the effects of voluntary running in the mdx model of Duchenne muscular dystrophy (DMD). We also compare mdx data with muscle spectra from human DMD patients. Methods Thirty 90‐day‐old mdx mice were randomly allocated to an exercised group (48‐hour access to a running wheel) and an unexercised group (n = 15 per group). In vivo Raman spectra were collected from both gastrocnemius muscles and histopathological assessment subsequently performed. Raman data were analyzed using principal component analysis–fed linear discriminant analysis (PCA‐LDA). Exercised and unexercised mdx muscle spectra were compared with human DMD samples using cosine similarity. Results Exercised mice ran an average of 6.5 km over 48 hours, which induced a significant increase in muscle necrosis (P = .03). PCA‐LDA scores were significantly different between the exercised and unexercised groups (P < .0001) and correlated significantly with distance run (P = .01). Raman spectra from exercised mice more closely resembled human spectra than those from unexercised mice. Discussion Raman spectroscopy provides a readout of the biochemical alterations in muscle in both the mdx mouse and human DMD muscle.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - Maria Plesia
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | - Sarah A Hool
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience, University of Sheffield
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield.,Neuroscience Institute, University of Sheffield
| | - John C Day
- Interface Analysis Centre, School of Physics, University of Bristol
| |
Collapse
|
7
|
Nandi T, Ainavarapu SRK. Native Salt Bridges Are a Key Regulator of Ubiquitin's Mechanical Stability. J Phys Chem B 2022; 126:3505-3511. [PMID: 35535497 DOI: 10.1021/acs.jpcb.2c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although it is known that various intramolecular interactions determine protein mechanical stability, a detailed molecular-level understanding of the key regulators of protein mechanical stability is still lacking. Here, we present evidence for salt bridges in ubiquitin as important intramolecular interactions that can affect protein mechanical stability. Ubiquitin has two salt bridges: one relatively surface-exposed (SB1:K11-E34) and the other relatively buried (SB2:K27-D52). Ubiquitin is a reversible post-translational modifier and is stable mechanically (Favgu = 185 pN). On breaking SB1, the mechanical stability of ubiquitin is slightly enhanced (Favgu = 193 pN). In contrast, the mechanical stability significantly decreased upon breaking SB2 (Favgu = 158 pN). These results suggest that SB1 are SB2 are regulators of the mechanical stability of ubiquitin. Interestingly, the mechanical stability decreased further (Favgu = 145 pN) for the double salt bridge (DB) null variant. Monte Carlo simulations elucidate that the main regulating factor is the spontaneous unfolding rate constant (ku0), being the highest for the DB null variant followed by the SB2 null variant, and it remains unaltered for the SB1 null variant, while the native-to-transition-state distance (xu) remains unchanged. Our study provides mechanistic understanding on how two native salt bridges can independently regulate the mechanical stability in a protein, which has implications in designing protein-based robust biomaterials in the future.
Collapse
Affiliation(s)
- Tathagata Nandi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
8
|
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys Rev 2022; 14:427-461. [PMID: 35399372 PMCID: PMC8984085 DOI: 10.1007/s12551-022-00950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.
Collapse
|
9
|
Clopés J, Shin J, Jahnel M, Grill SW, Zaburdaev V. Thermal fluctuations assist mechanical signal propagation in coiled-coil proteins. Phys Rev E 2021; 104:054403. [PMID: 34942783 DOI: 10.1103/physreve.104.054403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Recently, it has been shown that the long coiled-coil membrane tether protein early endosome antigen 1 (EEA1) switches from a rigid to a flexible conformation upon binding of a signaling protein to its free end. This flexibility switch represents a motorlike activity, allowing EEA1 to generate a force that moves vesicles closer to the membrane they will fuse with. It was hypothesized that the binding-induced signal could propagate along the coiled coil and lead to conformational changes through the localized domains of the protein chain that deviate from a perfect coiled-coil structure. To elucidate, if upon binding of a single protein the corresponding mechanical signal could propagate through the whole 200-nm-long chain, we propose a simplified description of the coiled coil as a one-dimensional Frenkel-Kontorova chain. Using numerical simulations, we find that an initial perturbation of the chain can propagate along its whole length in the presence of thermal fluctuations. This may enable the change of the configuration of the entire molecule and thereby affect its stiffness. Our work sheds light on intramolecular communication and force generation in long coiled-coil proteins.
Collapse
Affiliation(s)
- Judit Clopés
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Jaeoh Shin
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.,Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Biotechnology Center, Technical University Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Biotechnology Center, Technical University Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
10
|
Menard LM, Wood NB, Vigoreaux JO. Contiguity and Structural Impacts of a Non-Myosin Protein within the Thick Filament Myosin Layers. BIOLOGY 2021; 10:biology10070613. [PMID: 34356468 PMCID: PMC8301149 DOI: 10.3390/biology10070613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023]
Abstract
Simple Summary Hexapods and crustaceans (Pancrustacea) represent nearly 80% of known living animals. Species within this clade exhibit exquisite muscle types propelling ingenious means of locomotion, likely contributing to their evolutionary success. Flightin, a myosin-binding protein, first identified in the flight muscle of Drosophila, is defined by WYR, a protein domain exclusive to Pancrustacea. In Drosophila, flightin imparts stiffness to the thick filament and is essential for their length determination and structural integrity. Here, we build on results from the three-dimensional reconstruction of the Lethocerus flight muscle thick filament to advance the hypothesis that flightin influences thick filament mechanics, and by extension muscle function, by acting as a cinch in the filament core. Abstract Myosin dimers arranged in layers and interspersed with non-myosin densities have been described by cryo-EM 3D reconstruction of the thick filament in Lethocerus at 5.5 Å resolution. One of the non-myosin densities, denoted the ‘red density’, is hypothesized to be flightin, an LMM-binding protein essential to the structure and function of Drosophila indirect flight muscle (IFM). Here, we build upon the 3D reconstruction results specific to the red density and its engagement with the myosin coiled-coil rods that form the backbone of the thick filament. Each independent red density winds its way through the myosin dimers, such that it links four dimers in a layer and one dimer in a neighboring layer. This area in which three distinct interfaces within the myosin rod are contacted at once and the red density extends to the thick filament core is designated the “multiface”. Present within the multiface is a contact area inclusive of E1563 and R1568. Mutations in the corresponding Drosophila residues (E1554K and R1559H) are known to interfere with flightin accumulation and phosphorylation in Drosophila. We further examine the LMM area in direct apposition to the red density and identified potential binding residues spanning up to ten helical turns. We find that the red density is associated within an expanse of the myosin coiled-coil that is unwound by the third skip residue and the coiled-coil is re-oriented while in contact with the red density. These findings suggest a mechanism by which flightin induces ordered assembly of myosin dimers through its contacts with multiple myosin dimers and brings about reinforcement on the level of a single myosin dimer by stabilization of the myosin coiled-coil.
Collapse
|
11
|
Singh RR, McNamara JW, Sadayappan S. Mutations in myosin S2 alter cardiac myosin-binding protein-C interaction in hypertrophic cardiomyopathy in a phosphorylation-dependent manner. J Biol Chem 2021; 297:100836. [PMID: 34051236 PMCID: PMC8239744 DOI: 10.1016/j.jbc.2021.100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.
Collapse
Affiliation(s)
- Rohit R Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
12
|
Bergues-Pupo AE, Lipowsky R, Vila Verde A. Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds. SOFT MATTER 2020; 16:9917-9928. [PMID: 33030193 DOI: 10.1039/d0sm01166e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single alpha helices (SAHs) stable in isolated form are often found in motor proteins where they bridge functional domains. Understanding the mechanical response of SAHs is thus critical to understand their function. The quasi-static force-extension relation of a small number of SAHs is known from single-molecule experiments. Unknown, or still controversial, are the molecular scale details behind those observations. We show that the deformation mechanism of SAHs pulled from the termini at pull speeds approaching the quasi-static limit differs from that of typical helices found in proteins, which are stable only when interacting with other protein domains. Using molecular dynamics simulations with atomistic resolution at low pull speeds previously inaccessible to simulation, we show that SAHs start unfolding from the termini at all pull speeds we investigated. Unfolding proceeds residue-by-residue and hydrogen bond breaking is not the main event determining the barrier to unfolding. We use the molecular simulation data to test the cooperative sticky chain model. This model yields excellent fits of the force-extension curves and quantifies the distance, xE = 0.13 nm, to the transition state, the natural frequency of bond vibration, ν0 = 0.82 ns-1, and the height, V0 = 2.9 kcal mol-1, of the free energy barrier associated with the deformation of single residues. Our results demonstrate that the sticky chain model could advantageously be used to analyze experimental force-extension curves of SAHs and other biopolymers.
Collapse
Affiliation(s)
- Ana Elisa Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
13
|
Schepers AV, Lorenz C, Köster S. Tuning intermediate filament mechanics by variation of pH and ion charges. NANOSCALE 2020; 12:15236-15245. [PMID: 32642745 DOI: 10.1039/d0nr02778b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cytoskeleton is formed by three types of filamentous proteins - microtubules, actin filaments, and intermediate filaments (IFs) - and enables cells to withstand external and internal forces. Vimentin is the most abundant IF protein in humans and assembles into 10 nm diameter filaments with remarkable mechanical properties, such as high extensibility and stability. It is, however, unclear to which extent these properties are influenced by the electrostatic environment. Here, we study the mechanical properties of single vimentin filaments by employing optical trapping combined with microfluidics. Force-strain curves, recorded at varying ion concentrations and pH values, reveal that the mechanical properties of single vimentin IFs are influenced by pH and ion concentration. By combination with Monte Carlo simulations, we relate these altered mechanics to electrostatic interactions of subunits within the filaments. We thus suggest possible mechanisms that allow cells to locally tune their stiffness without remodeling the entire cytoskeleton.
Collapse
Affiliation(s)
- Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Kodera N, Ando T. High-Speed Atomic Force Microscopy to Study Myosin Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:127-152. [PMID: 32451858 DOI: 10.1007/978-3-030-38062-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-speed atomic force microscopy (HS-AFM) is a unique tool that enables imaging of protein molecules during their functional activity at sub-100 ms temporal and submolecular spatial resolution. HS-AFM is suited for the study of highly dynamic proteins, including myosin motors. HS-AFM images of myosin V walking on actin filaments provide irrefutable evidence for the swinging lever arm motion propelling the molecule forward. Moreover, molecular behaviors that have not been noticed before are also displayed on the AFM movies. This chapter describes the principle, underlying techniques and performance of HS-AFM, filmed images of myosin V, and mechanistic insights into myosin motility provided from the filmed images.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
15
|
Sluysmans D, Willet N, Thevenot J, Lecommandoux S, Duwez AS. Single-molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides. NANOSCALE HORIZONS 2020; 5:671-678. [PMID: 32226978 DOI: 10.1039/d0nh00036a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
α-Helix is the most predominant secondary structure in proteins and supports many functions in biological machineries. The conformation of the helix is dictated by many factors such as its primary sequence, intramolecular interactions, or the effect of the close environment. Several computational studies have proposed that there is a critical maximum length for the formation of intact compact helical structures, supporting the fact that most intact α-helices in proteins are constituted of a small number of amino acids. To obtain a detailed picture on the formation of α-helices in peptides and their mechanical stability, we have synthesized a long homopolypeptide of about 90 amino acids, poly(γ-benzyl-l-glutamate), and investigated its mechanical behaviour by AFM-based single-molecule force spectroscopy. The characteristic plateaus observed in the force-extension curves reveal the unfolding of a series of small helices (from 1 to 4) of about 20 amino acid residues connected to each other, rather than a long helix of 90 residues. Our results suggest the formation of a tertiary structure made of short helices with kinks, instead of an intact compact helical structure for sequences of more than 20 amino acid residues. To our knowledge, this is the first experimental evidence supporting the concept of a helical critical length previously proposed by several computational studies.
Collapse
Affiliation(s)
- Damien Sluysmans
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
| | - Nicolas Willet
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium. and Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Julie Thevenot
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Anne-Sophie Duwez
- Molecular Systems Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium.
| |
Collapse
|
16
|
Mescola A, Dauvin M, Amoroso A, Duwez AS, Joris B. Single-molecule force spectroscopy to decipher the early signalling step in membrane-bound penicillin receptors embedded into a lipid bilayer. NANOSCALE 2019; 11:12275-12284. [PMID: 31211302 DOI: 10.1039/c9nr02466b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the molecular mechanism by which the signal of the presence of an antibiotic is transduced from outside to inside the bacterial cell is of fundamental interest for the β-lactam antibiotic resistance problem, but remains difficult to accomplish. No approach has ever addressed entire penicillin receptors in a membrane environment. Here we describe a method to investigate the purified Bacillus licheniformis BlaR1 receptor -a membrane-bound penicillin receptor involved in β-lactam resistance- embedded into a lipid bilayer in absence or presence of penicillin. By selecting a mutated receptor blocked in its signal transduction pathway just after its activation by penicillin, we revealed the very first step of receptor signalling by unfolding the receptor from its C-terminal end by AFM-based single-molecule force spectroscopy. We showed that the presence of the antibiotic entails significant conformational changes within the receptor. Our approach opens an avenue to study signal-transduction pathways mediated by membrane-bound proteins in a membrane environment.
Collapse
Affiliation(s)
- Andrea Mescola
- Molecular Systems, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Marjorie Dauvin
- Bacterial physiology and genetics - Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Ana Amoroso
- Bacterial physiology and genetics - Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Anne-Sophie Duwez
- Molecular Systems, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Bernard Joris
- Bacterial physiology and genetics - Centre d'Ingénierie des Protéines-Integrative Biological Sciences, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
17
|
Torres-Sánchez A, Vanegas JM, Purohit PK, Arroyo M. Combined molecular/continuum modeling reveals the role of friction during fast unfolding of coiled-coil proteins. SOFT MATTER 2019; 15:4961-4975. [PMID: 31172154 DOI: 10.1039/c9sm00117d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coiled-coils are filamentous proteins that form the basic building block of important force-bearing cellular elements, such as intermediate filaments and myosin motors. In addition to their biological importance, coiled-coil proteins are increasingly used in new biomaterials including fibers, nanotubes, or hydrogels. Coiled-coils undergo a structural transition from an α-helical coil to an unfolded state upon extension, which allows them to sustain large strains and is critical for their biological function. By performing equilibrium and out-of-equilibrium all-atom molecular dynamics (MD) simulations of coiled-coils in explicit solvent, we show that two-state models based on Kramers' or Bell's theories fail to predict the rate of unfolding at high pulling rates. We further show that an atomistically informed continuum rod model accounting for phase transformations and for the hydrodynamic interactions with the solvent can reconcile two-state models with our MD results. Our results show that frictional forces, usually neglected in theories of fibrous protein unfolding, reduce the thermodynamic force acting on the interface, and thus control the dynamics of unfolding at different pulling rates. Our results may help interpret MD simulations at high pulling rates, and could be pertinent to cytoskeletal networks or protein-based artificial materials subjected to shocks or blasts.
Collapse
|
18
|
DeBenedictis EP, Keten S. Mechanical unfolding of alpha- and beta-helical protein motifs. SOFT MATTER 2019; 15:1243-1252. [PMID: 30604826 DOI: 10.1039/c8sm02046a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alpha-helices and beta-sheets are the two most common secondary structure motifs in proteins. Beta-helical structures merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell-puncture devices, antifreeze proteins, and extracellular matrices. Alpha-helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta-helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.). We find that although alpha-helices such as keratin and beta-helices CsgA and CsgB can require similar amounts of work to unfold, the normalized work per hydrogen bond, initial end to end length, and number of residues is greater for beta-helices at the same pulling rate. To explain this, we analyze the orientation of the backbone alpha carbons and backbone hydrogen bonds during unfolding. We find that the larger width and shorter height of beta-helices results in smaller angles between the protein backbone and the pulling direction during unfolding. As subsequent strands are separated from the beta-helix core, the angle between the backbone and the pulling direction diminishes. This marks a transition where beta-sheet hydrogen bonds become loaded predominantly in a collective shearing mode, which requires a larger rupture force. This finding underlines the importance of geometry in optimizing resistance to mechanical unfolding in proteins. The helix radius is identified here as an important parameter that governs how much sacrificial energy dissipation capacity can be stored in protein networks, where beta-helices offer unique properties.
Collapse
Affiliation(s)
- Elizabeth P DeBenedictis
- Department of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
19
|
López-García P, Goktas M, Bergues-Pupo AE, Koksch B, Varón Silva D, Blank KG. Structural determinants of coiled coil mechanics. Phys Chem Chem Phys 2019; 21:9145-9149. [PMID: 31016294 DOI: 10.1039/c9cp00665f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers. Using single-molecule force spectroscopy, we show that both parameters determine the force-induced dissociation in shear loading geometry; however, with different effects on the energy landscape. Decreasing the helix propensity lowers the transition barrier height, leading to a concomitant decrease in the distance to the transition state. In contrast, a less tightly packed hydrophobic core increases the distance to the transition state. We propose that this originates from a larger side chain dynamics, possible water intrusion at the interface as well as differences in solvation of the hydrophobic amino acids at the transition state. In conclusion, the different contributions of helix propensity and hydrophobic core packing need to be considered when tuning the mechanical properties of CCs for applications.
Collapse
Affiliation(s)
- Patricia López-García
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Science-Park Potsdam Golm, 14424 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Bergues-Pupo AE, Blank KG, Lipowsky R, Vila Verde A. Trimeric coiled coils expand the range of strength, toughness and dynamics of coiled coil motifs under shear. Phys Chem Chem Phys 2018; 20:29105-29115. [PMID: 30426982 DOI: 10.1039/c8cp04896g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coiled coils are widespread protein motifs in nature, and promising building blocks for bio-inspired nanomaterials and nanoscale force sensors. Detailed structural insight into their mechanical response is required to understand their role in tissues and to design building blocks for applications. We use all-atom molecular dynamics simulations to elucidate the mechanical response of two types of coiled coils under shear: dimers and trimers. The amino acid sequences of both systems are similar, thus enabling universal (vs. system-specific) features to be identified. The trimer is mechanically more stable - it is both stronger and tougher - than the dimer, withstanding higher forces (127 pN vs. 49 pN at v = 10-3 nm ns-1) and dissipating up to five times more energy before rupture. The deformation mechanism of the trimer at all pull speeds is dominated by progressive helix unfolding. In contrast, at the lowest pull speeds, dimers deform by unfolding/refolding-assisted sliding. The additional helix in the trimer thus both determines the stability of the structure and affects the deformation mechanism, preventing helix sliding. The mechanical response of the coiled coils is not only sensitive to the oligomerization state but also to helix stability: preventing helix unfolding doubles the mechanical strength of the trimer, but decreases its toughness to half. Our results show that coiled coil trimers expand the range of coiled coil responses to an applied shear force. Altering the stability of individual helices against deformation emerges as one possible route towards fine-tuning this response, enabling the use of these motifs as nanomechanical building blocks.
Collapse
Affiliation(s)
- Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, 14424 Potsdam, Germany.
| | | | | | | |
Collapse
|
21
|
Goktas M, Luo C, Sullan RMA, Bergues-Pupo AE, Lipowsky R, Vila Verde A, Blank KG. Molecular mechanics of coiled coils loaded in the shear geometry. Chem Sci 2018; 9:4610-4621. [PMID: 29899954 PMCID: PMC5969510 DOI: 10.1039/c8sc01037d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/19/2018] [Indexed: 01/25/2023] Open
Abstract
Coiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry. Upon shearing, we observe an initial rise in the force, which is followed by a constant force plateau and ultimately strand separation. The force required for strand separation depends on the coiled coil length and the applied loading rate, suggesting that coiled coil shearing occurs out of equilibrium. This out-of-equilibrium behaviour is determined by a complex structural response which involves helix uncoiling, uncoiling-assisted sliding of the helices relative to each other in the direction of the applied force as well as uncoiling-assisted dissociation perpendicular to the force axis. These processes follow a hierarchy of timescales with helix uncoiling being faster than sliding and sliding being faster than dissociation. In SMFS experiments, strand separation is dominated by uncoiling-assisted dissociation and occurs at forces between 25-45 pN for the shortest 3-heptad coiled coil and between 35-50 pN for the longest 4-heptad coiled coil. These values are highly similar to the forces required for shearing apart short double-stranded DNA oligonucleotides, reinforcing the potential role of coiled coils as nanomechanical building blocks in applications where protein-based structures are desired.
Collapse
Affiliation(s)
- Melis Goktas
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Chuanfu Luo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ruby May A Sullan
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| |
Collapse
|
22
|
Singh RR, Dunn JW, Qadan MM, Hall N, Wang KK, Root DD. Whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy. Arch Biochem Biophys 2017; 638:41-51. [PMID: 29229286 DOI: 10.1016/j.abb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023]
Abstract
The mechanical stability of the myosin subfragment-2 (S2) was tested with simulated force spectroscopy (SFS) and gravitational force spectroscopy (GFS). Experiments examined unzipping S2, since it required less force than stretching parallel to the coiled coil. Both GFS and SFS demonstrated that the force required to destabilize the light meromyosin (LMM) was greater than the force required to destabilize the coiled coil at each of three different locations along S2. GFS data also conveyed that the mechanical stability of the S2 region is independent from its association with the myosin thick filament using cofilaments of myosin tail and a single intact myosin. The C-terminal end of myosin binding protein C (MyBPC) binds to LMM and the N-terminal end can bind either S2 or actin. The force required to destabilize the myosin coiled coil molecule was 3 times greater in the presence of MyBPC than in its absence. Furthermore, the in vitro motility assay with full length slow skeletal MyBPC slowed down the actin filament sliding over myosin thick filaments. This study demonstrates that skeletal MyBPC both enhanced the mechanical stability of the S2 coiled coil and reduced the sliding velocity of actin filaments over polymerized myosin filaments.
Collapse
Affiliation(s)
- Rohit R Singh
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - James W Dunn
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Motamed M Qadan
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Nakiuda Hall
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Kathy K Wang
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA
| | - Douglas D Root
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
23
|
Minin KA, Zhmurov A, Marx KA, Purohit PK, Barsegov V. Dynamic Transition from α-Helices to β-Sheets in Polypeptide Coiled-Coil Motifs. J Am Chem Soc 2017; 139:16168-16177. [PMID: 29043794 DOI: 10.1021/jacs.7b06883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We carried out dynamic force manipulations in silico on a variety of coiled-coil protein fragments from myosin, chemotaxis receptor, vimentin, fibrin, and phenylalanine zippers that vary in size and topology of their α-helical packing. When stretched along the superhelical axis, all superhelices show elastic, plastic, and inelastic elongation regimes and undergo a dynamic transition from the α-helices to the β-sheets, which marks the onset of plastic deformation. Using the Abeyaratne-Knowles formulation of phase transitions, we developed a new theoretical methodology to model mechanical and kinetic properties of protein coiled-coils under mechanical nonequilibrium conditions and to map out their energy landscapes. The theory was successfully validated by comparing the simulated and theoretical force-strain spectra. We derived the scaling laws for the elastic force and the force for α-to-β transition, which can be used to understand natural proteins' properties as well as to rationally design novel biomaterials of required mechanical strength with desired balance between stiffness and plasticity.
Collapse
Affiliation(s)
- Kirill A Minin
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| | - Artem Zhmurov
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Valeri Barsegov
- Moscow Institute of Physics and Technology , Dolgoprudny 141701, Russia.,Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| |
Collapse
|
24
|
Gáspári Z, Nyitray L. Coiled coils as possible models of protein structure evolution. Biomol Concepts 2015; 2:199-210. [PMID: 25962029 DOI: 10.1515/bmc.2011.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/01/2011] [Indexed: 01/05/2023] Open
Abstract
Coiled coils are formed by two or more α-helices wrapped around one another. This structural motif often guides di-, tri- or multimerization of proteins involved in diverse biological processes such as membrane fusion, signal transduction and the organization of the cytoskeleton. Although coiled coil motifs seem conceptually simple and their existence was proposed in the early 1950s, the high variability of the motif makes coiled coil prediction from sequence a difficult task. They might be confused with intrinsically disordered sequences and even more with a recently described structural motif, the charged single α-helix. By contrast, the versatility of coiled coil structures renders them an ideal candidate for protein (re)design and many novel variants have been successfully created to date. In this paper, we review coiled coils in the light of protein evolution by putting our present understanding of the motif and its variants in the context of structural interconversions. We argue that coiled coils are ideal subjects for studies of subtle and large-scale structural changes because of their well-characterized and versatile nature.
Collapse
|
25
|
Kreuzer SM, Elber R. Coiled-coil response to mechanical force: global stability and local cracking. Biophys J 2014; 105:951-61. [PMID: 23972847 DOI: 10.1016/j.bpj.2013.05.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 05/29/2013] [Indexed: 12/01/2022] Open
Abstract
Coiled coils are important structural motifs formed by two or more amphipathic α-helices that twist into a supercoil. These motifs are found in a wide range of proteins, including motor proteins and structural proteins, that are known to transmit mechanical loads. We analyze atomically detailed simulations of coiled-coil cracking under load with Milestoning. Milestoning is an approach that captures the main features of the process in a network, quantifying kinetics and thermodynamics. A 112-residue segment of the β-myosin S2 domain was subjected to constant-magnitude (0-200 pN) and constant-direction tensile forces in molecular dynamics simulations. Twenty 20 ns straightforward simulations at several load levels revealed that initial single-residue cracking events (Ψ > 90°) at loads <100 pN were accompanied by rapid refolding without either intra- or interhelix unfolding propagation. Only initial unfolding events at the highest load (200 pN) regularly propagated along and between helices. Analysis of hydrophobic interactions and of interhelix hydrogen bonds did not show significant variation as a function of load. Unfolding events were overwhelmingly located in the vicinity of E929, a charged residue in a hydrophobic position of the heptad repeat. Milestoning network analysis of E929 cracking determined that the mean first-passage time ranges from 20 ns (200 pN) to 80 ns (50 pN), which is ∼20 times the mean first-passage time of an isolated helix with the same sequence.
Collapse
Affiliation(s)
- Steven M Kreuzer
- Department of Mechanical Engineering, University of Texas, Austin, TX, USA
| | | |
Collapse
|
26
|
Guerette PA, Z. Tay G, Hoon S, Loke JJ, Hermawan AF, Schmitt CNZ, Harrington MJ, Masic A, Karunaratne A, Gupta HS, Tan KS, Schwaighofer A, Nowak C, Miserez A. Integrative and comparative analysis of coiled-coil based marine snail egg cases – a model for biomimetic elastomers. Biomater Sci 2014; 2:710-722. [DOI: 10.1039/c3bm60264h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Gowetski DB, Kodis EJ, Kahn JD. Rationally designed coiled-coil DNA looping peptides control DNA topology. Nucleic Acids Res 2013; 41:8253-65. [PMID: 23825092 PMCID: PMC3783159 DOI: 10.1093/nar/gkt553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping proteins, and they suggest that formation of short DNA loops requires protein flexibility, not unusual DNA bendability. Small, stable, tunable looping peptides may be useful as synthetic transcriptional regulators or components of protein–DNA nanostructures.
Collapse
Affiliation(s)
- Daniel B Gowetski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | | | | |
Collapse
|
28
|
Miserez A, Guerette PA. Phase transition-induced elasticity of α-helical bioelastomeric fibres and networks. Chem Soc Rev 2013; 42:1973-95. [DOI: 10.1039/c2cs35294j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Kaiser CM, Bujalowski PJ, Ma L, Anderson J, Epstein HF, Oberhauser AF. Tracking UNC-45 chaperone-myosin interaction with a titin mechanical reporter. Biophys J 2012; 102:2212-9. [PMID: 22824286 DOI: 10.1016/j.bpj.2012.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 01/26/2023] Open
Abstract
Myosins are molecular motors that convert chemical energy into mechanical work. Allosterically coupling ATP-binding, hydrolysis, and binding/dissociation to actin filaments requires precise and coordinated structural changes that are achieved by the structurally complex myosin motor domain. UNC-45, a member of the UNC-45/Cro1/She4p family of proteins, acts as a chaperone for myosin and is essential for proper folding and assembly of myosin into muscle thick filaments in vivo. The molecular mechanisms by which UNC-45 interacts with myosin to promote proper folding of the myosin head domain are not known. We have devised a novel approach, to our knowledge, to analyze the interaction of UNC-45 with the myosin motor domain at the single molecule level using atomic force microscopy. By chemically coupling a titin I27 polyprotein to the motor domain of myosin, we introduced a mechanical reporter. In addition, the polyprotein provided a specific attachment point and an unambiguous mechanical fingerprint, facilitating our atomic force microscopy measurements. This approach enabled us to study UNC-45-motor domain interactions. After mechanical unfolding, the motor domain interfered with refolding of the otherwise robust I27 modules, presumably by recruiting them into a misfolded state. In the presence of UNC-45, I27 folding was restored. Our single molecule approach enables the study of UNC-45 chaperone interactions with myosin and their consequences for motor domain folding and misfolding in mechanistic detail.
Collapse
Affiliation(s)
- Christian M Kaiser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
30
|
Taniguchi Y, Kobayashi A, Kawakami M. Mechanical unfolding studies of protein molecules. Biophysics (Nagoya-shi) 2012; 8:51-58. [PMID: 27857607 PMCID: PMC5070453 DOI: 10.2142/biophysics.8.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022] Open
Abstract
Atomic force microscopy (AFM) enables the pick up of a single protein molecule to apply a mechanical force. This technique, called "force spectroscopy," provides unique information about the intermediates and free energy landscape of the mechanical unfolding of proteins. In this review, we introduce the AFM-based single molecule force spectroscopy of proteins and describe recent studies that answer some fundamental questions such as "is the mechanical resistance of proteins isotropic?", "what is the structure of the transition state in mechanical unfolding?", and "is mechanical unfolding related to biological functions?"
Collapse
Affiliation(s)
- Yukinori Taniguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1292, Japan
| | - Akiko Kobayashi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1292, Japan
| | - Masaru Kawakami
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa Prefecture 923-1292, Japan
| |
Collapse
|
31
|
Li D, Ji B, Hwang KC, Huang Y. Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket. PLoS One 2011; 6:e19268. [PMID: 21559397 PMCID: PMC3084818 DOI: 10.1371/journal.pone.0019268] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions.
Collapse
Affiliation(s)
- Dechang Li
- School of Aerospace, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
32
|
Liu L, Fang Y, Huang Q, Wu J. A rigidity-enhanced antimicrobial activity: a case for linear cationic α-helical peptide HP(2-20) and its four analogues. PLoS One 2011; 6:e16441. [PMID: 21283643 PMCID: PMC3026045 DOI: 10.1371/journal.pone.0016441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/16/2010] [Indexed: 11/18/2022] Open
Abstract
Linear cationic α-helical antimicrobial peptides are referred to as one of the most likely substitutes for common antibiotics, due to their relatively simple structures (≤ 40 residues) and various antimicrobial activities against a wide range of pathogens. Of those, HP(2-20) was isolated from Helicobacter pylori ribosomal protein. To reveal a mechanical determinant that may mediate the antimicrobial activities, we examined the mechanical properties and structural stabilities of HP(2-20) and its four analogues of same chain length by steered molecular dynamics simulation. The results indicated the following: the resistance of H-bonds to the tensile extension mediated the early extensive stage; with the loss of H-bonds, the tensile force was dispensed to prompt the conformational phase transition; and Young's moduli (N/m(2)) of the peptides were about 4 ∼ 8 × 10(9). These mechanical features were sensitive to the variation of the residue compositions. Furthermore, we found that the antimicrobial activity is rigidity-enhanced, that is, a harder peptide has stronger antimicrobial activity. It suggests that the molecular spring constant may be used to seek a new structure-activity relationship for different α-helical peptide groups. This exciting result was reasonably explained by a possible mechanical mechanism that regulates both the membrane pore formation and the peptide insertion.
Collapse
Affiliation(s)
- Li Liu
- Institute of Biomechanics and Department of Biomedical Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics and Department of Biomedical Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Qingsheng Huang
- Institute of Biomechanics and Department of Biomedical Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- School of life Science, Sun Yat-Sen University, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics and Department of Biomedical Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Taniguchi Y, Khatri BS, Brockwell DJ, Paci E, Kawakami M. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum. Biophys J 2010; 99:257-62. [PMID: 20655854 DOI: 10.1016/j.bpj.2010.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/23/2010] [Accepted: 04/01/2010] [Indexed: 01/27/2023] Open
Abstract
The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal.
Collapse
Affiliation(s)
- Yukinori Taniguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
34
|
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotechnol 2010; 2010:473423. [PMID: 20625489 PMCID: PMC2896680 DOI: 10.1155/2010/473423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/26/2010] [Indexed: 02/02/2023] Open
Abstract
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.
Collapse
|
35
|
Qin Z, Buehler MJ. Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: evidence for a critical filament length scale. PHYSICAL REVIEW LETTERS 2010; 104:198304. [PMID: 20867006 DOI: 10.1103/physrevlett.104.198304] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Indexed: 05/29/2023]
Abstract
The alpha-helix to beta-sheet transition (α-β transition) is a universal deformation mechanism in alpha-helix rich protein materials such as wool, hair, hoof, and cellular proteins. Through a combination of molecular and theoretical modeling, we examine the behavior of alpha-helical coiled-coil proteins with varying lengths under stretch. We find that the occurrence of the α-β transition is controlled by the length of constituting alpha-helical proteins. In the asymptotic limit, short proteins with less than 26 amino acids or 3.8 nm length reveal interprotein sliding, whereas proteins with greater lengths feature an α-β transition, leading to a significant increase in the protein's stiffness, strength, and energy dissipation capacity at large deformation. Our study elucidates the fundamental physics of this mechanism and explains why the α-β transition typically occurs in protein filaments with long alpha-helical domains.
Collapse
Affiliation(s)
- Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Room 1-235A&B, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
36
|
Nagy A, Piszczek G, Sellers JR. Extensibility of the extended tail domain of processive and nonprocessive myosin V molecules. Biophys J 2010; 97:3123-31. [PMID: 20006949 DOI: 10.1016/j.bpj.2009.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/31/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022] Open
Abstract
Myosin V is a single-molecule motor that moves organelles along actin. When myosin V pulls loads inside the cell in a highly viscous environment, the force on the motor is unlikely to be constant. We propose that the tether between the single-molecule motor and the cargo (i.e., the extended tail domain of the molecule) must be able to absorb the sudden mechanical motions of the motor and allow smooth relaxation of the motion of the cargo to a new position. To test this hypothesis, we compared the elastic properties of the extended tail domains of processive (mouse myosin Va) and nonprocessive (Drosophila myosin V) molecular motors. The extended tail domain of these myosins consists of mechanically strong coiled-coil regions interspersed with flexible loops. In this work we explored the mechanical properties of coiled-coil regions using atomic force microscopy. We found that the processive and nonprocessive coiled-coil fragments display different unfolding patterns. The unfolding of coiled-coil structures occurs much later during the atomic force microscopy stretch cycle for processive myosin Va than for nonprocessive Drosophila myosin V, suggesting that this elastic tether between the cargo and motor may play an important role in sustaining the processive motions of this single-molecule motor.
Collapse
Affiliation(s)
- Attila Nagy
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
37
|
Tensile Mechanics of α-Helical Coil Springs. Biopolymers 2010. [DOI: 10.1007/12_2009_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
A multi-scale approach to understand the mechanobiology of intermediate filaments. J Biomech 2010; 43:15-22. [DOI: 10.1016/j.jbiomech.2009.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 01/04/2023]
|
39
|
Miserez A, Wasko SS, Carpenter CF, Waite JH. Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. NATURE MATERIALS 2009; 8:910-916. [PMID: 19838185 DOI: 10.1038/nmat2547] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
Encapsulation is a widespread biological process particularly in the formation of protective egg cases of oviparous animals. The egg capsule wall of the channelled whelk Busycon canaliculum is an effective shock absorber with high reversible extensibility and a stiffness that changes significantly during extension. Here we show that post-stretch recovery in egg capsules is not driven by entropic forces as it is in rubber. Indeed, at fixed strain, force decreases linearly with increasing temperature, whereas in rubber elasticity the force increases. Instead, capsule wall recovery is associated with the internal energy arising from the facile and reversible structural alpha-helix <--> beta-sheet transition of egg capsule proteins during extension. This behaviour is extraordinary in the magnitude of energy dissipated and speed of recovery and is reminiscent of strain-induced crystallization in some polymeric fibres and of superelastic deformations associated with diffusionless phase transitions in shape-memory alloys.
Collapse
Affiliation(s)
- Ali Miserez
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
40
|
Qin Z, Kreplak L, Buehler MJ. Nanomechanical properties of vimentin intermediate filament dimers. NANOTECHNOLOGY 2009; 20:425101. [PMID: 19779230 DOI: 10.1088/0957-4484/20/42/425101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The cell's cytoskeleton, providing the cell with structure and shape, consists of a complex array of structural proteins, including microtubules, microfilaments and intermediate filaments. Intermediate filaments play a crucial role in mechanotransduction and in providing mechanical stability to cells, in particular under large deformation. By utilizing molecular simulation, here we report a nanomechanical analysis of vimentin intermediate filament dimers, the basic building blocks of intermediate filaments. We describe a detailed analysis of the mechanical properties and associated deformation mechanisms, and find that mechanical stretch induces a transition from alpha-helices to beta-sheets, a phenomenon known as alpha-beta transition. A comparison of the Young's modulus predicted from simulation with experimental measurements is provided, and good agreement is found. We present an analysis of structural changes during deformation, domain unfolding patterns, rate dependence of the rupture force and associated changes in the energy landscape, and conclude with a discussion of potential implications for mechanobiology and the development of de novo protein materials.
Collapse
Affiliation(s)
- Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A&B, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
41
|
Miller MS, Dambacher CM, Knowles AF, Braddock JM, Farman GP, Irving TC, Swank DM, Bernstein SI, Maughan DW. Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics. Biophys J 2009; 96:4132-43. [PMID: 19450484 DOI: 10.1016/j.bpj.2009.02.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 10/20/2022] Open
Abstract
The subfragment 2/light meromyosin "hinge" region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yadavalli VK, Forbes JG, Wang K. Nanomechanics of full-length nebulin: an elastic strain gauge in the skeletal muscle sarcomere. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7496-505. [PMID: 19463013 PMCID: PMC2998391 DOI: 10.1021/la9009898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nebulin, a family of giant modular proteins (MW 700-800 kDa), acts as a F-actin thin filament ruler and calcium-linked regulator of actomyosin interaction. The nanomechanics of full length, native rabbit nebulin was investigated with an atomic force microscope by tethering, bracketing, and stretching full-length molecules via pairs of site-specific antibodies that were attached covalently, one to a protein resistant self-assembled monolayer of oligoethylene glycol and the other to the cantilever. Using this new nanomechanics platform that enables the identification of single molecule events via an unbiased analysis of detachment force and distance of all force curves, we showed that nebulin is elastic and extends to approximately 1 microm by external force up to an antibody detachment force of approximately 300-400 pN. Upon stretching, nebulin unravels and yields force spectra with craggy mountain range profiles with variable numbers and heights of force peaks. The peak spacings, analyzed by the model-independent, empirical Hilbert-Huang transform method, displayed underlying periodicities at approximately 15 and approximately 22 nm that may result from the unfolding of one or more nebulin modules between force peaks. Nebulin may act as an elastic strain gauge that interacts optimally with actin only under appropriate strain and stress. This stretch to match protein ruler may also exert a compressive force that stabilizes thin filaments against stress during contraction. We propose that the elasticity of nebulin is integral and essential in the muscle sarcomere.
Collapse
Affiliation(s)
- Vamsi K Yadavalli
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
43
|
Pant K, Watt J, Greenberg M, Jones M, Szczesna-Cordary D, Moore JR. Removal of the cardiac myosin regulatory light chain increases isometric force production. FASEB J 2009; 23:3571-80. [PMID: 19470801 DOI: 10.1096/fj.08-126672] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myosin neck, which is supported by the interactions between light chains and the underlying alpha-helical heavy chain, is thought to act as a lever arm to amplify movements originating in the globular motor domain. Here, we studied the role of the cardiac myosin regulatory light chains (RLCs) in the capacity of myosin to produce force using a novel optical-trap-based isometric force in vitro motility assay. We measured the isometric force and actin filament velocity for native porcine cardiac (PC) myosin, RLC-depleted PC (PC(depl)) myosin, and PC myosin reconstituted with recombinant bacterially expressed human cardiac RLC (PC(recon)). RLC depletion reduced unloaded actin filament velocity by 58% and enhanced the myosin-based isometric force approximately 2-fold. No significant change between PC and PC(depl) preparations was observed in the maximal rate of actin-activated myosin ATPase activity. Reconstitution of PC(depl) myosin with human RLC partially restored the velocity and force levels to near untreated values. The reduction in unloaded velocity after RLC extraction is consistent with the myosin neck acting as a lever, while the enhancement in isometric force can be directly related to enhancement of unitary force. The force data are consistent with a model in which the neck region behaves as a cantilevered beam.
Collapse
Affiliation(s)
- Kiran Pant
- Boston University School of Medicine, Department of Physiology and Biophysics, 72 E. Concord St., Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
44
|
Zegarra FC, Peralta GN, Coronado AM, Gao YQ. Free energies and forces in helix-coil transition of homopolypeptides under stretching. Phys Chem Chem Phys 2009; 11:4019-24. [PMID: 19440631 DOI: 10.1039/b820021a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show here that constant velocity steered molecular dynamics (SMD) simulations of alpha-helices in a vacuum present a well defined plateau in the force-extension relationship for homopolypeptides having more than (approximately) twenty residues. With the processes being far away from equilibrium, the energies strongly depend on the stretching velocity. Importantly, for a given velocity variation, the energy variation depends also on the helix sequence. Additionally, our observations show that homopolypeptides made of ten different amino acids (Ala, Cys, Gln, Ile, Leu, Met, Phe, Ser, Thr and Val) present a linear helix-coil transition.
Collapse
Affiliation(s)
- Fabio C Zegarra
- Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería, Lima, Peru
| | | | | | | |
Collapse
|
45
|
Afrin R, Takahashi I, Shiga K, Ikai A. Tensile mechanics of alanine-based helical polypeptide: force spectroscopy versus computer simulations. Biophys J 2009; 96:1105-14. [PMID: 19186146 DOI: 10.1016/j.bpj.2008.10.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/27/2008] [Indexed: 11/16/2022] Open
Abstract
In nature, an alpha-helix is commonly used to build thermodynamically stable and mechanically rigid protein conformations. In view of growing interest in the mechanical rigidity of proteins, we measured the tensile profile of an alanine-based alpha-helical polypeptide on an atomic-force microscope to investigate the basic mechanics of helix extension with minimal interference from side-chain interactions. The peptide was extended to its maximum contour length with much less force than in reported cases of poly-L-Glu or poly-L-Lys, indicating that chain stiffness strongly depended on the physicochemical properties of side chains, such as their bulkiness. The low tensile-force extension originated presumably in locally unfolded parts because of spontaneous structural fluctuations. In 50% trifluoroethanol, the well-known helix-promoting agent, the rigidity of the sample polypeptide was markedly increased. Computer simulations of the peptide-stretching process showed that a majority of constituent residues underwent a transition from an alpha-helical to an extended conformation by overcoming an energy barrier around psi approximately 0 degrees on the Ramachandran plot. The observed lability of an isolated helix signified the biological importance of the lateral bundling of helices to maintain a rigid protein structure.
Collapse
Affiliation(s)
- Rehana Afrin
- Biofrontier Center, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
46
|
Kreplak L, Nyland LR, Contompasis JL, Vigoreaux JO. Nanomechanics of Native Thick Filaments from Indirect Flight Muscles. J Mol Biol 2009; 386:1403-10. [DOI: 10.1016/j.jmb.2008.12.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/11/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
|
47
|
Buvoli M, Hamady M, Leinwand LA, Knight R. Bioinformatics assessment of beta-myosin mutations reveals myosin's high sensitivity to mutations. Trends Cardiovasc Med 2008; 18:141-9. [PMID: 18555187 DOI: 10.1016/j.tcm.2008.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 01/12/2023]
Abstract
More than 200 mutations in the beta-myosin gene (MYH7) that cause clinically distinct cardiac and/or skeletal myopathies have been reported, but to date, no comprehensive statistical analysis of these mutations has been performed. As a part of this review, we developed a new interactive database and research tool called MyoMAPR (Myopathic Mutation Analysis Profiler and Repository). We report that the distribution of mutations along the beta-myosin gene is not homogeneous, and that myosin is a highly constrained molecule with an uncommon sensitivity to amino acid substitutions. Increasing knowledge of the characteristics of MH7 mutations may provide a valuable resource for scientists and clinicians studying diagnosis, risk stratification, and treatment of disease associated with these mutations.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
48
|
Lim BBC, Lee EH, Sotomayor M, Schulten K. Molecular basis of fibrin clot elasticity. Structure 2008; 16:449-59. [PMID: 18294856 DOI: 10.1016/j.str.2007.12.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Blood clots must be stiff to stop hemorrhage yet elastic to buffer blood's shear forces. Upsetting this balance results in clot rupture and life-threatening thromboembolism. Fibrin, the main component of a blood clot, is formed from molecules of fibrinogen activated by thrombin. Although it is well known that fibrin possesses considerable elasticity, the molecular basis of this elasticity is unknown. Here, we use atomic force microscopy (AFM) and steered molecular dynamics (SMD) to probe the mechanical properties of single fibrinogen molecules and fibrin protofibrils, showing that the mechanical unfolding of their coiled-coil alpha helices is characterized by a distinctive intermediate force plateau in the systems' force-extension curve. We relate this plateau force to a stepwise unfolding of fibrinogen's coiled alpha helices and of its central domain. AFM data show that varying pH and calcium ion concentrations alters the mechanical resilience of fibrinogen. This study provides direct evidence for the coiled alpha helices of fibrinogen to bring about fibrin elasticity.
Collapse
Affiliation(s)
- Bernard B C Lim
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
49
|
Molecular basis of the C-terminal tail-to-tail assembly of the sarcomeric filament protein myomesin. EMBO J 2007; 27:253-64. [PMID: 18059477 DOI: 10.1038/sj.emboj.7601944] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 11/06/2007] [Indexed: 11/08/2022] Open
Abstract
Sarcomeric filament proteins display extraordinary properties in terms of protein length and mechanical elasticity, requiring specific anchoring and assembly mechanisms. To establish the molecular basis of terminal filament assembly, we have selected the sarcomeric M-band protein myomesin as a prototypic filament model. The crystal structure of the myomesin C-terminus, comprising a tandem array of two immunoglobulin (Ig) domains My12 and My13, reveals a dimeric end-to-end filament of 14.3 nm length. Although the two domains share the same fold, an unexpected rearrangement of one beta-strand reveals how they are evolved into unrelated functions, terminal filament assembly (My13) and filament propagation (My12). The two domains are connected by a six-turn alpha-helix, of which two turns are void of any interactions with other protein parts. Thus, the overall structure of the assembled myomesin C-terminus resembles a three-body beads-on-the-string model with potentially elastic properties. We predict that the found My12-helix-My13 domain topology may provide a structural template for the filament architecture of the entire C-terminal Ig domain array My9-My13 of myomesin.
Collapse
|
50
|
Brown OJ, Lopez SA, Fuller AO, Goodson T. Formation and reversible dissociation of coiled coil of peptide to the C-terminus of the HSV B5 protein: a time-resolved spectroscopic analysis. Biophys J 2007; 93:1068-78. [PMID: 17496024 PMCID: PMC1913165 DOI: 10.1529/biophysj.106.100958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 04/09/2007] [Indexed: 11/18/2022] Open
Abstract
An understanding of the molecular mechanisms of the newly characterized herpes simplex virus (HSV) B5 protein is important to further elucidate the HSV cell entry and infection. The synthetic peptide of B5 (wtB5) was functionalized with the nonlinear optical chromophore cascade yellow and its molecular dynamics was probed at physiological and endosomal pH (pH 7.4 and 5.5, respectively). Steady-state CD spectroscopy was utilized to characterize the peptides at different pH. These spectra showed structural changes in the peptide with time measured over several days. Nonlinear optical measurements were carried out to probe the interactions and local environment of the labeled peptide, and the increase in the two-photon cross section of this system suggests an increase in chromophore-peptide interactions. Time-resolved fluorescence upconversion measurements reflected changes in the hydrophilic and hydrophobic local environments of the labeled peptide-chromophore system. Ultrafast depolarization measurements gave rotational correlation times indicative of a reversible change in the size of the peptide. The time-resolved results provide compelling evidence of a reversible dissociation of the coiled coils of the wtB5 peptide. This process was found to be pH-insensitive. The data from this unique combination of techniques provide an initial step to understanding the molecular dynamics of B5 and a framework for the development of novel imaging methods based on two-photon emission, as well as new therapeutics for HSV.
Collapse
Affiliation(s)
- Ordel J Brown
- Department of Chemistry, University of Michigan, USA
| | | | | | | |
Collapse
|