1
|
Kurt M, Ercan S, Pirinccioglu N. Designing new drug candidates as inhibitors against wild and mutant type neuraminidases: molecular docking, molecular dynamics and binding free energy calculations. J Biomol Struct Dyn 2023; 41:7847-7861. [PMID: 36152997 DOI: 10.1080/07391102.2022.2125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Influenza virus is the cause of the death of millions of people with about 3-4 pandemics every hundred years in history. It also turns into a seasonal disease, bringing about approximately 5-15% of the population to be infected and 290,000-650,000 people to die every year. These numbers reveal that it is necessary to be on the alert to work towards influenza in order to protect public health. There are FDA-approved antiviral drugs such as oseltamivir and zanamivir recommended by the World Center for Disease Prevention. However, after the recent outbreaks such as bird flu and swine flu, increasing studies have shown that the flu virus has gained resistance to these drugs. So, there is an urgent need to find new drugs effective against this virus. This study aims to investigate new drug candidates targeting neuraminidase (NA) for the treatment of influenza by using computer aided drug design approaches. They involve virtual scanning, de novo design, rational design, docking, MD, MMGB/PBSA. The investigation includes H1N1, H5N1, H2N2 and H3N2 neuraminidase proteins and their mutant variants possessing resistance to FDA-approved drugs. Virtual screening consists of approximately 30 thousand molecules while de novo and rational designs produced over a hundred molecules. These approaches produced three lead molecules with binding energies for both non-mutant (-34.84, -59.99 and -60.66 kcal/mol) and mutant (-40.40, -58.93, -76.19 kcal/mol) H2N2 NA calculated by MM-PBSA compared with those of oseltamivir -25.64 and -18.40 respectively. The results offer new drug candidates against influenza infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Murat Kurt
- Institute of Science, Dicle University, Diyarbakır, Turkey
| | - Selami Ercan
- Department of Chemistry, Batman University, Batman, Turkey
| | | |
Collapse
|
2
|
Quintero-Gil C, Parra-Suescún J, Lopez-Herrera A, Orduz S. In-silico design and molecular docking evaluation of peptides derivatives from bacteriocins and porcine beta defensin-2 as inhibitors of Hepatitis E virus capsid protein. Virusdisease 2017; 28:281-288. [PMID: 29291214 DOI: 10.1007/s13337-017-0383-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is considered the main etiological agent that causes acute hepatitis. It is estimated that 20 million cases occur annually worldwide, reaching mortality rates of 28% in pregnant women. To date, available treatments and vaccines have not been entirely effective. In this study, six antiviral peptides derived from the sequences of porcine Beta-Defensin-2 and bacteriocins Nisin and Subtilosin were generate using in silico tools in order to propose new antiviral agents. Through the use of molecular docking, interactions between the HEV capsid protein and the six new antiviral peptide candidates were evaluated. A peptide of 15 residues derived from Subtilosin showed the best docking energy (-7.0 kcal/mol) with the capsid protein. This is the first report to our knowledge involving a non-well study viral protein interacting with peptides susceptibles to being synthesized, and that could be subsequently evaluated in vitro; moreover, this study provide novel information on the nature of the dimerization pocket of the HEV capsid protein, and could help to understand the first steps in the viral replication cycle, needed for the virus entry to the host cell.
Collapse
Affiliation(s)
- Carolina Quintero-Gil
- Escuela de Biociencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Jaime Parra-Suescún
- Facultad de Ciencias Agrarias, Grupo Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Albeiro Lopez-Herrera
- Facultad de Ciencias Agrarias, Grupo Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Sergio Orduz
- Escuela de Biociencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| |
Collapse
|
3
|
Zwitterionic structures: from physicochemical properties toward computer-aided drug designs. Future Med Chem 2016; 8:2245-2262. [DOI: 10.4155/fmc-2016-0176] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Zwitterions, used widely in chemical, biological and medicinal fields, show distinct physicochemical properties relative to ordinary ampholytes, which largely decide their bioavailability and biological activities. In the present manuscript, these properties are discussed in order to facilitate our understanding of zwitterionic structures, followed by various examples of zwitterionic drugs and the critical role these properties play. We specifically focus our discussions on neuraminidase inhibitors (NAIs), which are used in the treatment and prevention of influenza, covering their computer-assisted design, transformation to zwitterionic isomers and interaction mechanisms of NAIs with proteins. The discovery and development of NAIs provide useful insights that may assist in the exploration of new zwitterionic drugs.
Collapse
|
4
|
Effects of water models on binding affinity: evidence from all-atom simulation of binding of tamiflu to A/H5N1 neuraminidase. ScientificWorldJournal 2014; 2014:536084. [PMID: 24672329 PMCID: PMC3929574 DOI: 10.1155/2014/536084] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 11/23/2022] Open
Abstract
The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔGbind of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔGbind is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinations of these aqueous models and four force fields AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L. It is shown that there is
no correlation between the binding free energy and the water density in the binding pocket in CHARMM. However, for three remaining force fields
ΔGbind decays with increase of water density. SPC/E provides the lowest binding free energy for any force field, while the water effect is the most pronounced in CHARMM. In agreement with the popular GROMACS recommendation, the binding score obtained by combinations of AMBER-TIP3P, OPLS-TIP4P, and GROMOS-SPC is the most relevant to the experiments. For wild-type neuraminidase we have found that SPC is more suitable for CHARMM than TIP3P recommended by GROMACS for studying ligand binding. However, our study for three of its mutants reveals that TIP3P is presumably the best choice for CHARMM.
Collapse
|
5
|
YANG ZHIWEI, WU FEI, LIU JUNXING, WANG SHUQIU, YUAN XIAOHUI. SUSCEPTIBILITY OF COMMERCIAL NEURAMINIDASE INHIBITORS AGAINST 2013 A/H7N9 INFLUENZA VIRUS: A DOCKING AND MOLECULAR DYNAMICS STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613500697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The latest influenza A ( H 7 N 9) virus attracted a worldwide attention due to the first report of human infections and the continuing reported cases in China. In this work, homology modeling, docking and molecular dynamics simulations were combined to study the interactions between neuraminidase ( N 9_2013, from novel A/ H 7 N 9 virus) and agents zanamivir, oseltamivir, peramivir. It was found that N 9_2013 protein is structurally close to the template (PDB code: 1F8B), especially the active site. The binding properties of N 9_2013 protein were nearly identical to those of template. As a result, the three available drugs should be still efficacious for the new emerging A ( H 7 N 9) virus. However, the stabilities of docked complexes and binding affinities (Eint) were slightly reduced, in contrast to the corresponding inhibitor-template complexes, with the values of -82.27 (-84.30), -78.84 (-80.28) and -77.52 (-81.94) kcal mol-1, respectively. Besides, R292K mutation might induce the resistance of the novel virus to the commercial inhibitors. Thus, it arouses the need for continuous monitoring of antiviral drug susceptibilities.
Collapse
Affiliation(s)
- ZHIWEI YANG
- School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, P. R. China
| | - FEI WU
- School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, P. R. China
| | - JUNXING LIU
- School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, P. R. China
| | - SHUQIU WANG
- School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, P. R. China
| | - XIAOHUI YUAN
- Institute of Biomedicine, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
6
|
Mutation effects of neuraminidases and their docking with ligands: a molecular dynamics and free energy calculation study. J Comput Aided Mol Des 2013; 27:935-50. [DOI: 10.1007/s10822-013-9691-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/05/2013] [Indexed: 01/15/2023]
|
7
|
Yang Z, Yang Y, Wu F, Feng X. Computational investigation of interaction mechanisms between juglone and influenza virus surface glycoproteins. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.769683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Gao H, Guo W, Wang Q, Zhang L, Zhu M, Zhu T, Gu Q, Wang W, Li D. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett 2013; 23:1776-8. [PMID: 23411074 DOI: 10.1016/j.bmcl.2013.01.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/03/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
A new butenolide isoaspulvinone E (1), together with two known butenolides aspulvinone E (2) and pulvic acid (3) were isolated from the marine-derived fungus, Aspergillus terreus Gwq-48. They showed significant anti-influenza A H1N1 virus activities, with IC50 values of 32.3, 56.9, and 29.1μg/mL, respectively. Moreover, only compound 1 exhibited effective inhibitory activity against H1N1 viral neuraminidase (NA), and docking of two isomers (1-2) into the active sites of NA showed that the E double bond Δ(5(10)) was essential to achieve activity.
Collapse
Affiliation(s)
- Huquan Gao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Takano R, Kiso M, Igarashi M, Le QM, Sekijima M, Ito K, Takada A, Kawaoka Y. Molecular mechanisms underlying oseltamivir resistance mediated by an I117V substitution in the neuraminidase of subtype H5N1 avian influenza A viruses. J Infect Dis 2012; 207:89-97. [PMID: 23053629 DOI: 10.1093/infdis/jis633] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neuraminidase (NA) inhibitor oseltamivir is widely used to treat patients infected with influenza viruses. An Ile-to-Val change at position 117 in influenza A virus subtype H5N1 NA (NA-I117V) confers a reduction in susceptibility to oseltamivir carboxylate. However, the in vivo relevance and molecular basis of the decreased sensitivity mediated by this mutation are poorly understood. METHODS We created single-point-mutant viruses with 3 genetically different backgrounds (ie, 1 belonging to clade 1 and 2 belonging to clade 2.3.4) and evaluated the effects of the I117V mutation on oseltamivir susceptibility in vitro, in vivo, and in silico. RESULTS The NA-I117V mutation conferred a slight reduction in susceptibility to oseltamivir in vitro (1.3- to 6.3-fold changes), although it did not substantially compromise NA enzymatic activity. Mice infected with I117V virus exhibited reduced susceptibility to oseltamivir and decreased survival in 2 of 3 virus pairs tested. Molecular dynamics simulations revealed that I117V caused the loss of hydrogen bonds between an arginine at position 118 and the carboxyl group of oseltamivir, leading to a lower binding affinity for oseltamivir. CONCLUSIONS Our findings provide new insight into the mechanism of NA-I117V-mediated oseltamivir resistance in highly pathogenic H5N1 avian influenza viruses.
Collapse
Affiliation(s)
- Ryo Takano
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kongsune P, Rungrotmongkol T, Nunthaboot N, Yotmanee P, Sompornpisut P, Poovorawan Y, Wolschann P, Hannongbua S. Molecular insights into the binding affinity and specificity of the hemagglutinin cleavage loop from four highly pathogenic H5N1 isolates towards the proprotein convertase furin. MONATSHEFTE FUR CHEMIE 2012. [DOI: 10.1007/s00706-011-0690-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Abstract
Computational simulation of pandemic diseases provides important insight into many disease features that may benefit public health. This is especially true for the influenza virus, a continuing global pandemic threat. Molecular or atomic-level investigation of influenza has predominantly focused on the two major virus glycoproteins, neuraminidase (NA) and hemagglutinin (HA). In this chapter, we walk the readers through major considerations for studying pandemic influenza glycoproteins, from choosing the most useful choice of system(s) to avoiding common pitfalls in experimental design and execution. While a brief discussion of several potential simulation and docking techniques is presented, we emphasize molecular dynamics (MD) and Brownian dynamics (BD) simulation techniques and molecular docking, within the context of biologically outstanding questions in influenza research.
Collapse
Affiliation(s)
- Rommie E Amaro
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | | |
Collapse
|
12
|
Khuntawee W, Rungrotmongkol T, Hannongbua S. Molecular Dynamic Behavior and Binding Affinity of Flavonoid Analogues to the Cyclin Dependent Kinase 6/cyclin D Complex. J Chem Inf Model 2011; 52:76-83. [DOI: 10.1021/ci200304v] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wasinee Khuntawee
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Supot Hannongbua
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
- Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Nguyen TT, Mai BK, Li MS. Study of Tamiflu sensitivity to variants of A/H5N1 virus using different force fields. J Chem Inf Model 2011; 51:2266-76. [PMID: 21834591 DOI: 10.1021/ci2000743] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An accurate estimation of binding free energy of a ligand to receptor ΔG(bind) is one of the most important problems in drug design. The success of solution of this problem is expected to depend on force fields used for modeling a ligand-receptor complex. In this paper, we consider the impact of four main force fields, AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L, on the binding affinity of Oseltamivir carboxylate to the wild-type and Y252H, N294S, and H274Y mutants of glycoprotein neuraminidase from the pandemic A/H5N1 virus. Having used the molecular mechanic-Poisson-Boltzmann surface area method, we have shown that ΔG(bind), obtained by AMBER99SB, OPLS-AA/L, and CHARMM27, shows the high correlation with the available experimental data. They correctly capture the binding ranking Y252H → WT → N294S → H274Y observed in experiments (Collins, P. J. et al. Nature 2008, 453, 1258). In terms of absolute values of binding scores, results obtained by AMBER99SB are in the nearest range with experiments, while OPLS-AA/L, which is applied to study binding of Oseltamivir to the influenza virus for the first time, gives rather big negative values for ΔG(bind). GROMOS96 43a1 provides a lower correlation as it supports Oseltamivir to be more resistant to N294S than H274Y. Our study suggests that force fields have pronounced influence on theoretical estimations of binding free energy of a ligand to receptor. The effect of all-atom models on dynamics of the binding pocket as well as on the hydrogen-bond network between Oseltamivir and receptors is studied in detail. The hydrogen network, obtained by GROMOS, is weakest among four studied force fields.
Collapse
Affiliation(s)
- Trang Truc Nguyen
- Institute for Computational Science and Technology, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
14
|
Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus. Molecules 2011; 16:6489-501. [PMID: 21814161 PMCID: PMC6264369 DOI: 10.3390/molecules16086489] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
Abstract
In the present study, the anti-influenza A (H2N2) virus activity of patchouli alcohol was studied in vitro, in vivo and in silico. The CC50 of patchouli alcohol was above 20 µM. Patchouli alcohol could inhibit influenza virus with an IC50 of 4.03 ± 0.23 µM. MTT assay showed that the inhibition by patchouli alcohol appears strongly after penetration of the virus into the cell. In the influenza mouse model, patchouli alcohol showed obvious protection against the viral infection at a dose of 5 mg/kg/day. Flexible docking and molecular dynamic simulations indicated that patchouli alcohol was bound to the neuraminidase protein of influenza virus, with an interaction energy of –40.38 kcal mol–1. The invariant key active-site residues Asp151, Arg152, Glu119, Glu276 and Tyr406 played important roles during the binding process. Based on spatial and energetic criteria, patchouli alcohol interfered with the NA functions. Results presented here suggest that patchouli alcohol possesses anti-influenza A (H2N2) virus properties, and therefore is a potential source of anti-influenza agents for the pharmaceutical industry.
Collapse
|
15
|
Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Wittayanarakul K, Remsungnen T, Hannongbua S. How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model 2011; 29:591-6. [DOI: 10.1016/j.jmgm.2010.11.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/01/2010] [Accepted: 11/01/2010] [Indexed: 11/26/2022]
|
16
|
Yang Z, Yang G, Zu Y, Fu Y, Zhou L. Computer-based de novo designs of tripeptides as novel neuraminidase inhibitors. Int J Mol Sci 2010; 11:4932-51. [PMID: 21614183 PMCID: PMC3100827 DOI: 10.3390/ijms11124932] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/12/2010] [Accepted: 11/18/2010] [Indexed: 12/22/2022] Open
Abstract
The latest influenza A (H1N1) pandemic attracted worldwide attention and called for the urgent development of novel antiviral drugs. Here, seven tripeptides are designed and explored as neuraminidase (NA) inhibitors on the structural basis of known inhibitors. Their interactions with NA are studied and compared with each other, using flexible docking and molecular dynamics simulations. The various composed tripeptides have respective binding specificities and their interaction energies with NA decrease in the order of FRI > FRV > FRT > FHV > FRS > FRG > YRV (letters corresponding to amino acid code). The Arg and Phe portions of the tripeptides play important roles during the binding process: Arg has strong electrostatic interactions with the key residues Asp151, Glu119, Glu227 and Glu277, whereas Phe fits well in the hydrophobic cave within the NA active site. Owing to the introduction of hydrophobic property, the interaction energies of FRV and FRI are larger; in particular, FRI demonstrates the best binding quality and shows potential as a lead compound. In addition, the influence of the chemical states of the terminal amino acids are clarified: it is revealed that the charged states of the N-terminus (NH(3) (+)) and C-terminus (COO(-)) are crucial for the tripeptide inhibitory activities and longer peptides may not be appropriate. In addition, the medium inhibiting activity by acetylation of the N-terminus indicates the possible chemical modifications of FRI. Experimental efforts are expected in order to actualize the tripeptides as potent NA inhibitors in the near future.
Collapse
Affiliation(s)
- Zhiwei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; E-Mails: (Z.Y.); (Y.F.); (L.Z.)
| | - Gang Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; E-Mails: (Z.Y.); (Y.F.); (L.Z.)
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Authors to whom correspondence should be addressed; E-Mails: (G.Y.); (Y.Z.); Tel.: +86-451-82192223; Fax: +86-451-82102082
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; E-Mails: (Z.Y.); (Y.F.); (L.Z.)
- Authors to whom correspondence should be addressed; E-Mails: (G.Y.); (Y.Z.); Tel.: +86-451-82192223; Fax: +86-451-82102082
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; E-Mails: (Z.Y.); (Y.F.); (L.Z.)
| | - Lijun Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; E-Mails: (Z.Y.); (Y.F.); (L.Z.)
| |
Collapse
|
17
|
Yang Z, Nie Y, Yang G, Zu Y, Fu Y, Zhou L. Synergistic effects in the designs of neuraminidase ligands: Analysis from docking and molecular dynamics studies. J Theor Biol 2010; 267:363-74. [DOI: 10.1016/j.jtbi.2010.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/29/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
18
|
Rungrotmongkol T, Nunthaboot N, Malaisree M, Kaiyawet N, Yotmanee P, Meeprasert A, Hannongbua S. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations. J Mol Graph Model 2010; 29:347-53. [PMID: 21036084 DOI: 10.1016/j.jmgm.2010.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/19/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural protein, nsP3, is a potential target for the design of potent inhibitors that fit at the adenosine-binding site of its macro domain. Here, so as to understand the fundamental basis of the particular interactions between the ADP-ribose bound to the nsP3 amino acid residues at the binding site, molecular dynamics simulations were applied. The results show that these two nsP3 domains share a similar binding pattern for accommodating the ADP-ribose. The ADP-ribose phosphate unit showed the highest degree of stabilization through hydrogen bond interactions with the nsP3 V33 residue and the consequent amino acid residues 110-114. The adenine base of ADP-ribose was specifically recognized by the conserved nsP3 residue D10. Additionally, the ribose and the diphosphate units were found to play more important roles in the CHIKV nsP3-ADP-ribose complex, while the ter-ribose was more important in the VEEV complex. The slightly higher binding affinity of ADP-ribose toward the nsP3 macro domain of VEEV, as predicted by the simulation results, is in good agreement with previous experimental data. These simulation results provide useful information to further assist in drug design and development for these two important viruses.
Collapse
Affiliation(s)
- Thanyada Rungrotmongkol
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lawrenz M, Wereszczynski J, Amaro R, Walker R, Roitberg A, McCammon JA. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy. Proteins 2010; 78:2523-32. [PMID: 20602360 PMCID: PMC2902668 DOI: 10.1002/prot.22761] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can “clamp” the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. Proteins 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Morgan Lawrenz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Computational design of novel, high-affinity neuraminidase inhibitors for H5N1 avian influenza virus. Eur J Med Chem 2010; 45:536-41. [DOI: 10.1016/j.ejmech.2009.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 10/16/2009] [Accepted: 10/27/2009] [Indexed: 11/18/2022]
|
21
|
How does each substituent functional group of oseltamivir lose its activity against virulent H5N1 influenza mutants? Biophys Chem 2009; 145:29-36. [DOI: 10.1016/j.bpc.2009.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/13/2009] [Accepted: 08/16/2009] [Indexed: 11/18/2022]
|
22
|
Le L, Lee E, Schulten K, Truong TN. Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza. PLOS CURRENTS 2009; 1:RRN1015. [PMID: 20029609 PMCID: PMC2762416 DOI: 10.1371/currents.rrn1015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/27/2009] [Indexed: 12/29/2022]
Abstract
A molecular model of the swine influenza A/H1N1 ( also called H1N1pdm) type-I neuraminidase was built using the pathogenic avian H5N1 type-I neuraminidase as a basis, due to the higher sequence identity between A/H1N1 and H5N1 (91.47%) compared to Spanish H1N1 (88.37%) neuraminidase. All-atom molecular dynamics (MD) simulations of all three neuraminidases were performed, either as apo-structures or with commercial antiviral drugs Tamiflu or Relenza separately bound; the simulations allowed for the identification of both conserved and unique drug-protein interactions across all three proteins. Specifically, conserved networks of hydrogen bonds stabilizing the drugs in the sialic acid binding site of the simulated neuraminidases are analyzed, providing insight into how disruption due to mutations may lead to increased drug resistance. In addition, a possible mechanism through which the residue 294 mutation acquires drug resistance is proposed by mapping the mutation site onto an electrostatic pathway which may play a role in controlling drug access to the binding pocket of neuraminidase, establishing a starting point for further investigations of neuraminidase drug resistance.
Collapse
Affiliation(s)
- Ly Le
- Department of Chemistry, University of Utah; Beckman Institute for Advanced Science and Technology and Professor of Chemistry, University of Utah, & Director of ICST, Vietnam
| | | | | | | |
Collapse
|
23
|
Rungrotmongkol T, Intharathep P, Malaisree M, Nunthaboot N, Kaiyawet N, Sompornpisut P, Payungporn S, Poovorawan Y, Hannongbua S. Susceptibility of antiviral drugs against 2009 influenza A (H1N1) virus. Biochem Biophys Res Commun 2009; 385:390-4. [DOI: 10.1016/j.bbrc.2009.05.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
|
24
|
Some novel insights into the binding of oseltamivir and zanamivir to H5N1 and N9 influenza virus neuraminidases: A homology modeling and flexible docking study. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2009. [DOI: 10.2298/jsc0901001m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the context of the recent pandemic threat by the worldwide spread of H5N1 avian influenza, novel insights into the mechanism of ligand binding and interaction between various inhibitors (zanamivir - ZMV, oseltamivir - OTV, 2,3-didehydro-2-deoxy-N-acetylneuraminic acid - DANA, peramivir - PMV) and neuraminidases (NA) are of vital importance for the structure-based design of new anti-viral drugs. To address this issue, three-dimensional models of H5N1-NA and N9-NA were generated by homology modeling. Traditional residues within the active site throughout the family of NA protein structures were found to be highly conserved in H5N1-NA. A subtle variation between lipophilic and hydrophilic environments in H5N1-NA with respect to N9-NA was observed, thus shedding more light on the high resistance of some H5N1 strains to various NA inhibitors. Based on these models, an ArgusLab4/AScore flexible docking study was performed. The conformational differences between OTV bound to H5N1-NA and OTV bound to N9-NA were structurally identified and quantified. A slight difference of less than 1 kcal mol-1 between the OTV-N9 and OTV-N1 binding free energies is in agreement with the experimentally predicted free energy difference. The conformational differences between ZMV and OTV bound to either H5N1-NA or N9-NA were structurally identified. The binding free energies of the ZMV complexes, being slightly higher than those of OTV, are not in agreement with what was previously proposed using homology modeling. The differences between ZMV and OTV are suggested to be ascribed to the presence/absence of Asn166 in the active cavity of ZMV/OTV in H5N1-NA, and to the presence/absence of Ser165 in the binding site of ZMV/OTV in N9-NA. The charge distribution was evaluated using the semi-empirical AM1 method. The trends of the AM1 charges of the ZMV and OTV side chains in the complexes deviate from those previously reported.
Collapse
|
25
|
Malaisree M, Rungrotmongkol T, Decha P, Intharathep P, Aruksakunwong O, Hannongbua S. Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. Proteins 2008; 71:1908-18. [PMID: 18175324 DOI: 10.1002/prot.21897] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To provide detailed information and insight into the drug-target interaction, structure, solvation, and dynamic and thermodynamic properties, the three known-neuraminidase inhibitors-oseltamivir (OTV), zanamivir (ZNV), and peramivir (PRV)-embedded in the catalytic site of neuraminidase (NA) subtype N1 were studied using molecular dynamics simulations. In terms of ligand conformation, there were major differences in the structures of the guanidinium and the bulky groups. The atoms of the guanidinium group of PRV were observed to form many more hydrogen bonds with the surrounded residues and were much less solvated by water molecules, in comparison with the other two inhibitors. Consequently, D151 lying on the 150-loop (residues 147-152) of group-1 neuraminidase (N1, N4, N5, and N8) was considerably shifted to form direct hydrogen bonds with the --OH group of the PRV, which was located rather far from the 150-loop. For the bulky group, direct hydrogen bonds were detected only between the hydrophilic side chain of ZNV and residues R224, E276, and E277 of N1 with rather weak binding, 20-70% occupation. This is not the case for OTV and PRV, in which flexibility and steric effects due to the hydrophobic side chain lead to the rearrangement of the surrounded residues, that is, the negatively charged side chain of E276 was shifted and rotated to form hydrogen bonds with the positively charged moiety of R224. Taking into account all the ligand-enzyme interaction data, the gas phase MM interaction energy of -282.2 kcal/mol as well as the binding free energy (DeltaG(binding)) of -227.4 kcal/mol for the PRV-N1 are significantly lower than those of the other inhibitors. The ordering of DeltaG(binding) of PRV < ZNV < OTV agrees well with the ordering of experimental IC(50) value.
Collapse
Affiliation(s)
- Maturos Malaisree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
26
|
Mihajlovic ML, Mitrasinovic PM. Another look at the molecular mechanism of the resistance of H5N1 influenza A virus neuraminidase (NA) to oseltamivir (OTV). Biophys Chem 2008; 136:152-8. [DOI: 10.1016/j.bpc.2008.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/29/2022]
|
27
|
Pharmacokinetics and tolerability of oseltamivir combined with probenecid. Antimicrob Agents Chemother 2008; 52:3013-21. [PMID: 18559644 DOI: 10.1128/aac.00047-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oseltamivir is an inhibitor of influenza virus neuraminidase, which is approved for use for the treatment and prophylaxis of influenza A and B virus infections. In the event of an influenza pandemic, oseltamivir supplies may be limited; thus, alternative dosing strategies for oseltamivir prophylaxis should be explored. Healthy volunteers were randomized to a three-arm, open-label study and given 75 mg oral oseltamivir every 24 h (group 1), 75 mg oseltamivir every 48 h (q48h) combined with 500 mg probenecid four times a day (group 2), or 75 mg oseltamivir q48h combined with 500 mg probenecid twice a day (group 3) for 15 days. Pharmacokinetic data, obtained by noncompartmental methods, and safety data are reported. Forty-eight subjects completed the pharmacokinetic analysis. The study drugs were generally well tolerated, except for one case of reversible grade 4 thrombocytopenia in a subject in group 2. The calculated 90% confidence intervals (CIs) for the geometric mean ratios between groups 2 and 3 and group 1 were outside the bioequivalence criteria boundary (0.80 to 1.25) at 0.63 to 0.89 for group 2 versus group 1 and 0.57 to 0.90 for group 3 versus group 1. The steady-state apparent oral clearance of oseltamivir carboxylate was significantly less in groups 2 (7.4 liters/h; 90% CI, 6.08 to 8.71) and 3 (7.19 liters/h; 90% CI, 6.41 to 7.98) than in group 1 (9.75 liters/h; 90% CI, 6.91 to 12.60) (P < 0.05 for both comparisons by analysis of variance). The (arithmetic) mean concentration at 48 h for group 2 was not significantly different from the mean concentration at 24 h for group 1 (42 +/- 76 and 81 +/- 54 ng/ml, respectively; P = 0.194), but the mean concentration at 48 h for group 3 was significantly less than the mean concentration at 24 h for group 1 (23 +/- 26 and 81 +/- 54 ng/ml, respectively; P = 0.012). Alternate-day dosing of oseltamivir plus dosing with probenecid four times daily achieved trough oseltamivir carboxylate concentrations adequate for neuraminidase inhibition in vitro, and this combination should be studied further.
Collapse
|