1
|
Frezza E, Laage D, Duboué-Dijon E. Molecular Origin of Distinct Hydration Dynamics in Double Helical DNA and RNA Sequences. J Phys Chem Lett 2024; 15:4351-4358. [PMID: 38619551 DOI: 10.1021/acs.jpclett.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Water molecules are essential to determine the structure of nucleic acids and mediate their interactions with other biomolecules. Here, we characterize the hydration dynamics of analogous DNA and RNA double helices with unprecedented resolution and elucidate the molecular origin of their differences: first, the localization of the slowest hydration water molecules─in the minor groove in DNA, next to phosphates in RNA─and second, the markedly distinct hydration dynamics of the two phosphate oxygen atoms OR and OS in RNA. Using our Extended Jump Model for water reorientation, we assess the relative importance of previously proposed factors, including the local topography, water bridges, and the presence of ions. We show that the slow hydration dynamics at RNA OR sites is not due to bridging water molecules but is caused by both the larger excluded volume and the stronger initial H-bond next to OR, due to the different phosphate orientations in A-form double helical RNA.
Collapse
Affiliation(s)
- Elisa Frezza
- Université Paris Cité, CNRS, CiTCoM, Paris 75006, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure-PSL, Sorbonne Université, CNRS, Paris 75005, France
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France
| |
Collapse
|
2
|
Ormazábal A, Palma J, Pierdominici-Sottile G. Dynamics and Function of sRNA/mRNAs Under the Scrutiny of Computational Simulation Methods. Methods Mol Biol 2024; 2741:207-238. [PMID: 38217656 DOI: 10.1007/978-1-0716-3565-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Juliana Palma
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Gustavo Pierdominici-Sottile
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
3
|
Kolesnikov ES, Gushchin IY, Zhilyaev PA, Onufriev AV. Similarities and Differences between Na + and K + Distributions around DNA Obtained with Three Popular Water Models. J Chem Theory Comput 2021; 17:7246-7259. [PMID: 34633813 DOI: 10.1021/acs.jctc.1c00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have compared distributions of sodium and potassium ions around double-stranded DNA, simulated using fixed charge SPC/E, TIP3P, and OPC water models and the Joung/Cheatham (J/C) ion parameter set, as well as the Li/Merz HFE 6-12 (L/M HFE) ion parameters for OPC water. In all the simulations, the ion distributions are in qualitative agreement with Manning's condensation theory and the Debye-Hückel theory, where expected. In agreement with experiment, binding affinity of monovalent ions to DNA does not depend on ion type in every solvent model. However, behavior of deeply bound ions, including ions bound to specific sites, depends strongly on the solvent model. In particular, the number of potassium ions in the minor groove of AT-tracts differs at least 3-fold between the solvent models tested. The number of sodium ions associated with the DNA agrees quantitatively with the experiment for the OPC water model, followed closely by TIP3P+J/C; the largest deviation from the experiment, ∼10%, is seen for SPC/E+J/C. On the other hand, SPC/E+J/C model is most consistent (67%) with the experimental potassium binding sites, followed by OPC+J/C (60%), TIP3P+J/C (53%), and OPC+L/M HFE (27%). The use of NBFIX correction with TIP3P+J/C improves its consistency with the experiment. In summary, the choice of the solvent model matters little for simulating the diffuse atmosphere of sodium and potassium ions around DNA, but ion distributions become increasingly sensitive to the solvent model near the helical axis. We offer an explanation for these trends. There is no single gold standard solvent model, although OPC water with J/C ions or TIP3P with J/C + NBFIX may offer an imperfect compromise for practical simulations of ionic atmospheres around DNA.
Collapse
Affiliation(s)
- Egor S Kolesnikov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Petr A Zhilyaev
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg 24061-0131, United States.,Department of Physics, Virginia Tech, Blacksburg 24061-0131, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg 24061-0131, United States
| |
Collapse
|
4
|
The effect of metal alkali cations on the properties of hydrogen bonds in tautomeric forms of adenine - Guanine mismatch. J Mol Graph Model 2020; 100:107705. [PMID: 32810731 DOI: 10.1016/j.jmgm.2020.107705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022]
Abstract
The effect of interactions of Li+, Na+ and K+ cations with two preferred configuration of the A-G mispairs, AantiGanti and AsynGanti, on the geometries and hydrogen bond energies have been studied at the MP2/6-311++G(d,p) level of theory. For each ion type, the most stable complex in AantiGanti and AsynGanti configurations are related to binding cation to N3 atom of guanine and N1 atom of adenine, respectively. The AantiGanti configuration is higher in the absolute values of binding energy than the AsynGanti configuration, indicating that AantiGanti configuration is more stable than AsynGanti ones. The results indicate that the strength of hydrogen bonds depends on the type and position of cations in considered systems. The values of hydrogen bonding energies estimated by the EML formula in AantiGanti mismatch are higher than AsynGanti case. The influences of cations binding in hydrogen bond strength are confirmed by the results of natural bond orbital (NBO) and atoms in molecules (AIM) analyses.
Collapse
|
5
|
Nguyen HT, Thirumalai D. Charge Density of Cation Determines Inner versus Outer Shell Coordination to Phosphate in RNA. J Phys Chem B 2020; 124:4114-4122. [PMID: 32342689 DOI: 10.1021/acs.jpcb.0c02371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Divalent cations are often required to fold RNA, which is a highly charged polyanion. Condensation of ions, such as Mg2+ or Ca2+, in the vicinity of RNA renormalizes the effective charges on the phosphate groups, thus minimizing the intra RNA electrostatic repulsion. The prevailing view is that divalent ions bind diffusively in a nonspecific manner. In sharp contrast, we arrive at the exact opposite conclusion using a theory for the interaction of ions with the phosphate groups using RISM theory in conjunction with simulations based on an accurate three-interaction-site RNA model. The divalent ions bind in a nucleotide-specific manner using either the inner (partially dehydrated) or outer (fully hydrated) shell coordination. The high charge density Mg2+ ion has a preference to bind to the outer shell, whereas the opposite is the case for Ca2+. Surprisingly, we find that bridging interactions, involving ions that are coordinated to two or more phosphate groups, play a crucial role in maintaining the integrity of the folded state. Their importance could become increasingly prominent as the size of the RNA increases. Because the modes of interaction of divalent ions with DNA are likely to be similar, we propose that specific inner and outer shell coordination could play a role in DNA condensation, and perhaps genome organization as well.
Collapse
Affiliation(s)
- Hung T Nguyen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Kumar N, Marx D. How do ribozymes accommodate additional water molecules upon hydrostatic compression deep into the kilobar pressure regime? Biophys Chem 2019; 252:106192. [DOI: 10.1016/j.bpc.2019.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
|
7
|
Sun LZ, Zhou Y, Chen SJ. Predicting Monovalent Ion Correlation Effects in Nucleic Acids. ACS OMEGA 2019; 4:13435-13446. [PMID: 31460472 PMCID: PMC6705202 DOI: 10.1021/acsomega.9b01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/18/2019] [Indexed: 05/14/2023]
Abstract
Ion correlation and fluctuation can play a potentially significant role in metal ion-nucleic acid interactions. Previous studies have focused on the effects for multivalent cations. However, the correlation and fluctuation effects can be important also for monovalent cations around the nucleic acid surface. Here, we report a model, gMCTBI, that can explicitly treat discrete distributions of both monovalent and multivalent cations and can account for the correlation and fluctuation effects for the cations in the solution. The gMCTBI model enables investigation of the global ion binding properties as well as the detailed discrete distributions of the bound ions. Accounting for the ion correlation effect for monovalent ions can lead to more accurate predictions, especially in a mixed monovalent and multivalent salt solution, for the number and location of the bound ions. Furthermore, although the monovalent ion-mediated correlation does not show a significant effect on the number of bound ions, the correlation may enhance the accumulation of monovalent ions near the nucleic acid surface and hence affect the ion distribution. The study further reveals novel ion correlation-induced effects in the competition between the different cations around nucleic acids.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department
of Applied Physics, Zhejiang University
of Technology, Hangzhou 310023, China
- Department
of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Yuanzhe Zhou
- Department
of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department
of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
- E-mail:
| |
Collapse
|
8
|
Sun LZ, Chen SJ. Predicting RNA-Metal Ion Binding with Ion Dehydration Effects. Biophys J 2018; 116:184-195. [PMID: 30612712 DOI: 10.1016/j.bpj.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023] Open
Abstract
Metal ions play essential roles in nucleic acids folding and stability. The interaction between metal ions and nucleic acids can be highly complicated because of the interplay between various effects such as ion correlation, fluctuation, and dehydration. These effects may be particularly important for multivalent ions such as Mg2+ ions. Previous efforts to model ion correlation and fluctuation effects led to the development of the Monte Carlo tightly bound ion model. Here, by incorporating ion hydration/dehydration effects into the Monte Carlo tightly bound ion model, we develop a, to our knowledge, new approach to predict ion binding. The new model enables predictions for not only the number of bound ions but also the three-dimensional spatial distribution of the bound ions. Furthermore, the new model reveals several intriguing features for the bound ions such as the mutual enhancement/inhibition in ion binding between the fully hydrated (diffuse) ions, the outer-shell dehydrated ions, and the inner-shell dehydrated ions and novel features for the monovalent-divalent ion interplay due to the hydration effect.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China; Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri.
| |
Collapse
|
9
|
Bochicchio A, Krepl M, Yang F, Varani G, Sponer J, Carloni P. Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study. PLoS Comput Biol 2018; 14:e1006642. [PMID: 30521520 PMCID: PMC6307825 DOI: 10.1371/journal.pcbi.1006642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/27/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain across eukaryotic proteins. It is therefore of great value to engineer its specificity to target RNAs of arbitrary sequence. This was recently achieved for the RRM in Rbfox protein, where four mutations R118D, E147R, N151S, and E152T were designed to target the precursor to the oncogenic miRNA 21. Here, we used a variety of molecular dynamics-based approaches to predict specific interactions at the binding interface. Overall, we have run approximately 50 microseconds of enhanced sampling and plain molecular dynamics simulations on the engineered complex as well as on the wild-type Rbfox·pre-miRNA 20b from which the mutated systems were designed. Comparison with the available NMR data on the wild type molecules (protein, RNA, and their complex) served to establish the accuracy of the calculations. Free energy calculations suggest that further improvements in affinity and selectivity are achieved by the S151T replacement. RNA is an outstanding target for oncological intervention. Engineering the most common RNA binding motif in human proteins (called RRM) so as to bind to a specific RNA has an enormous pharmacological potential. Yet, it is highly non trivial to design RRM-bearing protein variants with RNA selectivity and affinity sufficiently high for clinical applications. Here we present an extensive molecular simulation study which shed light on the exquisite molecular recognition of the empirically-engineered complex between the RRM-bearing protein Rbfox and its RNA target pre-miR21. The simulations allow predicting a variant, the S151T, which may lead to further enhancement of selectivity and affinity for pre-miR21.
Collapse
Affiliation(s)
- Anna Bochicchio
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- * E-mail: (MK); (PC)
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (MK); (PC)
| |
Collapse
|
10
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
11
|
Zhang C, Lu C, Jing Z, Wu C, Piquemal JP, Ponder JW, Ren P. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J Chem Theory Comput 2018; 14:2084-2108. [PMID: 29438622 PMCID: PMC5893433 DOI: 10.1021/acs.jctc.7b01169] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The AMOEBA polarizable atomic multipole force field for nucleic acids is presented. Valence and electrostatic parameters were determined from high-level quantum mechanical data, including structures, conformational energy, and electrostatic potentials, of nucleotide model compounds. Previously derived parameters for the phosphate group and nucleobases were incorporated. A total of over 35 μs of condensed-phase molecular dynamics simulations of DNA and RNA molecules in aqueous solution and crystal lattice were performed to validate and refine the force field. The solution and/or crystal structures of DNA B-form duplexes, RNA duplexes, and hairpins were captured with an average root-mean-squared deviation from NMR structures below or around 2.0 Å. Structural details, such as base pairing and stacking, sugar puckering, backbone and χ-torsion angles, groove geometries, and crystal packing interfaces, agreed well with NMR and/or X-ray. The interconversion between A- and B-form DNAs was observed in ethanol-water mixtures at 328 K. Crystal lattices of B- and Z-form DNA and A-form RNA were examined with simulations. For the RNA tetraloop, single strand tetramers, and HIV TAR with 29 residues, the simulated conformational states, 3 J-coupling, nuclear Overhauser effect, and residual dipolar coupling data were compared with NMR results. Starting from a totally unstacked/unfolding state, the rCAAU tetranucleotide was folded into A-form-like structures during ∼1 μs molecular dynamics simulations.
Collapse
Affiliation(s)
- Changsheng Zhang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chao Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chuanjie Wu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Jean-Philip Piquemal
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC, UMR7616 CNRS, Paris, France
| | - Jay W. Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Šponer JE, Szabla R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 2018; 18:20047-66. [PMID: 27136968 DOI: 10.1039/c6cp00670a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
13
|
Kolev SK, Petkov PS, Rangelov MA, Trifonov DV, Milenov TI, Vayssilov GN. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 2018; 10:659-678. [DOI: 10.1039/c8mt00043c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Data on the location of alkaline and alkaline earth ions at RNA from crystallography, spectroscopy and computational modeling are reviewed.
Collapse
Affiliation(s)
- Stefan K. Kolev
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1126 Sofia
- Bulgaria
| | - Miroslav A. Rangelov
- Laboratory of BioCatalysis
- Institute of Organic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | - Teodor I. Milenov
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | | |
Collapse
|
14
|
Sun LZ, Kranawetter C, Heng X, Chen SJ. Predicting Ion Effects in an RNA Conformational Equilibrium. J Phys Chem B 2017; 121:8026-8036. [PMID: 28780864 DOI: 10.1021/acs.jpcb.7b03873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We develop a partial charge-based tightly bound ion (PCTBI) model for the ion effects in RNA folding. On the basis of the Monte Carlo tightly bound ion (MCTBI) approach, the model can account for ion fluctuation and correlation effects, and can predict the ion distribution around the RNA. Furthermore, unlike the previous coarse-grained RNA charge models, where negative charges are placed on the phosphates only, the current new model considers the detailed all-atom partial charge distribution on the RNA. Thus, the model not only keeps the advantage of the MCTBI model, but also has the potential to provide important detailed information unattainable by the previous MCTBI models. For example, the model predicts the reduction in ion binding upon protein binding and ion-induced conformational switches. For hepatitis C virus genomic RNA, the model predicts a Mg2+-induced stabilization of a kissing motif for a cis-acting regulatory element in the genomic RNA. Extensive theory-experiment comparisons support the reliability of the theoretical predictions. Therefore, the model may serve as a robust starting point for further development of an accurate method for ion effects in an RNA conformational equilibrium and RNA-cofactor interactions.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Clayton Kranawetter
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Krepl M, Blatter M, Cléry A, Damberger FF, Allain FH, Sponer J. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res 2017; 45:8046-8063. [PMID: 28505313 PMCID: PMC5737849 DOI: 10.1093/nar/gkx418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
Abstract
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Markus Blatter
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Present address: Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Fred F. Damberger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Frédéric H.T. Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
16
|
Abstract
In addition to continuous rapid progress in RNA structure determination, probing, and biophysical studies, the past decade has seen remarkable advances in the development of a new generation of RNA folding theories and models. In this article, we review RNA structure prediction models and models for ion-RNA and ligand-RNA interactions. These new models are becoming increasingly important for a mechanistic understanding of RNA function and quantitative design of RNA nanotechnology. We focus on new methods for physics-based, knowledge-based, and experimental data-directed modeling for RNA structures and explore the new theories for the predictions of metal ion and ligand binding sites and metal ion-dependent RNA stabilities. The integration of these new methods with theories about the cellular environment effects in RNA folding, such as molecular crowding and cotranscriptional kinetic effects, may ultimately lead to an all-encompassing RNA folding model.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
17
|
Šponer J, Krepl M, Banáš P, Kührová P, Zgarbová M, Jurečka P, Havrila M, Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes? WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863061 DOI: 10.1002/wrna.1405] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Abstract
We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
18
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Sun LZ, Chen SJ. Monte Carlo Tightly Bound Ion Model: Predicting Ion-Binding Properties of RNA with Ion Correlations and Fluctuations. J Chem Theory Comput 2016; 12:3370-81. [PMID: 27311366 PMCID: PMC5520805 DOI: 10.1021/acs.jctc.6b00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Experiments have suggested that ion correlation and fluctuation effects can be potentially important for multivalent ions in RNA folding. However, most existing computational methods for the ion electrostatics in RNA folding tend to ignore these effects. The previously reported tightly bound ion (TBI) model can treat ion correlation and fluctuation but its applicability to biologically important RNAs is severely limited by the low computational efficiency. Here, on the basis of Monte Carlo sampling for the many-body ion distribution, we develop a new computational model, the Monte Carlo tightly bound ion (MCTBI) model, for ion-binding properties around an RNA. Because of an enhanced sampling algorithm for ion distribution, the model leads to a significant improvement in computational efficiency. For example, for a 160-nt RNA, the model causes a more than 10-fold increase in the computational efficiency, and the improvement in computational efficiency is more pronounced for larger systems. Furthermore, unlike the earlier model that describes ion distribution using the number of bound ions around each nucleotide, the current MCTBI model is based on the three-dimensional coordinates of the ions. The higher efficiency of the model allows us to treat the ion effects for medium to large RNA molecules, RNA-ligand complexes, and RNA-protein complexes. This new model together with proper RNA conformational sampling and the energetics model may serve as a starting point for further development for the ion effects in RNA folding and conformational changes and for large nucleic acid systems.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
20
|
Skilandat M, Rowinska-Zyrek M, Sigel RKO. Secondary structure confirmation and localization of Mg2+ ions in the mammalian CPEB3 ribozyme. RNA (NEW YORK, N.Y.) 2016; 22:750-763. [PMID: 26966151 PMCID: PMC4836649 DOI: 10.1261/rna.053843.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Most of today's knowledge of the CPEB3 ribozyme, one of the few small self-cleaving ribozymes known to occur in humans, is based on comparative studies with the hepatitis delta virus (HDV) ribozyme, which is highly similar in cleavage mechanism and probably also in structure. Here we present detailed NMR studies of the CPEB3 ribozyme in order to verify the formation of the predicted nested double pseudoknot in solution. In particular, the influence of Mg(2+), the ribozyme's crucial cofactor, on the CPEB3 structure is investigated. NMR titrations, Tb(3+)-induced cleavage, as well as stoichiometry determination by hydroxyquinoline sulfonic acid fluorescence and equilibrium dialysis, are used to evaluate the number, location, and binding mode of Mg(2+)ions. Up to eight Mg(2+)ions interact site-specifically with the ribozyme, four of which are bound with high affinity. The global fold of the CPEB3 ribozyme, encompassing 80%-90% of the predicted base pairs, is formed in the presence of monovalent ions alone. Low millimolar concentrations of Mg(2+)promote a more compact fold and lead to the formation of additional structures in the core of the ribozyme, which contains the inner small pseudoknot and the active site. Several Mg(2+)binding sites, which are important for the functional fold, appear to be located in corresponding locations in the HDV and CPEB3 ribozyme, demonstrating the particular relevance of Mg(2+)for the nested double pseudoknot structure.
Collapse
Affiliation(s)
- Miriam Skilandat
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Roland K O Sigel
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
21
|
Bejugam PR, Singh S. Computing Molecular Devices in L.major through Transcriptome Analysis: Structured Simulation Approach. PLoS One 2016; 11:e0148909. [PMID: 26901858 PMCID: PMC4768835 DOI: 10.1371/journal.pone.0148909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
In the modern era of post genomics and transcriptomics, non-coding RNAs and non-coding regions of many RNAs are a big puzzle when we try deciphering their role in specific gene function. Gene function assessment is a main task wherein high throughput technologies provide an impressive body of data that enables the design of hypotheses linking genes to phenotypes. Gene knockdown technologies and RNA-dependent gene silencing are the most frequent approaches to assess the role of key effectors in a particular scenario. Ribozymes are effective modulators of gene expression because of their simple structure, site-specific cleavage activity, and catalytic potential. In our study, after an extensive transcriptomic search of Leishmania major transcriptome we found a Putative ATP dependent DNA helicase (Lmjf_09_0590) 3’ UTR which has a structural signature similar to well-known HDV hammerhead ribozyme, even though they have variable sequence motifs. Henceforth, to determine their structural stability and sustainability we analyzed our predicted structural model of this 3’UTR with a 30ns MD simulation, further confirmed with 100ns MD simulation in presence of 5mM MgCl2 ionic environment. In this environment, structural stability was significantly improved by bonded interactions between a RNA backbone and Mg2+ ions. These predictions were further validated in silico using RNA normal mode analysis and anisotropic network modelling (ANM) studies. The study may be significantly imparted to know the functional importance of many such 3’UTRs to predict their role in a mechanistic manner.
Collapse
Affiliation(s)
| | - Shailza Singh
- National Centre for Cell Science, Pune, India
- * E-mail:
| |
Collapse
|
22
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
23
|
Kührová P, Otyepka M, Šponer J, Banáš P. Are Waters around RNA More than Just a Solvent? - An Insight from Molecular Dynamics Simulations. J Chem Theory Comput 2015; 10:401-11. [PMID: 26579919 DOI: 10.1021/ct400663s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hydrating water molecules are believed to be an inherent part of the RNA structure and have a considerable impact on RNA conformation. However, the magnitude and mechanism of the interplay between water molecules and the RNA structure are still poorly understood. In principle, such hydration effects can be studied by molecular dynamics (MD) simulations. In our recent MD studies, we observed that the choice of water model has a visible impact on the predicted structure and structural dynamics of RNA and, in particular, has a larger effect than type, parametrization, and concentration of the ions. Furthermore, the water model effect is sequence dependent and modulates the sequence dependence of A-RNA helical parameters. Clearly, the sensitivity of A-RNA structural dynamics to the water model parametrization is a rather spurious effect that complicates MD studies of RNA molecules. These results nevertheless suggest that the sequence dependence of the A-RNA structure, usually attributed to base stacking, might be driven by the structural dynamics of specific hydration. Here, we present a systematic MD study that aimed to (i) clarify the atomistic mechanism of the water model sensitivity and (ii) discover whether and to what extent specific hydration modulates the A-RNA structural variability. We carried out an extended set of MD simulations of canonical A-RNA duplexes with TIP3P, TIP4P/2005, TIP5P, and SPC/E explicit water models and found that different water models provided a different extent of water bridging between 2'-OH groups across the minor groove, which in turn influences their distance and consequently also inclination, roll, and slide parameters. Minor groove hydration is also responsible for the sequence dependence of these helical parameters. Our simulations suggest that TIP5P is not optimal for RNA simulations.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. Listopadu 12, 771 46, Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic.,CEITEC - Central European Institute of Technology , Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17. Listopadu 12, 771 46, Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
24
|
Nash JA, Singh A, Li NK, Yingling YG. Characterization of Nucleic Acid Compaction with Histone-Mimic Nanoparticles through All-Atom Molecular Dynamics. ACS NANO 2015; 9:12374-82. [PMID: 26522008 DOI: 10.1021/acsnano.5b05684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of nucleic acid (NA) based nanotechnology applications rely on the efficient packaging of DNA and RNA. However, the atomic details of NA-nanoparticle binding remains to be comprehensively characterized. Here, we examined how nanoparticle and solvent properties affect NA compaction. Our large-scale, all-atom simulations of ligand-functionalized gold nanoparticle (NP) binding to double stranded NAs as a function of NP charge and solution salt concentration reveal different responses of RNA and DNA to cationic NPs. We demonstrate that the ability of a nanoparticle to bend DNA is directly correlated with the NPs charge and ligand corona shape, where more than 50% charge neutralization and spherical shape of the NP ligand corona ensured the DNA compaction. However, NP with 100% charge neutralization is needed to bend DNA almost as efficiently as the histone octamer. For RNA in 0.1 M NaCl, even the most highly charged nanoparticles are not capable of causing bending due to charged ligand end groups binding internally to the major groove of RNA. We show that RNA compaction can only be achieved through a combination of highly charged nanoparticles with low salt concentration. Upon interactions with highly charged NPs, DNA bends through periodic variation in groove widths and depths, whereas RNA bends through expansion of the major groove.
Collapse
Affiliation(s)
- Jessica A Nash
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| | - Nan K Li
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27606, United States
| |
Collapse
|
25
|
Auffinger P, Cheatham TE, Vaiana AC. Spontaneous Formation of KCl Aggregates in Biomolecular Simulations: A Force Field Issue? J Chem Theory Comput 2015; 3:1851-9. [PMID: 26627627 DOI: 10.1021/ct700143s] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Realistic all-atom simulation of biological systems requires accurate modeling of both the biomolecules and their ionic environment. Recently, ion nucleation phenomena leading to the rapid growth of KCl or NaCl clusters in the vicinity of biomolecular systems have been reported. To better understand this phenomenon, molecular dynamics simulations of KCl aqueous solutions at three (1.0, 0.25, and 0.10 M) concentrations were performed. Two popular water models (TIP3P and SPC/E) and two Lennard-Jones parameter sets (AMBER and Dang) were combined to produce a total of 80 ns of molecular dynamics trajectories. Results suggest that the use of the Dang cation Lennard-Jones parameters instead of those adopted by the AMBER force-field produces a more accurate description of the ionic solution. In the later case, formation of salt aggregates is probably indicative of an artifact resulting from misbalanced force-field parameters. Because similar results were obtained with two different water parameter sets, the simulations exclude a water model dependency in the formation of anomalous ionic clusters. Overall, the results strongly suggest that for accurate modeling of ions in biomolecular systems, great care should be taken in choosing balanced ionic parameters even when using the most popular force-fields. These results invite a reexamination of older data obtained using available force-fields and a thorough check of the quality of current parameters sets by performing simulations at finite (>0.25 M) instead of minimal salt conditions.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France, and Department of Medical Chemistry, Pharmaceutical Chemistry and Pharmaceutics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Thomas E Cheatham
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France, and Department of Medical Chemistry, Pharmaceutical Chemistry and Pharmaceutics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Andrea C Vaiana
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France, and Department of Medical Chemistry, Pharmaceutical Chemistry and Pharmaceutics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
26
|
Sripathi KN, Banáš P, Réblová K, Šponer J, Otyepka M, Walter NG. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Phys Chem Chem Phys 2015; 17:5887-900. [PMID: 25631765 DOI: 10.1039/c4cp05083e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.
Collapse
Affiliation(s)
- Kamali N Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kruse H, Mladek A, Gkionis K, Hansen A, Grimme S, Sponer J. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J Chem Theory Comput 2015; 11:4972-91. [PMID: 26574283 DOI: 10.1021/acs.jctc.5b00515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Arnost Mladek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Konstantinos Gkionis
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
28
|
Islam B, Stadlbauer P, Krepl M, Koca J, Neidle S, Haider S, Sponer J. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res 2015; 43:8673-93. [PMID: 26245347 PMCID: PMC4605300 DOI: 10.1093/nar/gkv785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023] Open
Abstract
The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 μs long, ∼50 μs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal μs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.
Collapse
Affiliation(s)
- Barira Islam
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jaroslav Koca
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic National Center for Biomolecular Research, Faculty of Science, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Central European Institute of Technology (CEITEC), Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
29
|
Condon D, Kennedy SD, Mort BC, Kierzek R, Yildirim I, Turner DH. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J Chem Theory Comput 2015; 11:2729-2742. [PMID: 26082675 PMCID: PMC4463549 DOI: 10.1021/ct501025q] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/31/2022]
Abstract
Molecular dynamics (MD) simulations for RNA tetramers r(AAAA), r(CAAU), r(GACC), and r(UUUU) are benchmarked against 1H-1H NOESY distances and 3J scalar couplings to test effects of RNA torsion parametrizations. Four different starting structures were used for r(AAAA), r(CAAU), and r(GACC), while five starting structures were used for r(UUUU). On the basis of X-ray structures, criteria are reported for quantifying stacking. The force fields, AMBER ff99, parmbsc0, parm99χ_Yil, ff10, and parmTor, all predict experimentally unobserved stacks and intercalations, e.g., base 1 stacked between bases 3 and 4, and incorrect χ, ϵ, and sugar pucker populations. The intercalated structures are particularly stable, often lasting several microseconds. Parmbsc0, parm99χ_Yil, and ff10 give similar agreement with NMR, but the best agreement is only 46%. Experimentally unobserved intercalations typically are associated with reduced solvent accessible surface area along with amino and hydroxyl hydrogen bonds to phosphate nonbridging oxygens. Results from an extensive set of MD simulations suggest that recent force field parametrizations improve predictions, but further improvements are necessary to provide reasonable agreement with NMR. In particular, intramolecular stacking and hydrogen bonding interactions may not be well balanced with the TIP3P water model. NMR data and the scoring method presented here provide rigorous benchmarks for future changes in force fields and MD methods.
Collapse
Affiliation(s)
- David
E. Condon
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Scott D. Kennedy
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14642, United States
| | - Brendan C. Mort
- University
of Rochester Center for Integrated Research Computing, Rochester, New York 14627, United States
| | - Ryszard Kierzek
- Institute
of Bioorganic Chemistry, Polish Academy
of Sciences, 60-704 Poznan, Poland
| | - Ilyas Yildirim
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Douglas H. Turner
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
30
|
Mlýnský V, Walter NG, Šponer J, Otyepka M, Banáš P. The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations. Phys Chem Chem Phys 2015; 17:670-9. [PMID: 25412464 PMCID: PMC4256098 DOI: 10.1039/c4cp03857f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme is a catalytic RNA motif embedded in the human pathogenic HDV RNA. It catalyzes self-cleavage of its sugar-phosphate backbone with direct participation of the active site cytosine C75. Biochemical and structural data support a general acid role of C75. Here, we used hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to probe the reaction mechanism and changes in Gibbs energy along the ribozyme's reaction pathway with an N3-protonated C75H(+) in the active site, which acts as the general acid, and a partially hydrated Mg(2+) ion with one deprotonated, inner-shell coordinated water molecule that acts as the general base. We followed eight reaction paths with a distinct position and coordination of the catalytically important active site Mg(2+) ion. For six of them, we observed feasible activation barriers ranging from 14.2 to 21.9 kcal mol(-1), indicating that the specific position of the Mg(2+) ion in the active site is predicted to strongly affect the kinetics of self-cleavage. The deprotonation of the U-1(2'-OH) nucleophile and the nucleophilic attack of the resulting U-1(2'-O(-)) on the scissile phosphodiester are found to be separate steps, as deprotonation precedes the nucleophilic attack. This sequential mechanism of the HDV ribozyme differs from the concerted nucleophilic activation and attack suggested for the hairpin ribozyme. We estimate the pKa of the U-1(2'-OH) group to range from 8.8 to 11.2, suggesting that it is lowered by several units from that of a free ribose, comparable to and most likely smaller than the pKa of the solvated active site Mg(2+) ion. Our results thus support the notion that the structure of the HDV ribozyme, and particularly the positioning of the active site Mg(2+) ion, facilitate deprotonation and activation of the 2'-OH nucleophile.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
31
|
Li Y, Wang C, Hao J, Cheng M, Jia G, Li C. Higher-order human telomeric G-quadruplex DNA metalloenzyme catalyzed Diels–Alder reaction: an unexpected inversion of enantioselectivity modulated by K+ and NH4+ ions. Chem Commun (Camb) 2015; 51:13174-7. [DOI: 10.1039/c5cc05215g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
K+ and NH4+, bearing approximately equal ionic radius, present different allosteric activation for higher-order human telomeric G-quadruplex DNA metalloenzyme.
Collapse
Affiliation(s)
- Yinghao Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Changhao Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Jingya Hao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Guoqing Jia
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Can Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
32
|
Estarellas C, Otyepka M, Koča J, Banáš P, Krepl M, Šponer J. Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochim Biophys Acta Gen Subj 2014; 1850:1072-1090. [PMID: 25450173 DOI: 10.1016/j.bbagen.2014.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7μs in total). RESULTS The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Carolina Estarellas
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
33
|
Sripathi KN, Tay WW, Banáš P, Otyepka M, Šponer J, Walter NG. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. RNA (NEW YORK, N.Y.) 2014; 20:1112-28. [PMID: 24854621 PMCID: PMC4114689 DOI: 10.1261/rna.044982.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.
Collapse
Affiliation(s)
- Kamali N. Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Wendy W. Tay
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Pavel Banáš
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
- Masaryk University, Campus Bohunice, 625 00 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
34
|
Šponer J, Banáš P, Jurečka P, Zgarbová M, Kührová P, Havrila M, Krepl M, Stadlbauer P, Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J Phys Chem Lett 2014; 5:1771-82. [PMID: 26270382 DOI: 10.1021/jz500557y] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.
Collapse
Affiliation(s)
- Jiří Šponer
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- ‡CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marie Zgarbová
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marek Havrila
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- ‡CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
35
|
Yoon J, Lin JC, Hyeon C, Thirumalai D. Dynamical Transition and Heterogeneous Hydration Dynamics in RNA. J Phys Chem B 2014; 118:7910-9. [DOI: 10.1021/jp500643u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jeseong Yoon
- Korea Institute for Advanced Study, 130-722 Seoul, Korea
| | - Jong-Chin Lin
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | | | - D. Thirumalai
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
36
|
Krepl M, Réblová K, Koča J, Sponer J. Bioinformatics and molecular dynamics simulation study of L1 stalk non-canonical rRNA elements: kink-turns, loops, and tetraloops. J Phys Chem B 2013; 117:5540-55. [PMID: 23534440 DOI: 10.1021/jp401482m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The L1 stalk is a prominent mobile element of the large ribosomal subunit. We explore the structure and dynamics of its non-canonical rRNA elements, which include two kink-turns, an internal loop, and a tetraloop. We use bioinformatics to identify the L1 stalk RNA conservation patterns and carry out over 11.5 μs of MD simulations for a set of systems ranging from isolated RNA building blocks up to complexes of L1 stalk rRNA with the L1 protein and tRNA fragment. We show that the L1 stalk tetraloop has an unusual GNNA or UNNG conservation pattern deviating from major GNRA and YNMG RNA tetraloop families. We suggest that this deviation is related to a highly conserved tertiary contact within the L1 stalk. The available X-ray structures contain only UCCG tetraloops which in addition differ in orientation (anti vs syn) of the guanine. Our analysis suggests that the anti orientation might be a mis-refinement, although even the anti interaction would be compatible with the sequence pattern and observed tertiary interaction. Alternatively, the anti conformation may be a real substate whose population could be pH-dependent, since the guanine syn orientation requires protonation of cytosine in the tertiary contact. In absence of structural data, we use molecular modeling to explore the GCCA tetraloop that is dominant in bacteria and suggest that the GCCA tetraloop is structurally similar to the YNMG tetraloop. Kink-turn Kt-77 is unusual due to its 11-nucleotide bulge. The simulations indicate that the long bulge is a stalk-specific eight-nucleotide insertion into consensual kink-turn only subtly modifying its structural dynamics. We discuss a possible evolutionary role of helix H78 and a mechanism of L1 stalk interaction with tRNA. We also assess the simulation methodology. The simulations provide a good description of the studied systems with the latest bsc0χOL3 force field showing improved performance. Still, even bsc0χOL3 is unable to fully stabilize an essential sugar-edge H-bond between the bulge and non-canonical stem of the kink-turn. Inclusion of Mg(2+) ions may deteriorate the simulations. On the other hand, monovalent ions can in simulations readily occupy experimental Mg(2+) binding sites.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
37
|
Abstract
The role of pH-dependent protonation equilibrium in modulating RNA dynamics and function is one of the key unanswered questions in RNA biology. Molecular dynamics (MD) simulations can provide insight into the mechanistic roles of protonated nucleotides, but it is only capable of modeling fixed protonation states and requires prior knowledge of the key residue's protonation state. Recently, we developed a framework for constant pH molecular dynamics simulations (CPHMDMSλD) of nucleic acids, where the nucleotides' protonation states are modeled as dynamic variables that are coupled to the structural dynamics of the RNA. In the present study, we demonstrate the application of CPHMDMSλD to the lead-dependent ribozyme; establishing the validity of this approach for modeling complex RNA structures. We show that CPHMDMSλD accurately predicts the direction of the pKa shifts and reproduces experimentally-measured microscopic pKa values with an average unsigned error of 1.3 pKa units. The effects of coupled titration states in RNA structures are modeled, and the importance of conformation sampling is highlighted. The general accuracy of CPHMDMSλD simulations in reproducing pH-dependent observables reported in this work demonstrates that constant pH simulations provides a powerful tool to investigate pH-dependent processes in nucleic acids.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
38
|
Krepl M, Otyepka M, Banáš P, Šponer J. Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. J Phys Chem B 2013; 117:1872-9. [DOI: 10.1021/jp311180u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banáš P, Jurečka P, Otyepka M. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 2012; 14:15257-77. [PMID: 23072945 DOI: 10.1039/c2cp41987d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B 2012; 116:9899-916. [DOI: 10.1021/jp3014817] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavlína Košinová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
41
|
Spasic A, Serafini J, Mathews DH. The Amber ff99 Force Field Predicts Relative Free Energy Changes for RNA Helix Formation. J Chem Theory Comput 2012; 8:2497-2505. [PMID: 23112748 PMCID: PMC3482406 DOI: 10.1021/ct300240k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of the Amber ff99 force field to predict relative free energies of RNA helix formation was investigated. The test systems were three hexaloop RNA hairpins with identical loops and varying stems. The potential of mean force of stretching the hairpins from the native state to an extended conformation was calculated with umbrella sampling. Because the hairpins have identical loop sequence, the differences in free energy changes are only from the stem composition. The Amber ff99 force field was able to correctly predict the order of stabilities of the hairpins, although the magnitude of the free energy change is larger than that determined by optical melting experiments. The two measurements cannot be compared directly because the unfolded state in the optical melting experiments is a random coil, while the end state in the umbrella sampling simulations was an elongated chain. The calculations can be compared to reference data by using a thermodynamic cycle. By applying the thermodynamic cycle to the transitions between the hairpins using simulations and nearest neighbor data, agreement was found to be within the sampling error of simulations, thus demonstrating that ff99 force field is able to accurately predict relative free energies of RNA helix formation.
Collapse
Affiliation(s)
- Aleksandar Spasic
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| | - John Serafini
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
42
|
šponer J, Cang X, Cheatham TE. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures. Methods 2012; 57:25-39. [PMID: 22525788 PMCID: PMC3775459 DOI: 10.1016/j.ymeth.2012.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 11/29/2022] Open
Abstract
The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids.
Collapse
Affiliation(s)
- Jiří šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Xiaohui Cang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Hall 201, 2000 East 30 South, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
43
|
He Z, Chen SJ. Predicting ion-nucleic acid interactions by energy landscape-guided sampling. J Chem Theory Comput 2012; 8:2095-2101. [PMID: 23002389 DOI: 10.1021/ct300227a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recently developed Tightly Bound Ion (TBI) model offers improved predictions for ion effect in nucleic acid systems by accounting for ion correlation and fluctuation effects. However, further application of the model to larger systems is limited by the low computational efficiency of the model. Here, we develop a new computational efficient TBI model using free energy landscape-guided sampling method. The method leads to drastic reduction in the computer time by a factor of 50 for RNAs of 50-100 nucleotides long. The improvement in the computational efficiency would be more significant for larger structures. To test the new method, we apply the model to predict the free energies and the number of bound ions for a series of RNA folding systems. The validity of this new model is supported by the nearly exact agreement with the results from the original TBI model and the agreement with the experimental data. The method may pave the way for further applications of the TBI model to treat a broad range of biologically significant systems such as tetraloop-receptor and riboswitches.
Collapse
Affiliation(s)
- Zhaojian He
- Department of Physics, Department of Biochemistry, and Informatics Institute University of Missouri, Columbia, MO 65211
| | | |
Collapse
|
44
|
|
45
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
46
|
Réblová K, Šponer JE, Špačková N, Beššeová I, Šponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J Phys Chem B 2011; 115:13897-910. [PMID: 21999672 DOI: 10.1021/jp2065584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA kink-turn is an important recurrent RNA motif, an internal loop with characteristic consensus sequence forming highly conserved three-dimensional structure. Functional arrangement of RNA kink-turns shows a sharp bend in the phosphodiester backbone. Among other signature interactions, kink-turns form A-minor interaction between their two stems. Most kink-turns possess extended A-minor I (A-I) interaction where adenine of the second A•G base pair of the NC-stem interacts with the first canonical pair of the C-stem (i.e., the receptor pair) via trans-sugar-edge/sugar-edge (tSS) and cis-sugar-edge/sugar-edge (cSS) interactions. The remaining kink-turns have less compact A-minor 0 (A-0) interaction with just one tSS contact. We show that kink-turns with A-I in ribosomal X-ray structures keep G═C receptor base pair during evolution while the inverted pair (C═G) is not realized. In contrast, kink-turns with A-0 in the observed structures alternate G═C and C═G base pairs in sequences. We carried out an extended set (~5 μs) of explicit-solvent molecular dynamics simulations of kink-turns to rationalize this structural/evolutionary pattern. The simulations were done using a net-neutral Na(+) cation atmosphere (with ~0.25 M cation concentration) supplemented by simulations with either excess salt KCl atmosphere or inclusion of Mg(2+). The results do not seem to depend on the treatment of ions. The simulations started with X-ray structures of several kink-turns while we tested the response of the simulated system to base substitutions, modest structural perturbations and constraints. The trends seen in the simulations reveal that the A-I/G═C arrangement is preferred over all three other structures. The A-I/C═G triple appears structurally entirely unstable, consistent with the covariation patterns seen during the evolution. The A-0 arrangements tend to shift toward the A-I pattern in simulations, which suggests that formation of the A-0 interaction is likely supported by the surrounding protein and RNA molecules. A-0 may also be stabilized by additional kink-turn nucleotides not belonging to the kink-turn consensus, as shown for the kink-turn from ribosomal Helix 15. Quantum-chemical calculations on all four A-minor triples suggest that there is a different balance of electrostatic and dispersion stabilization in the A-I/G═C and A-I/C═G triples, which may explain different behavior of these otherwise isosteric triples in the context of kink-turns.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
47
|
Lee TS, Giambaşu G, Harris ME, York DM. Characterization of the Structure and Dynamics of the HDV Ribozyme at Different Stages Along the Reaction Path. J Phys Chem Lett 2011; 2:2538-2543. [PMID: 22200005 PMCID: PMC3244300 DOI: 10.1021/jz201106y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure and dynamics of the hepatitis delta virus ribozyme (HDVr) are studies using molecular dynamics simulations at several stages along its catalytic reaction path, including reactant, activated precursor, transition state mimic and product states, departing from an initial structure based on the C75U mutant crystal structure (PDB: 1VC7). Results of five 350 ns molecular dynamics simulations reveal a spontaneous rotation of U-1 that leads to an in-line conformation and support the role of protonated C75 as the general acid in the transition state. Our results provide rationale for the interpretation of several important experimental results, and make experimentally testable predictions regarding the roles of key active site residues that are not obvious from any available crystal structures.
Collapse
|
48
|
Zgarbová M, Jurečka P, Banáš P, Otyepka M, Sponer JE, Leontis NB, Zirbel CL, Sponer J. Noncanonical hydrogen bonding in nucleic acids. Benchmark evaluation of key base-phosphate interactions in folded RNA molecules using quantum-chemical calculations and molecular dynamics simulations. J Phys Chem A 2011; 115:11277-92. [PMID: 21910417 DOI: 10.1021/jp204820b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA molecules are stabilized by a wide range of noncanonical interactions that are not present in DNA. Among them, the recently classified base-phosphate (BPh) interactions belong to the most important ones. Twelve percent of nucleotides in the ribosomal crystal structures are involved in BPh interactions. BPh interactions are highly conserved and provide major constraints on RNA sequence evolution. Here we provide assessment of the energetics of BPh interactions using MP2 computations extrapolated to the complete basis set of atomic orbitals and corrected for higher-order electron correlation effects. The reference computations are compared with DFT-D and DFT-D3 approaches, the SAPT method, and the molecular mechanics force field. The computations, besides providing the basic benchmark for the BPh interactions, allow some refinements of the original classification, including identification of some potential doubly bonded BPh patterns. The reference computations are followed by analysis of some larger RNA fragments that consider the context of the BPh interactions. The computations demonstrate the complexity of interaction patterns utilizing the BPh interactions in real RNA structures. The BPh interactions are often involved in intricate interaction networks. We studied BPh interactions of protonated adenine that can contribute to catalysis of hairpin ribozyme, the key BPh interaction in the S-turn motif of the sarcin-ricin loop, which may predetermine the S-turn topology and complex BPh patterns from the glmS riboswitch. Finally, the structural stability of BPh interactions in explicit solvent molecular dynamics simulations is assessed. The simulations well preserve key BPh interactions and allow dissection of structurally/functionally important water-meditated BPh bridges, which could not be considered in earlier bioinformatics classification of BPh interactions.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sklenovský P, Florová P, Banáš P, Réblová K, Lankaš F, Otyepka M, Šponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. J Chem Theory Comput 2011; 7:2963-80. [PMID: 26605485 DOI: 10.1021/ct200204t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron. Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems. We report unrestrained, explicit solvent molecular dynamics simulations of ribosomal and intron reverse kink-turns (54 simulations with 7.4 μs of data in total) with different variants (ff94, ff99, ff99bsc0, ff99χOL, and ff99bsc0χOL) of the Cornell et al. force field. We test several ion conditions and two water models. The simulations characterize the directional intrinsic flexibility of reverse kink-turns pertinent to their folded functional geometries. The reverse kink-turns are the most flexible RNA motifs studied so far by explicit solvent simulations which are capable at the present simulation time scale to spontaneously and reversibly sample a wide range of geometries from tightly kinked ones through flexible intermediates up to extended, unkinked structures. A possible biochemical role of the flexibility is discussed. Among the tested force fields, the latest χOL variant is essential to obtaining stable trajectories while all force field versions lacking the χ correction are prone to a swift degradation toward senseless ladder-like structures of stems, characterized by high-anti glycosidic torsions. The type of explicit water model affects the simulations considerably more than concentration and the type of ions.
Collapse
Affiliation(s)
- Petr Sklenovský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Florová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Filip Lankaš
- Centre for Complex Molecular Systems and Biomolecules, Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2, 166 10 Praha 6, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
50
|
White KH, Orzechowski M, Fourmy D, Visscher K. Mechanical unfolding of the beet western yellow virus -1 frameshift signal. J Am Chem Soc 2011; 133:9775-82. [PMID: 21598975 DOI: 10.1021/ja111281f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using mechanical unfolding by optical tweezers (OT) and steered molecular dynamics (SMD) simulations, we have demonstrated the critical role of Mg(2+) ions for the resistance of the Beet Western Yellow Virus (BWYV) pseudoknot (PK) to unfolding. The two techniques were found to be complementary, providing information at different levels of molecular scale. Findings from the OT experiments indicated a critical role of stem 1 for unfolding of the PK, which was confirmed in the SMD simulations. The unfolding pathways of wild type and mutant appeared to depend upon pH and nucleotide sequence. SMD simulations support the notion that the stability of stem 1 is critical for -1 frameshifting. The all-atom scale nature of the SMD enabled clarification of the precise role of two Mg(2+) ions, Mg45 and Mg52, as identified in the BWYV X-ray crystallography structure, in -1 frameshifting. On the basis of simulations with "partially" and "fully" hydrated Mg(2+) ions, two possible mechanisms of stabilizing stem 1 are proposed. In both these cases Mg(2+) ions play a critical role in stabilizing stem 1, either by directly forming a salt bridge between the strands of stem 1 or by stabilizing parallel orientation of the strands in stem 1, respectively. These findings explain the unexpected drop in frameshifting efficiency to null levels of the C8U mutant in a manner consistent with experimental observations.
Collapse
Affiliation(s)
- Katherine H White
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|