1
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
2
|
Tanwar N, Ojha R, Aggarwal S, Prajapati VK, Munde M. Design of inhibitor peptide sequences based on the interfacial knowledge of the protein G-IgG crystallographic complex and their binding studies with IgG. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:159-170. [PMID: 38493432 DOI: 10.1007/s00249-024-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Protein-protein interactions (PPI) have emerged as valuable targets in medicinal chemistry due to their key roles in important biological processes. The modulation of PPI by small peptides offers an excellent opportunity to develop drugs against human diseases. Here, we exploited the knowledge of the binding interface of the IgG-protein G complex (PDB:1FCC) for designing peptides that can inhibit these complexes. Herein, we have designed several closely related peptides, and the comparison of results from experiments and computational studies indicated that all the peptides bind close to the expected binding site on IgG and the complexes are stable. A minimal sequence consisting of 11 amino acids (P5) with binding constants in the range of 100 nM was identified. We propose that the main affinity differences across the series of peptides arose from the presence of polar amino acid residues. Further, the molecular dynamic studies helped to understand the dynamic properties of complexes in terms of flexibility of residues and structural stability at the interface. The ability of P5 to compete with the protein G in recognizing IgG can help in the detection and purification of antibodies. Further, it can serve as a versatile tool for a better understanding of protein-protein interactions.
Collapse
Affiliation(s)
- Neetu Tanwar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rupal Ojha
- Department of Nephrology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soumya Aggarwal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Botti V, Cannistraro S, Bizzarri AR. Interaction of miR-155 with Human Serum Albumin: An Atomic Force Spectroscopy, Fluorescence, FRET, and Computational Modelling Evidence. Int J Mol Sci 2022; 23:ijms231810728. [PMID: 36142640 PMCID: PMC9504641 DOI: 10.3390/ijms231810728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the interaction between Human Serum Albumin (HSA) and microRNA 155 (miR-155) through spectroscopic, nanoscopic and computational methods. Atomic force spectroscopy together with static and time-resolved fluorescence demonstrated the formation of an HSA/miR-155 complex characterized by a moderate affinity constant (KA in the order of 104 M−1). Förster Resonance Energy Transfer (FRET) experiments allowed us to measure a distance of (3.9 ± 0.2) nm between the lone HSA Trp214 and an acceptor dye bound to miR-155 within such a complex. This structural parameter, combined with computational docking and binding free energy calculations, led us to identify two possible models for the structure of the complex, both characterized by a topography in which miR-155 is located within two positively charged pockets of HSA. These results align with the interaction found for HSA and miR-4749, reinforcing the thesis that native HSA is a suitable miRNA carrier under physiological conditions for delivering to appropriate targets.
Collapse
|
4
|
Interaction between miR4749 and Human Serum Albumin as Revealed by Fluorescence, FRET, Atomic Force Spectroscopy and Computational Modelling. Int J Mol Sci 2022; 23:ijms23031291. [PMID: 35163220 PMCID: PMC8835948 DOI: 10.3390/ijms23031291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
The interaction of Human Serum Albumin (HSA) with the microRNA, miR4749, was investigated by Atomic Force Spectrscopy (AFS), static and time-resolved fluorescence spectroscopy and by computational methods. The formation of a HSA/miR4749 complex with an affinity of about 104 M−1 has been assessed through a Stern–Volmer analysis of steady-state fluorescence quenching of the lone Trp residue (Trp214) emission of HSA. Förster Resonance Energy Transfer (FRET) measurements of fluorescence lifetime of the HSA/miR4749 complex were carried out in the absence and in the presence of an acceptor chromophore linked to miR4749. This allowed us to determine a distance of 4.3 ± 0.5 nm between the lone Trp of HSA and the dye bound to miR4749 5p-end. Such a distance was exploited for a screening of the possible binding sites between HSA and miR4749, as predicted by computational docking. Such an approach, further refined by binding free energy calculations, led us to the identification of a consistent model for the structure of the HSA/miR4749 complex in which a positively charged HSA pocket accommodates the negatively charged miRNA molecule. These results designate native HSA as a suitable miRNA carrier under physiological conditions for delivering to appropriate targets.
Collapse
|
5
|
Song Y, Qayyum S, Greer RA, Slominski RM, Raman C, Slominski AT, Song Y. Vitamin D3 and its hydroxyderivatives as promising drugs against COVID-19: a computational study. J Biomol Struct Dyn 2022; 40:11594-11610. [PMID: 34415218 PMCID: PMC8858339 DOI: 10.1080/07391102.2021.1964601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidemiologic correlation between the poor prognosis of SARS-CoV-2 infection and vitamin D deficiency has been observed worldwide, however, their molecular mechanisms are not fully understood. In this study, we used combined molecular docking, molecular dynamics simulations and binding free energy analyses to investigate the potentials of vitamin D3 and its hydroxyderivatives as TMPRSS2 inhibitor and to inhibit the SARS-CoV-2 receptor binding domain (RBD) binding to angiotensin-converting enzyme 2 (ACE2), as well as to unveil molecular and structural basis of 1,25(OH)2D3 capability to inhibit ACE2 and SARS-CoV-2 RBD interactions. The results show that vitamin D3 and its hydroxyderivatives are favorable to bind active site of TMPRSS2 and the binding site(s) between ACE2 and SARS-CoV2-RBD, which indicate that vitamin D3 and its biologically active hydroxyderivatives can serve as TMPRSS2 inhibitor and can inhibit ACE2 binding of SARS-CoV-2 RBD to prevent SARS-CoV-2 entry. Interaction of 1,25(OH)2D3 with SARS-CoV-2 RBD and ACE2 resulted in the conformation and dynamical motion changes of the binding surfaces between SARS-CoV-2 RBD and ACE2 to interrupt the binding of SARS-CoV-2 RBD with ACE2. The interaction of 1,25(OH)2D3 with TMPRSS2 also caused the conformational and dynamical motion changes of TMPRSS2, which could affect TMPRSS2 to prime SARS-CoV-2 spike proteins. Our results propose that vitamin D3 and its biologically active hydroxyderivatives are promising drugs or adjuvants in the treatment of COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rory A. Greer
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Greene D, Barton M, Luchko T, Shiferaw Y. Computational Analysis of Binding Interactions between the Ryanodine Receptor Type 2 and Calmodulin. J Phys Chem B 2021; 125:10720-10735. [PMID: 34533024 DOI: 10.1021/acs.jpcb.1c03896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to a variety of cardiac arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). RyR2 is regulated by calmodulin (CaM), and mutations that disrupt their interaction can cause aberrant calcium release, leading to an arrhythmia. It was recently shown that increasing the RyR2-CaM binding affinity could rescue a defective CPVT-related RyR2 channel to near wild-type behavior. However, the interactions that determine the binding affinity at the RyR2-CaM binding interface are not well understood. In this study, we identify the key domains and interactions, including several new interactions, involved in the binding of CaM to RyR2. Also, our comparison between the wild-type and V3599K mutant suggests how the RyR2-CaM binding affinity can be increased via a change in the central and N-terminal lobe binding contacts for CaM. This computational approach provides new insights into the effect of a mutation at the RyR2-CaM binding interface, and it may find utility in drug design for the future treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Michael Barton
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Tyler Luchko
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California 91330, United States
| |
Collapse
|
7
|
Slominski AT, Kim TK, Qayyum S, Song Y, Janjetovic Z, Oak ASW, Slominski RM, Raman C, Stefan J, Mier-Aguilar CA, Atigadda V, Crossman DK, Golub A, Bilokin Y, Tang EKY, Chen JY, Tuckey RC, Jetten AM, Song Y. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep 2021; 11:8002. [PMID: 33850196 PMCID: PMC8044163 DOI: 10.1038/s41598-021-87061-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and β revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH)2D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and β in LanthaScreen TR-FRET LXRα and β coactivator assays. The majority of metabolites functioned as LXRα/β agonists; however, 1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRβ. Molecular dynamics simulations for the selected compounds, including 1,25(OH)2D3, 1,20(OH)2D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH)2L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA.
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Radomir M Slominski
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Joanna Stefan
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Oncology, Nicolaus Copernicus University Medical College, Romanowskiej str. 2, 85-796, Bydgoszcz, Poland
| | - Carlos A Mier-Aguilar
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, 1670 University Blvd, Rm 476, Birmingham, AL, 35249, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - David K Crossman
- Department of Genetics, Genomics Core Facility, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | | | | | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Anton M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby 803, Birmingham, AL, 35249, USA.
| |
Collapse
|
8
|
Bizzarri AR, Cannistraro S. Investigation of a Direct Interaction between miR4749 and the Tumor Suppressor p53 by Fluorescence, FRET and Molecular Modeling. Biomolecules 2020; 10:biom10020346. [PMID: 32098369 PMCID: PMC7072324 DOI: 10.3390/biom10020346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 01/09/2023] Open
Abstract
The interactions between the DNA binding domain (DBD) of the tumor suppressor p53 and miR4749, characterized by a high sequence similarity with the DNA Response Element (RE) of p53, was investigated by fluorescence spectroscopy combined with computational modeling and docking. Fluorescence quenching experiments witnessed the formation of a specific complex between DBD and miR4749 with an affinity of about 105 M. Förster Resonance Energy Transfer (FRET) allowed us to measure a distance of 3.9 ± 0.3 nm, between the lone tryptophan of DBD and an acceptor dye suitably bound to miR4749. Such information, combined with a computational modeling approach, allowed us to predict possible structures for the DBD-miR4749 complex. A successive docking refinement, complemented with binding free energy calculations, led us to single out a best model for the DBD-miR4749 complex. We found that the interaction of miR4749 involves the DBD L3 loop and the H1 helix, close to the Zn-finger motif; with this suggesting that miR4749 could directly inhibit the p53 interaction with DNA. These results might inspire new therapeutic strategies finalized to restore the p53 functional activity.
Collapse
|
9
|
Marashiyan M, Kalhor H, Ganji M, Rahimi H. Effects of tosyl-l-arginine methyl ester (TAME) on the APC/c subunits: An in silico investigation for inhibiting cell cycle. J Mol Graph Model 2020; 97:107563. [PMID: 32066079 DOI: 10.1016/j.jmgm.2020.107563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/11/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/c) is requisite for controlling mitosis, which is activated by Cdh1 and Cdc20 activators. Dysregulation of APC/c is observed in many cancers and is known as a targeted drug particularly in cancer drug resistance. It was shown that tosyl-l-arginine methyl ester (TAME), via mimicking isoleucine-arginine (IR) tail of co-activators, inhibits APC/c functions. However, structure details and interaction of TAME with APC/c are poorly defined. In the current study, a well-established set of computational methods was used to identify the best binding pocket in order to inhibit APC activity. Therefore, the interaction of IR tail and Cbox of co-activators, as well as TAME as an inhibitor, as an inhibitor, with APC3 and APC8 subunits of APC/c were analyzed, regarding structure, molecular docking, molecular dynamics, and free binding energy. The results indicated that TAME bound to APC3 with a higher binding affinity (∼-7.3 kcal/mol) than APC8 (∼-5.7 kcal/mol). Also, the binding free energy value obtained for the APC3-TAME was -22.25 ± 1.12 kcal/mol. According to binding free energies, van der Waals energy was the major favorable contributor to the ligand binding. These results offer that TAME had more affinity to interact with the APC3 subunit, at the IR binding pocket than the APC8 subunit at the Cbox binding pocket. In conclusion, IR binding pocket can serve as an appropriate potential target for TAME as an inhibitor of APC/c.
Collapse
Affiliation(s)
- Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Cellular and Molecular Research Center,Qom University of Medical Sciences, Qom, Iran
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Horváth I, Jeszenői N, Bálint M, Paragi G, Hetényi C. A Fragmenting Protocol with Explicit Hydration for Calculation of Binding Enthalpies of Target-Ligand Complexes at a Quantum Mechanical Level. Int J Mol Sci 2019; 20:ijms20184384. [PMID: 31489952 PMCID: PMC6770515 DOI: 10.3390/ijms20184384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Optimization of the enthalpy component of binding thermodynamics of drug candidates is a successful pathway of rational molecular design. However, the large size and missing hydration structure of target-ligand complexes often hinder such optimizations with quantum mechanical (QM) methods. At the same time, QM calculations are often necessitated for proper handling of electronic effects. To overcome the above problems, and help the QM design of new drugs, a protocol is introduced for atomic level determination of hydration structure and extraction of structures of target-ligand complex interfaces. The protocol is a combination of a previously published program MobyWat, an engine for assigning explicit water positions, and Fragmenter, a new tool for optimal fragmentation of protein targets. The protocol fostered a series of fast calculations of ligand binding enthalpies at the semi-empirical QM level. Ligands of diverse chemistry ranging from small aromatic compounds up to a large peptide helix of a molecular weight of 3000 targeting a leukemia protein were selected for systematic investigations. Comparison of various combinations of implicit and explicit water models demonstrated that the presence of accurately predicted explicit water molecules in the complex interface considerably improved the agreement with experimental results. A single scaling factor was derived for conversion of QM reaction heats into binding enthalpy values. The factor links molecular structure with binding thermodynamics via QM calculations. The new protocol and scaling factor will help automated optimization of binding enthalpy in future molecular design projects.
Collapse
Affiliation(s)
- István Horváth
- Chemistry Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary.
| | - Norbert Jeszenői
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, Dóm tér 8, 6720 Szeged, Hungary.
- Institute of Physics, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary.
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary.
| |
Collapse
|
11
|
Lu N, Meng F, Yuan J, Liu L, Wang Y, Li L, Zhao T, Xu W, Tang L, Xu Y. Characterizing the interaction modes of PAR4 receptor with agonist and antagonist by molecular simulation approach. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protease-activated receptor 4 (PAR4) is a promising target for antiplatelet therapy. In this study, homology modeling and molecular docking methods were used to investigate the binding modes of PAR4 agonists and antagonists. The outcomes show that agonists have good docking scores, and they also form more hydrogen bonds with PAR4 than antagonists. To reveal the different conformational changes caused by agonist and antagonist, molecular dynamic simulations were carried out on three selected PAR4 systems. Simulation results show that PAR4 activation involves breaking interactions of 3–7 lock switch (Try157 and Tyr322) and ionic lock switch (Arg188 and Asp173), and formation of transmission switch among Tyr161, Asn300 and Phe296. In addition, principal component analysis (PCA) indicates that the major change for agonist bound system takes place in the intracellular region while that for antagonist bound system is in the extracellular region. The binding free energy of BMS-986120 is much lower than AYPGKF, suggesting high affinity of antagonist. Moreover, the electronegative aspartic residues Asp230 and Asp235 at ECL2 are important for PAR4 binding to agonist. Clarifying the PAR4 structural characteristics may be helpful to understand the activation mechanism, giving insights into the molecular design and discovery of novel potential PAR4 antagonists in the future.
Collapse
Affiliation(s)
- Nan Lu
- Key Laboratory of Structure-Based Drug, Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Jing Yuan
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Lei Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Yanshi Wang
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Lingjun Li
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Tong Zhao
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Weiren Xu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Lida Tang
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, P. R. China
| | - Youjun Xu
- Key Laboratory of Structure-Based Drug, Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
12
|
Bizzarri AR, Moscetti I, Cannistraro S. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations. Biochim Biophys Acta Gen Subj 2019; 1863:342-350. [DOI: 10.1016/j.bbagen.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
|
13
|
Mehrabi M, Mahdiuni H, Rasouli H, Mansouri K, Shahlaei M, Khodarahmi R. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface. Int J Biol Macromol 2018; 115:401-417. [DOI: 10.1016/j.ijbiomac.2018.04.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
|
14
|
Tavassoli Z, Taghdir M, Ranjbar B. Renin inhibition by soyasaponin I: a potent native anti-hypertensive compound. J Biomol Struct Dyn 2017; 36:166-176. [DOI: 10.1080/07391102.2016.1270855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zeinab Tavassoli
- Department of Biophysics, Tarbiat Modares University, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Tarbiat Modares University, Tehran, Iran
| | - Bijan Ranjbar
- Department of Biophysics, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Haque N, Prabhu NP. Lid closure dynamics of porcine pancreatic lipase in aqueous solution. Biochim Biophys Acta Gen Subj 2016; 1860:2313-25. [DOI: 10.1016/j.bbagen.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/17/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
16
|
Zhu J, Lu M, Zhu L. Rational derivation of CETP self-binding helical peptides by π-π stacking and halogen bonding: Therapeutic implication for atherosclerosis. Bioorg Chem 2016; 68:259-64. [DOI: 10.1016/j.bioorg.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/17/2023]
|
17
|
Mehrabi M, Khodarahmi R, Shahlaei M. Critical effects on binding of epidermal growth factor produced by amino acid substitutions. J Biomol Struct Dyn 2016; 35:1085-1101. [DOI: 10.1080/07391102.2016.1171799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran
| | - Reza Khodarahmi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran
| | - Mohsen Shahlaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah, Iran
| |
Collapse
|
18
|
Fancy RM, Wang L, Zeng Q, Wang H, Zhou T, Buchsbaum DJ, Song Y. Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-negative and Estrogen Receptor-positive Breast Cancer Cells: AN INTEGRATED EXPERIMENTAL AND COMPUTATIONAL STUDY. J Biol Chem 2016; 291:12862-12870. [PMID: 27129269 DOI: 10.1074/jbc.m116.727727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 01/26/2023] Open
Abstract
Activation of death receptor-5 (DR5) leads to the formation of death inducing signaling complex (DISC) for apoptotic signaling. Targeting DR5 to induce breast cancer apoptosis is a promising strategy to circumvent drug resistance and present a target for breast cancer treatment. Calmodulin (CaM) has been shown to regulate DR5-mediated apoptotic signaling, however, its mechanism remains unknown. In this study, we characterized CaM and DR5 interactions in breast cancer cells with integrated experimental and computational approaches. Results show that CaM directly binds to DR5 in a calcium dependent manner in breast cancer cells. The direct interaction of CaM with DR5 is localized at DR5 death domain. We have predicted and verified the CaM-binding site in DR5 being (354)WEPLMRKLGL(363) that is located at the α2 helix and the loop between α2 helix and α3 helix of DR5 DD. The residues of Trp-354, Arg-359, Glu-355, Leu-363, and Glu-367 in DR5 death domain that are important for DR5 recruitment of FADD and caspase-8 for DISC formation to signal apoptosis also play an important role for CaM-DR5 binding. The changed electrostatic potential distribution in the CaM-binding site in DR5 DD by the point mutations of W354A, E355K, R359A, L363N, or E367K in DR5 DD could directly contribute to the experimentally observed decreased CaM-DR5 binding by the point mutations of the key residues in DR5 DD. Results from this study provide a key step for the further investigation of the role of CaM-DR5 binding in DR5-mediated DISC formation for apoptosis in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald J Buchsbaum
- Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yuhua Song
- From the Departments of Biomedical Engineering,.
| |
Collapse
|
19
|
Kumari R, Kumar R, Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 2014; 54:1951-62. [PMID: 24850022 DOI: 10.1021/ci500020m] [Citation(s) in RCA: 3083] [Impact Index Per Article: 308.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), a method to estimate interaction free energies, has been increasingly used in the study of biomolecular interactions. Recently, this method has also been applied as a scoring function in computational drug design. Here a new tool g_mmpbsa, which implements the MM-PBSA approach using subroutines written in-house or sourced from the GROMACS and APBS packages is described. g_mmpbsa was developed as part of the Open Source Drug Discovery (OSDD) consortium. Its aim is to integrate high-throughput molecular dynamics (MD) simulations with binding energy calculations. The tool provides options to select alternative atomic radii and different nonpolar solvation models including models based on the solvent accessible surface area (SASA), solvent accessible volume (SAV), and a model which contains both repulsive (SASA-SAV) and attractive components (described using a Weeks-Chandler-Andersen like integral method). We showcase the effectiveness of the tool by comparing the calculated interaction energy of 37 structurally diverse HIV-1 protease inhibitor complexes with their experimental binding free energies. The effect of varying several combinations of input parameters such as atomic radii, dielectric constant, grid resolution, solute-solvent dielectric boundary definition, and nonpolar models was investigated. g_mmpbsa can also be used to estimate the energy contribution per residue to the binding energy. It has been used to identify those residues in HIV-1 protease that are most critical for binding a range of inhibitors.
Collapse
Affiliation(s)
- Rashmi Kumari
- School of Computational and Integrative Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | | | | | | |
Collapse
|
20
|
Ganoth A, Tsfadia Y, Wiener R. Ubiquitin: Molecular modeling and simulations. J Mol Graph Model 2013; 46:29-40. [DOI: 10.1016/j.jmgm.2013.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
21
|
Santini S, Bizzarri AR, Cannistraro S. Modelling the interaction between the p53 DNA-binding domain and the p28 peptide fragment of Azurin. J Mol Recognit 2011; 24:1043-55. [DOI: 10.1002/jmr.1153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simona Santini
- Biophysics and Nanoscience Centre; CNISM; Facoltà di Scienze; Università della Tuscia; 01100; Viterbo; Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre; CNISM; Facoltà di Scienze; Università della Tuscia; 01100; Viterbo; Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre; CNISM; Facoltà di Scienze; Università della Tuscia; 01100; Viterbo; Italy
| |
Collapse
|
22
|
Pan D, Yan Q, Chen Y, McDonald JM, Song Y. Trifluoperazine regulation of calmodulin binding to Fas: a computational study. Proteins 2011; 79:2543-56. [PMID: 21656570 PMCID: PMC3132223 DOI: 10.1002/prot.23081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 04/26/2011] [Accepted: 05/04/2011] [Indexed: 12/13/2022]
Abstract
Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Di Pan
- Department of Biomedical Engineering, The University of Alabama at Birmingham, AL 35294
| | - Qi Yan
- Department of Biomedical Engineering, The University of Alabama at Birmingham, AL 35294
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, AL 35294
- VA Medical Center Birmingham, AL 35294
| | - Jay M McDonald
- Department of Pathology, The University of Alabama at Birmingham, AL 35294
- VA Medical Center Birmingham, AL 35294
| | - Yuhua Song
- Department of Biomedical Engineering, The University of Alabama at Birmingham, AL 35294
| |
Collapse
|
23
|
Mai BK, Viet MH, Li MS. Top Leads for Swine Influenza A/H1N1 Virus Revealed by Steered Molecular Dynamics Approach. J Chem Inf Model 2010; 50:2236-47. [DOI: 10.1021/ci100346s] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binh Khanh Mai
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Man Hoang Viet
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
24
|
Yan Q, Murphy-Ullrich JE, Song Y. Structural insight into the role of thrombospondin-1 binding to calreticulin in calreticulin-induced focal adhesion disassembly. Biochemistry 2010; 49:3685-94. [PMID: 20337411 DOI: 10.1021/bi902067f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombospondin-1 (TSP1) binding to calreticulin (CRT) on the cell surface stimulates association of CRT with LDL receptor-related protein (LRP1) to signal focal adhesion disassembly and engagement of cellular activities. The structural basis for this phenomenon is unknown. We studied the binding thermodynamics of the TSP1-CRT complex and the conformational changes in CRT induced by binding to TSP1 with combined binding free energy analysis, molecular dynamics simulation, and anisotropic network model restrained molecular dynamics simulation. Results showed that mutations of Lys 24 and Lys 32 in TSP1 to Ala and of amino acids 24-26 and 32-34 in CRT to Ala significantly weakened the binding of TSP1 and CRT, which is consistent with experimental results. Upon validation of the calculated binding affinity changes of the TSP1-CRT complex by mutations in key residues in TSP1 and CRT with the experimental results, we performed conformational analyses to understand the role of TSP1 binding to CRT in the induction of conformational changes in CRT. Conformational analyses showed that TSP1 binding to CRT resulted in a more "open" conformation and a significant rotational change for the CRT N-domain with respect to the CRT P-domain, which could expose the potential binding site(s) in CRT for binding to LRP1 to signal focal adhesion disassembly. Results offer structural insight into the role of TSP1 binding to CRT in CRT-induced focal adhesion disassembly.
Collapse
Affiliation(s)
- Qi Yan
- Department of Biomedical Engineering, The University of Alabama at Birmingham,Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
25
|
Sayyed-Ahmad A, Khandelia H, Kaznessis YN. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. MOLECULAR SIMULATION 2009; 35:986-997. [PMID: 21113423 DOI: 10.1080/08927020902902742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
26
|
Taranta M, Bizzarri AR, Cannistraro S. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin. J Mol Recognit 2009; 22:215-22. [PMID: 19140135 DOI: 10.1002/jmr.934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is known that the half life of the tumor suppressor p53 can be increased by the interaction with the bacterial protein azurin, resulting in an enhanced anti-tumoral activity. The understanding of the molecular mechanisms on the basis of this phenomenon can open the way to new anti-cancer strategies. Some experimental works have given evidence of an interaction between p53 and azurin (AZ); however the binding regions of the proteins are still unknown. Recently, fluorescence studies have shown that p53 partakes in the binding with the bacterial protein by its N-terminal (NT) domain. Here we have used a computational method to get insight into this interacting mode. The model that we propose for the best complex between AZ and p53 has been obtained from a rigid-body docking, coupled with a molecular dynamics (MD) simulation, a free energy calculation, and validated by mutagenesis analysis. We have found a high degree of geometric fit between the two proteins that are kept together by several hydrophobic interactions and numerous hydrogen bonds. Interestingly, it has emerged that AZ binds essentially to the helices H(I) and H(III) of the p53 NT domain, which are also interacting regions for the foremost inhibitor of p53, MDM2.
Collapse
Affiliation(s)
- Monia Taranta
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell'Università 01100, Viterbo, Italy
| | | | | |
Collapse
|
27
|
Li J, Jia Z, Zhou W, Wei Q. Calcineurin regulatory subunit B is a unique calcium sensor that regulates calcineurin in both calcium-dependent and calcium-independent manner. Proteins 2009; 77:612-23. [DOI: 10.1002/prot.22474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
ZHAN JINHUI, ZHAO XI, HUANG XURI, SUN CHIACHUNG. INTERACTIONS BETWEEN HUMAN SLINGSHOT PHOSPHATASE 2 AND PHOSPHO-COFILIN: A MOLECULAR DYNAMICS STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2009. [DOI: 10.1142/s0219633609004770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human slingshot phosphatase 2 (SSH2) is one of the dual specificity protein tyrosine phosphatases, which can activate cofilin substrate by binding its phosphorylation state. Because the interaction model of SSH2 and phospho-cofilin (P-cofilin) was unknown, we obtained the complex through macromolecular docking method. The molecular dynamics studies were used to investigate the complex dynamics in an aqueous solution. To understand the binding specificity, the free energy was calculated with the molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) approach and the interaction mode in active site was analyzed. The results indicated that the interaction of the P-loop of SSH2 with phosphoserine of human P-cofilin was stabilized by molecular mechanics energy and nonpolar solvation energy components, while polar solvation energy and the entropic contributions were unfavorable for the combination of the two proteins. In addition, the electrostatic contributions were negative for the formation of the complex on the whole, but seen from the active local, the Coulomb interaction between the phosphoserine and the P-loop residues could play an important role in determining substrate specificity.
Collapse
Affiliation(s)
- JIN-HUI ZHAN
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - XI ZHAO
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - XU-RI HUANG
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - CHIA-CHUNG SUN
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
29
|
Conformation and free energy analyses of the complex of calcium-bound calmodulin and the Fas death domain. Biophys J 2008; 95:5913-21. [PMID: 18820240 DOI: 10.1529/biophysj.108.130542] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previous studies have demonstrated a calcium-dependent interaction of calmodulin (CaM) and Fas that is regulated during Fas-induced apoptosis in several cell lines, including cholangiocarcinoma, Jurkat cells, and osteoclasts. The binding of CaM and Fas has been identified on residues 231-254 of Fas; the V254N point mutation decreases the CaM/Fas binding, and the C-terminal deletion mutation increases the CaM/Fas binding. Recent studies have shown that CaM is recruited into the Fas-mediated death-inducing signaling complex (DISC) in a calcium-dependent manner. However, the molecular mechanisms whereby Fas mutations and CaM/Fas binding might regulate Fas-mediated DISC formation are unknown. In this study we investigated the binding thermodynamics and conformation of the CaM/Fas complexes with combined explicit solvent molecular-dynamics simulations and implicit solvent binding free-energy calculations. The binding free-energy analysis demonstrated that the Fas V254N point mutation reduced its binding affinity with CaM. In contrast, the Fas mutant with the deletion of the 15 amino acid at the C-terminus increased its binding to CaM. These observations are consistent with previous findings from biochemical studies. Conformational analyses further showed that the Fas V254N mutation resulted in an unstable conformation, whereas the C-terminal deletion mutation stabilized the Fas conformation, and both mutations resulted in changes of the degree of correlation between the motions of the residues in Fas. Analysis of the CaM/Fas complex revealed that CaM/Fas binding stabilized the conformation of both CaM and Fas and changed the degree of correlated motion of the residues of CaM and Fas. The results presented here provide structural evidence for the roles of Fas mutations and CaM/Fas binding in Fas-induced DISC formation. Understanding the molecular mechanisms of CaM/Fas binding in Fas-mediated DISC formation should provide important insights into the function of Fas mutations and CaM in regulating Fas-mediated apoptosis.
Collapse
|
30
|
Zhang Y, Tan H, Jia Z, Chen G. Ligand-induced dimer formation of calmodulin. J Mol Recognit 2008; 21:267-74. [PMID: 18461636 DOI: 10.1002/jmr.895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calmodulin (CaM) can bind to numerous proteins in several interaction modes. Recently a new mode of interaction was discovered, in which two CaM molecules form an X-shaped dimer and two binding sites to trap the CaM-binding domain (CBD) of calcineurin subunit A. However, the X-shaped CaM dimer alone without ligand has not been observed. We performed molecular dynamics (MD) simulations and used MM_PBSA approach to investigate the properties of this new binding mode using ligand-bound and -free dimer systems. MD trajectories show that two peptides of CBD play a critical role in stabilizing the X-shaped conformation of the CaM dimer which would otherwise be unstable, leading to dimer disassembly in the absence of the ligands. Furthermore, we have analyzed the interaction free energy of the complex by MM-PBSA method and provide further evidence to demonstrate that the CBD peptide ligands are responsible for the stabilization of the dimer. Comparing this new binding mode with the classical one represented by CaM in complex with smooth muscle myosin light chain kinase, we conclude that this new binding mode is induced by the CBD of calcineurin subunit A. Our results explain the fact that the X-shaped CaM dimer structure has never been observed in the absence of ligands.
Collapse
Affiliation(s)
- Yong Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Harris MJ, Woo HJ. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:1-12. [PMID: 18568345 DOI: 10.1007/s00249-008-0347-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.
Collapse
Affiliation(s)
- Michael J Harris
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
32
|
De Grandis V, Bizzarri AR, Cannistraro S. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. J Mol Recognit 2007; 20:215-26. [PMID: 17703463 DOI: 10.1002/jmr.840] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular interaction between p53 tumor suppressor and the copper protein azurin (AZ) has been demonstrated to enhance p53 stability and hence antitumoral function, opening new perspectives in cancer treatment. While some experimental work has provided evidence for AZ binding to p53, no crystal structure for the p53-AZ complex was solved thus far. In this work the association between AZ and the p53 DNA-binding domain (DBD) was investigated by computational methods. Using a combination of rigid-body protein docking, experimental mutagenesis information, and cluster analysis 10 main p53 DBD-AZ binding modes were generated. The resulting structures were further characterized by molecular dynamics (MD) simulations and free energy calculations. We found that the highest scored docking conformation for the p53 DBD-AZ complex also yielded the most favorable free energy value. This best three-dimensional model for the complex was validated by using a computational mutagenesis strategy. In this structure AZ binds to the flexible L(1) and s(7)-s(8) loops of the p53 DBD and stabilizes them through protein-protein tight packing interactions, resulting in high degree of both surface matching and electrostatic complementarity.
Collapse
Affiliation(s)
- Valentina De Grandis
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell'Università-I-01100 Viterbo, Italy
| | | | | |
Collapse
|
33
|
Ganoth A, Nachliel E, Friedman R, Gutman M. Myosin V movement: lessons from molecular dynamics studies of IQ peptides in the lever arm. Biochemistry 2007; 46:14524-36. [PMID: 18020453 DOI: 10.1021/bi701342y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myosin V moves along actin filaments by an arm-over-arm motion, known as the lever mechanism. Each of its arms is composed of six consecutive IQ peptides that bind light chain proteins, such as calmodulin or calmodulin-like proteins. We have employed a multistage approach in order to investigate the mechanochemical structural basis of the movement of myosin V from the budding yeast Saccharomyces cerevisiae. For that purpose, we previously carried out molecular dynamics simulations of the Mlc1p-IQ2 and the Mlc1p-IQ4 protein-peptide complexes, and the present study deals with the structures of the IQ peptides when stripped from the Mlc1p protein. We have found that the crystalline structure of the IQ2 peptide retains a stable rodlike configuration in solution, whereas that of the IQ4 peptide grossly deviates from its X-ray conformation exhibiting an intrinsic tendency to curve and bend. The refolding process of the IQ4 peptide is initially driven by electrostatic interactions followed by nonpolar stabilization. Its bending appears to be affected by the ionic strength, when ionic strength higher than approximately 300 mM suppresses it from flexing. Considering that a poly-IQ sequence is the lever arm of myosin V, we suggest that the arm may harbor a joint, localized within the IQ4 sequence, enabling the elasticity of the neck of myosin V. Given that a poly-IQ sequence is present at the entire class of myosin V and the possibility that the yeast's myosin V molecule can exist either as a nonprocessive monomer or as a processive dimer depending on conditions (Krementsova, E. B., Hodges, A. R., Lu, H., and Trybus, K. M. (2006) J. Biol. Chem. 281, 6079-6086), our observations may account for a general structural feature for the myosins' arm embedded flexibility.
Collapse
Affiliation(s)
- Assaf Ganoth
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|