1
|
Lewalle A, Milburn G, Campbell KS, Niederer SA. Cardiac length-dependent activation driven by force-dependent thick-filament dynamics. Biophys J 2024; 123:2996-3009. [PMID: 38807364 PMCID: PMC11428202 DOI: 10.1016/j.bpj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.
Collapse
Affiliation(s)
- Alexandre Lewalle
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Gregory Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Steven A Niederer
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Buonocunto M, Lyon A, Delhaas T, Heijman J, Lumens J. Electrophysiological effects of stretch-activated ion channels: a systematic computational characterization. J Physiol 2024; 602:4585-4604. [PMID: 37665242 DOI: 10.1113/jp284439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiac electrophysiology and mechanics are strongly interconnected. Their interaction is, among others, mediated by mechano-electric feedback through stretch-activated ion channels (SACs). The electrophysiological changes induced by SACs may contribute to arrhythmogenesis, but the precise SAC-induced electrophysiological changes remain incompletely understood. Here, we provide a systematic characterization of stretch effects through three distinguished SACs on cardiac electrophysiology using computational modelling. We implemented potassium-selective, calcium-selective and non-selective SACs in the Tomek-Rodriguez-O'Hara-Rudy model of human ventricular electrophysiology. The model was calibrated to experimental data from isolated cardiomyocytes undergoing stretch, considering inter-species differences, and disease-related remodelling of SACs. SAC-mediated effects on the action potential (AP) were analysed by varying stretch amplitude, application timing and/or duration. Afterdepolarizations of different amplitudes were observed with transient 10-ms stretch stimuli of 15-18% applied during phase 4, while stretch ≥18% during phase 4 elicited triggered APs. Longer stimuli shifted the threshold of AP trigger during phase 4 to lower amplitudes, while shorter stimuli increased it. Continuous stretch provoked electrophysiological remodelling. Furthermore, stretch shortened duration or changed morphology of a subsequent electrically evoked AP, and, if applied during a vulnerable time window with sufficient amplitude, prevented its occurrence because of stretch-induced modulation of sodium and L-type calcium channel gating. These effects were more pronounced with disease-related SAC remodelling due to increased stretch sensitivity of diseased hearts. We showed that SACs may induce afterdepolarizations and triggered activities, and prevent subsequent AP generation or change its morphology. These effects depend on cardiomyocyte stretch characteristics and disease-related SACs remodelling and may contribute to cardiac arrhythmogenesis. KEY POINTS: The interplay between cardiac electrophysiology and mechanics is mediated by mechano-electric feedback through stretch-activated ion channels (SACs). These channels may be pro-arrhythmic, but their precise effect on electrophysiology remains unclear. Here we present a systematic in silico characterization of stretch effects through three SACs by implementing inter-species differences as well as disease-related remodelling of SACs in a novel computational model of human ventricular cardiomyocyte electrophysiology. Our simulations showed that, at the cellular level, SACs may provoke electrophysiological remodelling, afterdepolarizations, triggered activities, change the morphology or shorten subsequent electrically evoked action potentials. The model further suggests that a vulnerable window exists in which stretch prevents the following electrically triggered beat occurrence. The pro-arrhythmic effects of stretch strongly depend on disease-related SAC remodelling as well as on stretch characteristics, such as amplitude, time of application and duration. Our study helps in understanding the role of stretch in cardiac arrhythmogenesis and revealing the underlying cellular mechanisms.
Collapse
Affiliation(s)
- Melania Buonocunto
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Mazhar F, Bartolucci C, Regazzoni F, Paci M, Dedè L, Quarteroni A, Corsi C, Severi S. A detailed mathematical model of the human atrial cardiomyocyte: integration of electrophysiology and cardiomechanics. J Physiol 2024; 602:4543-4583. [PMID: 37641426 DOI: 10.1113/jp283974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Mechano-electric regulations (MER) play an important role in the maintenance of cardiac performance. Mechano-calcium and mechano-electric feedback (MCF and MEF) pathways adjust the cardiomyocyte contractile force according to mechanical perturbations and affects electro-mechanical coupling. MER integrates all these regulations in one unit resulting in a complex phenomenon. Computational modelling is a useful tool to accelerate the mechanistic understanding of complex experimental phenomena. We have developed a novel model that integrates the MER loop for human atrial cardiomyocytes with proper consideration of feedforward and feedback pathways. The model couples a modified version of the action potential (AP) Koivumäki model with the contraction model by Quarteroni group. The model simulates iso-sarcometric and isometric twitches and the feedback effects on AP and Ca2+-handling. The model showed a biphasic response of Ca2+ transient (CaT) peak to increasing pacing rates and highlights the possible mechanisms involved. The model has shown a shift of the threshold for AP and CaT alternans from 4.6 to 4 Hz under post-operative atrial fibrillation, induced by depressed SERCA activity. The alternans incidence was dependent on a chain of mechanisms including RyRs availability time, MCF coupling, CaMKII phosphorylation, and the stretch levels. As a result, the model predicted a 10% slowdown of conduction velocity for a 20% stretch, suggesting a role of stretch in creation of substrate formation for atrial fibrillation. Overall, we conclude that the developed model provides a physiological CaT followed by a physiological twitch. This model can open pathways for the future studies of human atrial electromechanics. KEY POINTS: With the availability of human atrial cellular data, interest in atrial-specific model integration has been enhanced. We have developed a detailed mathematical model of human atrial cardiomyocytes including the mechano-electric regulatory loop. The model has gone through calibration and evaluation phases against a wide collection of available human in-vitro data. The usefulness of the model for analysing clinical problems has been preliminaryly tested by simulating the increased incidence of Ca2+ transient and action potential alternans at high rates in post-operative atrial fibrillation condition. The model determines the possible role of mechano-electric feedback in alternans incidence, which can increase vulnerability to atrial arrhythmias by varying stretch levels. We found that our physiologically accurate description of Ca2+ handling can reproduce many experimental phenomena and can help to gain insights into the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Fazeelat Mazhar
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | | | - Michelangelo Paci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristiana Corsi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| |
Collapse
|
4
|
Mechanoelectric effects in healthy cardiac function and under Left Bundle Branch Block pathology. Comput Biol Med 2023; 156:106696. [PMID: 36870172 PMCID: PMC10040614 DOI: 10.1016/j.compbiomed.2023.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.
Collapse
|
5
|
Hou Y, Laasmaa M, Li J, Shen X, Manfra O, Norden ES, Le C, Zhang L, Sjaastad I, Jones PP, Soeller C, Louch WE. Live-cell photo-activated localization microscopy correlates nanoscale ryanodine receptor configuration to calcium sparks in cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:251-267. [PMID: 38803363 PMCID: PMC7616007 DOI: 10.1038/s44161-022-00199-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/24/2022] [Indexed: 05/29/2024]
Abstract
Ca2+ sparks constitute the fundamental units of Ca2+ release in cardiomyocytes. Here we investigate how ryanodine receptors (RyRs) collectively generate these events by employing a transgenic mouse with a photo-activated label on RyR2. This allowed correlative imaging of RyR localization, by super-resolution Photo-Activated Localization Microscopy, and Ca2+ sparks, by high-speed imaging. Two populations of Ca2+ sparks were observed: stationary events and "travelling" events that spread between neighbouring RyR clusters. Travelling sparks exhibited up to 8 distinct releases, sourced from local or distal junctional sarcoplasmic reticulum. Quantitative analyses showed that sparks may be triggered by any number of RyRs within a cluster, and that acute β-adrenergic stimulation augments intra-cluster RyR recruitment to generate larger events. In contrast, RyR "dispersion" during heart failure facilitates the generation of travelling sparks. Thus, RyRs cooperatively generate Ca2+ sparks in a complex, malleable fashion, and channel organization regulates the propensity for local propagation of Ca2+ release.
Collapse
Affiliation(s)
- Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Einar S. Norden
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Peter P. Jones
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | | | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| |
Collapse
|
6
|
Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges. Cells 2022; 11:cells11071090. [PMID: 35406654 PMCID: PMC8997666 DOI: 10.3390/cells11071090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte calcium-handling is the key mediator of cardiac excitation-contraction coupling. In the healthy heart, calcium controls both electrical impulse propagation and myofilament cross-bridge cycling, providing synchronous and adequate contraction of cardiac muscles. However, calcium-handling abnormalities are increasingly implicated as a cause of cardiac arrhythmias. Due to the complex, dynamic and localized interactions between calcium and other molecules within a cardiomyocyte, it remains experimentally challenging to study the exact contributions of calcium-handling abnormalities to arrhythmogenesis. Therefore, multiscale computational modeling is increasingly being used together with laboratory experiments to unravel the exact mechanisms of calcium-mediated arrhythmogenesis. This article describes various examples of how integrative computational modeling makes it possible to unravel the arrhythmogenic consequences of alterations to cardiac calcium handling at subcellular, cellular and tissue levels, and discusses the future challenges on the integration and interpretation of such computational data.
Collapse
|
7
|
Martonová D, Holz D, Seufert J, Duong MT, Alkassar M, Leyendecker S. Comparison of stress and stress–strain approaches for the active contraction in a rat cardiac cycle model. J Biomech 2022; 134:110980. [DOI: 10.1016/j.jbiomech.2022.110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
|
8
|
Park J, Wu Z, Steiner PR, Zhu B, Zhang JXJ. Heart-on-Chip for Combined Cellular Dynamics Measurements and Computational Modeling Towards Clinical Applications. Ann Biomed Eng 2022; 50:111-137. [PMID: 35039976 DOI: 10.1007/s10439-022-02902-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Organ-on-chip or micro-engineered three-dimensional cellular or tissue models are increasingly implemented in the study of cardiovascular pathophysiology as alternatives to traditional in vitro cell culture. Drug induced cardiotoxicity is a key issue in drug development pipelines, but the current in vitro and in vivo studies suffer from inter-species differences, high costs, and lack of reliability and accuracy in predicting cardiotoxicity. Microfluidic heart-on-chip devices can impose a paradigm shift to the current tools. They can not only recapitulate cardiac tissue level functionality and the communication between cells and extracellular matrices but also allow higher throughput studies conducive to drug screening especially with their added functionalities or sensors that extract disease-specific phenotypic, genotypic, and electrophysiological information in real-time. Such electrical and mechanical components can tailor the electrophysiology and mechanobiology of the experiment to better mimic the in vivo condition as well. Recent advancements and challenges are reviewed in the fabrication, functionalization and sensor assisted mechanical and electrophysiological measurements, numerical and computational modeling of cardiomyocytes' behavior, and the clinical applications in drug screening and disease modeling. This review concludes with the current challenges and perspectives on the future of such organ-on-chip platforms.
Collapse
Affiliation(s)
- Jiyoon Park
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Ziqian Wu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Paul R Steiner
- Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA
| | - Bo Zhu
- Computer Science Department, Dartmouth College, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA. .,Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, 03766, USA.
| |
Collapse
|
9
|
Colli Franzone P, Pavarino LF, Scacchi S. Numerical evaluation of cardiac mechanical markers as estimators of the electrical activation time. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3285. [PMID: 31808301 DOI: 10.1002/cnm.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in the development of noninvasive cardiac imaging technologies have made it possible to measure longitudinal and circumferential strains at a high spatial resolution also at intramural level. Local mechanical activation times derived from these strains can be used as noninvasive estimates of electrical activation, in order to determine, eg, the origin of premature ectopic beats during focal arrhythmias or the pathway of reentrant circuits. The aim of this work is to assess the reliability of mechanical activation time markers derived from longitudinal and circumferential strains, denoted by ATell and ATecc , respectively, by means of three-dimensional cardiac electromechanical simulations. These markers are compared against the electrical activation time (ATv ), computed from the action potential waveform, and the reference mechanical activation markers derived from the active tension and fiber strain waveforms, denoted by ATta and ATeff , respectively. Our numerical simulations are based on a strongly coupled electromechanical model, including bidomain representation of the cardiac tissue, mechanoelectric (ie, stretch-activated channels) and geometric feedbacks, transversely isotropic strain energy function for the description of passive mechanics and detailed membrane and excitation-contraction coupling models. The results have shown that, during endocardial and epicardial ectopic stimulations, all the mechanical markers considered are highly correlated with ATv , exhibiting correlation coefficients larger than 0.8. However, during multiple endocardial stimulations, mimicking the ventricular sinus rhythm, the mechanical markers are less correlated with the electrical activation time, because of the more complex resulting excitation sequence. Moreover, the inspection of the endocardial and epicardial isochrones has shown that the ATell and ATecc mechanical activation sequences reproduce only some qualitative features of the electrical activation sequence, such as the areas of early and late activation, but in some cases, they might yield wrong excitation sources and significantly different isochrones patterns.
Collapse
Affiliation(s)
| | - Luca F Pavarino
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| |
Collapse
|
10
|
Dell'Era G, Gravellone M, Scacchi S, Franzone PC, Pavarino LF, Boggio E, Prenna E, De Vecchi F, Occhetta E, Devecchi C, Patti G. A clinical-in silico study on the effectiveness of multipoint bicathodic and cathodic-anodal pacing in cardiac resynchronization therapy. Comput Biol Med 2021; 136:104661. [PMID: 34332350 DOI: 10.1016/j.compbiomed.2021.104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Up to one-third of patients undergoing cardiac resynchronization therapy (CRT) are nonresponders. Multipoint bicathodic and cathodic-anodal left ventricle (LV) stimulations could overcome this clinical challenge, but their effectiveness remains controversial. Here we evaluate the performance of such stimulations through both in vivo and in silico experiments, the latter based on computer electromechanical modeling. Seven patients, all candidates for CRT, received a quadripolar LV lead. Four stimulations were tested: right ventricular (RVS); conventional single point biventricular (S-BS); multipoint biventricular bicathodic (CC-BS) and multipoint biventricular cathodic-anodal (CA-BS). The following parameters were processed: QRS duration; maximal time derivative of arterial pressure (dPdtmax); systolic arterial pressure (Psys); and stroke volume (SV). Echocardiographic data of each patient were then obtained to create an LV geometric model. Numerical simulations were based on a strongly coupled Bidomain electromechanical coupling model. Considering the in vivo parameters, when comparing S-BS to RVS, there was no significant decrease in SV (from 45 ± 11 to 44 ± 20 ml) and 6% and 4% increases of dPdtmax and Psys, respectively. Focusing on in silico parameters, with respect to RVS, S-BS exhibited a significant increase of SV, dPdtmax and Psys. Neither the in vivo nor in silico results showed any significant hemodynamic and electrical difference among S-BS, CC-BS and CA-BS configurations. These results show that CC-BS and CA-BS yield a comparable CRT performance, but they do not always yield improvement in terms of hemodynamic parameters with respect to S-BS. The computational results confirmed the in vivo observations, thus providing theoretical support to the clinical experiments.
Collapse
Affiliation(s)
- G Dell'Era
- Cardiologia 1, Azienda Ospedaliera Universitaria "Maggiore Della Carità", Novara, Italy
| | - M Gravellone
- Divisione di Cardiologia, Ospedale Degli Infermi, Biella, Italy
| | - S Scacchi
- Dipartimento di Matematica, Università Degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy.
| | - P Colli Franzone
- Dipartimento di Matematica, Università Degli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - L F Pavarino
- Dipartimento di Matematica, Università Degli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - E Boggio
- Divisione di Cardiologia, Ospedale Degli Infermi, Biella, Italy
| | - E Prenna
- Cardiologia 1, Azienda Ospedaliera Universitaria "Maggiore Della Carità", Novara, Italy
| | - F De Vecchi
- Divisione di Cardiologia, Ospedale Sant'Andrea, Vercelli, Italy
| | - E Occhetta
- Divisione di Cardiologia, Ospedale Sant'Andrea, Vercelli, Italy
| | - C Devecchi
- Divisione di Cardiologia, Ospedale Sant'Andrea, Vercelli, Italy
| | - G Patti
- Cardiologia 1, Azienda Ospedaliera Universitaria "Maggiore Della Carità", Novara, Italy; Dipartimento di Medicina Traslazionale, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Syomin F, Osepyan A, Tsaturyan A. Computationally efficient model of myocardial electromechanics for multiscale simulations. PLoS One 2021; 16:e0255027. [PMID: 34293046 PMCID: PMC8297763 DOI: 10.1371/journal.pone.0255027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
A model of myocardial electromechanics is suggested. It combines modified and simplified versions of previously published models of cardiac electrophysiology, excitation-contraction coupling, and mechanics. The mechano-calcium and mechano-electrical feedbacks, including the strain-dependence of the propagation velocity of the action potential, are also accounted for. The model reproduces changes in the twitch amplitude and Ca2+-transients upon changes in muscle strain including the slow response. The model also reproduces the Bowditch effect and changes in the twitch amplitude and duration upon changes in the interstimulus interval, including accelerated relaxation at high stimulation frequency. Special efforts were taken to reduce the stiffness of the differential equations of the model. As a result, the equations can be integrated numerically with a relatively high time step making the model suitable for multiscale simulation of the human heart and allowing one to study the impact of myocardial mechanics on arrhythmias.
Collapse
Affiliation(s)
- Fyodor Syomin
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Anna Osepyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Tsaturyan
- Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Izu L, Shimkunas R, Jian Z, Hegyi B, Kazemi-Lari M, Baker A, Shaw J, Banyasz T, Chen-Izu Y. Emergence of Mechano-Sensitive Contraction Autoregulation in Cardiomyocytes. Life (Basel) 2021; 11:503. [PMID: 34072584 PMCID: PMC8227646 DOI: 10.3390/life11060503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
The heart has two intrinsic mechanisms to enhance contractile strength that compensate for increased mechanical load to help maintain cardiac output. When vascular resistance increases the ventricular chamber initially expands causing an immediate length-dependent increase of contraction force via the Frank-Starling mechanism. Additionally, the stress-dependent Anrep effect slowly increases contraction force that results in the recovery of the chamber volume towards its initial state. The Anrep effect poses a paradox: how can the cardiomyocyte maintain higher contractility even after the cell length has recovered its initial length? Here we propose a surface mechanosensor model that enables the cardiomyocyte to sense different mechanical stresses at the same mechanical strain. The cell-surface mechanosensor is coupled to a mechano-chemo-transduction feedback mechanism involving three elements: surface mechanosensor strain, intracellular Ca2+ transient, and cell strain. We show that in this simple yet general system, contractility autoregulation naturally emerges, enabling the cardiomyocyte to maintain contraction amplitude despite changes in a range of afterloads. These nontrivial model predictions have been experimentally confirmed. Hence, this model provides a new conceptual framework for understanding the contractility autoregulation in cardiomyocytes, which contributes to the heart's intrinsic adaptivity to mechanical load changes in health and diseases.
Collapse
Affiliation(s)
- Leighton Izu
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
| | - Rafael Shimkunas
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
| | - Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
| | - Mohammad Kazemi-Lari
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
| | - Anthony Baker
- Department of Medicine, University of California, San Francisco, CA 94121, USA;
| | - John Shaw
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tamas Banyasz
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA 95616, USA; (R.S.); (Z.J.); (B.H.); (M.K.-L.); (T.B.); (Y.C.-I.)
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Lyon A, Dupuis LJ, Arts T, Crijns HJGM, Prinzen FW, Delhaas T, Heijman J, Lumens J. Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model. Am J Physiol Heart Circ Physiol 2020; 319:H519-H530. [PMID: 32734816 DOI: 10.1152/ajpheart.00275.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac electrophysiology and mechanics are strongly interconnected. Calcium is crucial in this complex interplay through its role in cellular electrophysiology and sarcomere contraction. We aim to differentiate the effects of acute β-adrenergic stimulation (β-ARS) and cardiomyocyte stretch (increased sarcomere length) on calcium-transient dynamics and force generation, using a novel computational model of cardiac electromechanics. We implemented a bidirectional coupling between the O'Hara-Rudy model of human ventricular electrophysiology and the MechChem model of sarcomere mechanics through the buffering of calcium by troponin. The coupled model was validated using experimental data from large mammals or human samples. Calcium transient and force were simulated for various degrees of β-ARS and initial sarcomere lengths. The model reproduced force-frequency, quick-release, and isotonic contraction experiments, validating the bidirectional electromechanical interactions. An increase in β-ARS increased the amplitudes of force (augmented inotropy) and calcium transient, and shortened both force and calcium-transient duration (lusitropy). An increase in sarcomere length increased force amplitude even more, but decreased calcium-transient amplitude and increased both force and calcium-transient duration. Finally, a gradient in relaxation along the thin filament may explain the nonmonotonic decay in cytosolic calcium observed with high tension. Using a novel coupled human electromechanical model, we identified differential effects of β-ARS and stretch on calcium and force. Stretch mostly contributed to increased force amplitude and β-ARS to the reduction of calcium and force duration. We showed that their combination, rather than individual contributions, is key to ensure force generation, rapid relaxation, and low diastolic calcium levels.NEW & NOTEWORTHY This work identifies the contribution of electrical and mechanical alterations to regulation of calcium and force under exercise-like conditions using a novel human electromechanical model integrating ventricular electrophysiology and sarcomere mechanics. By better understanding their individual and combined effects, this can uncover arrhythmogenic mechanisms in exercise-like situations. This publicly available model is a crucial step toward understanding the complex interplay between cardiac electrophysiology and mechanics to improve arrhythmia risk prediction and treatment.
Collapse
Affiliation(s)
- Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Lauren J Dupuis
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,Department of Bioinformatics-BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
14
|
Guidry ME, Nickerson DP, Crampin EJ, Nash MP, Loiselle DS, Tran K. Insights From Computational Modeling Into the Contribution of Mechano-Calcium Feedback on the Cardiac End-Systolic Force-Length Relationship. Front Physiol 2020; 11:587. [PMID: 32547426 PMCID: PMC7273927 DOI: 10.3389/fphys.2020.00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/11/2020] [Indexed: 11/23/2022] Open
Abstract
In experimental studies on cardiac tissue, the end-systolic force-length relation (ESFLR) has been shown to depend on the mode of contraction: isometric or isotonic. The isometric ESFLR is derived from isometric contractions spanning a range of muscle lengths while the isotonic ESFLR is derived from shortening contractions across a range of afterloads. The ESFLR of isotonic contractions consistently lies below its isometric counterpart. Despite the passing of over a hundred years since the first insight by Otto Frank, the mechanism(s) underlying this protocol-dependent difference in the ESFLR remain incompletely explained. Here, we investigate the role of mechano-calcium feedback in accounting for the difference between these two ESFLRs. Previous studies have compared the dynamics of isotonic contractions to those of a single isometric contraction at a length that produces maximum force, without considering isometric contractions at shorter muscle lengths. We used a mathematical model of cardiac excitation-contraction to simulate isometric and force-length work-loop contractions (the latter being the 1D equivalent of the whole-heart pressure-volume loop), and compared Ca2+ transients produced under equivalent force conditions. We found that the duration of the simulated Ca2+ transient increases with decreasing sarcomere length for isometric contractions, and increases with decreasing afterload for work-loop contractions. At any given force, the Ca2+ transient for an isometric contraction is wider than that during a work-loop contraction. By driving simulated work-loops with wider Ca2+ transients generated from isometric contractions, we show that the duration of muscle shortening was prolonged, thereby shifting the work-loop ESFLR toward the isometric ESFLR. These observations are explained by an increase in the rate of binding of Ca2+ to troponin-C with increasing force. However, the leftward shift of the work-loop ESFLR does not superimpose on the isometric ESFLR, leading us to conclude that while mechano-calcium feedback does indeed contribute to the difference between the two ESFLRs, it does not completely account for it.
Collapse
Affiliation(s)
- Megan E Guidry
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Edmund J Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Martyn P Nash
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Denis S Loiselle
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Izu LT, Kohl P, Boyden PA, Miura M, Banyasz T, Chiamvimonvat N, Trayanova N, Bers DM, Chen-Izu Y. Mechano-electric and mechano-chemo-transduction in cardiomyocytes. J Physiol 2020; 598:1285-1305. [PMID: 31789427 PMCID: PMC7127983 DOI: 10.1113/jp276494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac excitation-contraction (E-C) coupling is influenced by (at least) three dynamic systems that couple and feedback to one another (see Abstract Figure). Here we review the mechanical effects on cardiomyocytes that include mechano-electro-transduction (commonly referred to as mechano-electric coupling, MEC) and mechano-chemo-transduction (MCT) mechanisms at cell and molecular levels which couple to Ca2+ -electro and E-C coupling reviewed elsewhere. These feedback loops from muscle contraction and mechano-transduction to the Ca2+ homeodynamics and to the electrical excitation are essential for understanding the E-C coupling dynamic system and arrhythmogenesis in mechanically loaded hearts. This white paper comprises two parts, each reflecting key aspects from the 2018 UC Davis symposium: MEC (how mechanical load influences electrical dynamics) and MCT (how mechanical load alters cell signalling and Ca2+ dynamics). Of course, such separation is artificial since Ca2+ dynamics profoundly affect ion channels and electrogenic transporters and vice versa. In time, these dynamic systems and their interactions must become fully integrated, and that should be a goal for a comprehensive understanding of how mechanical load influences cell signalling, Ca2+ homeodynamics and electrical dynamics. In this white paper we emphasize current understanding, consensus, controversies and the pressing issues for future investigations. Space constraints make it impossible to cover all relevant articles in the field, so we will focus on the topics discussed at the symposium.
Collapse
Affiliation(s)
- Leighton T. Izu
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, and Faculty of Medicine, University of Freiburg, D-79110, Germany
| | | | - Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, USA
| | - Natalia Trayanova
- Department of Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA 95616, USA
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, USA
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
17
|
Balakina-Vikulova NA, Panfilov A, Solovyova O, Katsnelson LB. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J Physiol Sci 2020; 70:12. [PMID: 32070290 PMCID: PMC7028825 DOI: 10.1186/s12576-020-00741-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Experiments on animal hearts (rat, rabbit, guinea pig, etc.) have demonstrated that mechano-calcium feedback (MCF) and mechano-electric feedback (MEF) are very important for myocardial self-regulation because they adjust the cardiomyocyte contractile function to various mechanical loads and to mechanical interactions between heterogeneous myocardial segments in the ventricle walls. In in vitro experiments on these animals, MCF and MEF manifested themselves in several basic classical phenomena (e.g., load dependence, length dependence of isometric twitches, etc.), and in the respective responses of calcium transients and action potentials. However, it is extremely difficult to study simultaneously the electrical, calcium, and mechanical activities of the human heart muscle in vitro. Mathematical modeling is a useful tool for exploring these phenomena. We have developed a novel model to describe electromechanical coupling and mechano-electric feedbacks in the human cardiomyocyte. It combines the ‘ten Tusscher–Panfilov’ electrophysiological model of the human cardiomyocyte with our module of myocardium mechanical activity taken from the ‘Ekaterinburg–Oxford’ model and adjusted to human data. Using it, we simulated isometric and afterloaded twitches and effects of MCF and MEF on excitation–contraction coupling. MCF and MEF were found to affect significantly the duration of the calcium transient and action potential in the human cardiomyocyte model in response to both smaller afterloads as compared to bigger ones and various mechanical interventions applied during isometric and afterloaded twitches.
Collapse
Affiliation(s)
- Nathalie A Balakina-Vikulova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia. .,Ural Federal University, Ekaterinburg, Russia.
| | - Alexander Panfilov
- Ural Federal University, Ekaterinburg, Russia.,Ghent University, Ghent, Belgium
| | - Olga Solovyova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Ural Federal University, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
18
|
Sampedro-Puente DA, Fernandez-Bes J, Szentandrássy N, Nánási P, Taggart P, Pueyo E. Time Course of Low-Frequency Oscillatory Behavior in Human Ventricular Repolarization Following Enhanced Sympathetic Activity and Relation to Arrhythmogenesis. Front Physiol 2020; 10:1547. [PMID: 32009971 PMCID: PMC6971219 DOI: 10.3389/fphys.2019.01547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives: Recent studies in humans and dogs have shown that ventricular repolarization exhibits a low-frequency (LF) oscillatory pattern following enhanced sympathetic activity, which has been related to arrhythmic risk. The appearance of LF oscillations in ventricular repolarization is, however, not immediate, but it may take up to some minutes. This study seeks to characterize the time course of the action potential (AP) duration (APD) oscillatory behavior in response to sympathetic provocations, unveil its underlying mechanisms and establish a potential link to arrhythmogenesis under disease conditions. Materials and Methods: A representative set of human ventricular computational models coupling cellular electrophysiology, calcium dynamics, β-adrenergic signaling, and mechanics was built. Sympathetic provocation was modeled via phasic changes in β-adrenergic stimulation (β-AS) and mechanical stretch at Mayer wave frequencies within the 0.03–0.15 Hz band. Results: Our results show that there are large inter-individual differences in the time lapse for the development of LF oscillations in APD following sympathetic provocation, with some cells requiring just a few seconds and other cells needing more than 3 min. Whereas, the oscillatory response to phasic mechanical stretch is almost immediate, the response to β-AS is much more prolonged, in line with experimentally reported evidences, thus being this component the one driving the slow development of APD oscillations following enhanced sympathetic activity. If β-adrenoceptors are priorly stimulated, the time for APD oscillations to become apparent is remarkably reduced, with the oscillation time lapse being an exponential function of the pre-stimulation level. The major mechanism underlying the delay in APD oscillations appearance is related to the slow IKs phosphorylation kinetics, with its relevance being modulated by the IKs conductance of each individual cell. Cells presenting short oscillation time lapses are commonly associated with large APD oscillation magnitudes, which facilitate the occurrence of pro-arrhythmic events under disease conditions involving calcium overload and reduced repolarization reserve. Conclusions: The time course of LF oscillatory behavior of APD in response to increased sympathetic activity presents high inter-individual variability, which is associated with different expression and PKA phosphorylation kinetics of the IKs current. Short time lapses in the development of APD oscillations are associated with large oscillatory magnitudes and pro-arrhythmic risk under disease conditions.
Collapse
Affiliation(s)
| | | | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Peter Taggart
- Department of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Esther Pueyo
- BSICOS Group, I3A, IIS Aragón, University of Zaragoza, Zaragoza, Spain.,Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
19
|
Kaur S, Shen X, Power A, Ward ML. Stretch modulation of cardiac contractility: importance of myocyte calcium during the slow force response. Biophys Rev 2020; 12:135-142. [PMID: 31939110 DOI: 10.1007/s12551-020-00615-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanical response of the heart to myocardial stretch has been understood since the work of muscle physiologists more than 100 years ago, whereby an increase in ventricular chamber filling during diastole increases the subsequent force of contraction. The stretch-induced increase in contraction is biphasic. There is an abrupt increase in the force that coincides with the stretch (the rapid response), which is then followed by a slower response that develops over several minutes (the slow force response, or SFR). The SFR is associated with a progressive increase in the magnitude of the Ca2+ transient, the event that initiates myocyte cross-bridge cycling and force development. However, the mechanisms underlying the stretch-dependent increase in the Ca2+ transient are still debated. This review outlines recent literature on the SFR and summarizes the different stretch-activated Ca2+ entry pathways. The SFR might result from a combination of several different cellular mechanisms initiated in response to activation of different cellular stretch sensors.
Collapse
Affiliation(s)
- Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G.Jebsen Center for Cardiac Research, Oslo, Norway
| | - Amelia Power
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, Han J, Ward M. The slow force response to stretch: Controversy and contradictions. Acta Physiol (Oxf) 2019; 226:e13250. [PMID: 30614655 DOI: 10.1111/apha.13250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
When exposed to an abrupt stretch, cardiac muscle exhibits biphasic active force enhancement. The initial, instantaneous, force enhancement is well explained by the Frank-Starling mechanism. However, the cellular mechanisms associated with the second, slower phase remain contentious. This review explores hypotheses regarding this "slow force response" with the intention of clarifying some apparent contradictions in the literature. The review is partitioned into three sections. The first section considers pathways that modify the intracellular calcium handling to address the role of the sarcoplasmic reticulum in the mechanism underlying the slow force response. The second section focuses on extracellular calcium fluxes and explores the identity and contribution of the stretch-activated, non-specific, cation channels as well as signalling cascades associated with G-protein coupled receptors. The final section introduces promising candidates for the mechanosensor(s) responsible for detecting the stretch perturbation.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Physiology University of Auckland Auckland New Zealand
| | - Poul M. F. Nielsen
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology University of Auckland Auckland New Zealand
| |
Collapse
|
21
|
Niederer SA, Campbell KS, Campbell SG. A short history of the development of mathematical models of cardiac mechanics. J Mol Cell Cardiol 2019; 127:11-19. [PMID: 30503754 PMCID: PMC6525149 DOI: 10.1016/j.yjmcc.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022]
Abstract
Cardiac mechanics plays a crucial role in atrial and ventricular function, in the regulation of growth and remodelling, in the progression of disease, and the response to treatment. The spatial scale of the critical mechanisms ranges from nm (molecules) to cm (hearts) with the fastest events occurring in milliseconds (molecular events) and the slowest requiring months (growth and remodelling). Due to its complexity and importance, cardiac mechanics has been studied extensively both experimentally and through mathematical models and simulation. Models of cardiac mechanics evolved from seminal studies in skeletal muscle, and developed into cardiac specific, species specific, human specific and finally patient specific calculations. These models provide a formal framework to link multiple experimental assays recorded over nearly 100 years into a single unified representation of cardiac function. This review first provides a summary of the proteins, physiology and anatomy involved in the generation of cardiac pump function. We then describe the evolution of models of cardiac mechanics starting with the early theoretical frameworks describing the link between sarcomeres and muscle contraction, transitioning through myosin-level models to calcium-driven systems, and ending with whole heart patient-specific models.
Collapse
Affiliation(s)
| | - Kenneth S Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, USA
| | - Stuart G Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, USA
| |
Collapse
|
22
|
Electromechanical effects of concentric hypertrophy on the left ventricle: A simulation study. Comput Biol Med 2018; 99:236-256. [DOI: 10.1016/j.compbiomed.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022]
|
23
|
Morotti S, Grandi E. Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na + -Ca 2+ -Ca 2+ /calmodulin-dependent protein kinase II-reactive oxygen species feedback. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1434. [PMID: 30015404 DOI: 10.1002/wsbm.1434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022]
Abstract
Quantitative systems modeling aims to integrate knowledge in different research areas with models describing biological mechanisms and dynamics to gain a better understanding of complex clinical syndromes. Heart failure (HF) is a chronic complex cardiac disease that results from structural or functional disorders impairing the ability of the ventricle to fill with or eject blood. Highly interactive and dynamic changes in mechanical, structural, neurohumoral, metabolic, and electrophysiological properties collectively predispose the failing heart to cardiac arrhythmias, which are responsible for about a half of HF deaths. Multiscale cardiac modeling and simulation integrate structural and functional data from HF experimental models and patients to improve our mechanistic understanding of this complex arrhythmia syndrome. In particular, they allow investigating how disease-induced remodeling alters the coupling of electrophysiology, Ca2+ and Na+ handling, contraction, and energetics that lead to rhythm derangements. The Ca2+ /calmodulin-dependent protein kinase II, which expression and activity are enhanced in HF, emerges as a critical hub that modulates the feedbacks between these various subsystems and promotes arrhythmogenesis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
24
|
Colli Franzone P, Pavarino LF, Scacchi S. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures. Front Physiol 2018; 9:268. [PMID: 29674971 PMCID: PMC5895745 DOI: 10.3389/fphys.2018.00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.
Collapse
Affiliation(s)
| | - Luca F Pavarino
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milano, Milan, Italy
| |
Collapse
|
25
|
Colli Franzone P, Pavarino LF, Scacchi S. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study. CHAOS (WOODBURY, N.Y.) 2017; 27:093905. [PMID: 28964121 DOI: 10.1063/1.4999465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134-H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.
Collapse
Affiliation(s)
- P Colli Franzone
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - L F Pavarino
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - S Scacchi
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
26
|
Galice S, Bers DM, Sato D. Stretch-Activated Current Can Promote or Suppress Cardiac Alternans Depending on Voltage-Calcium Interaction. Biophys J 2017; 110:2671-2677. [PMID: 27332125 DOI: 10.1016/j.bpj.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/07/2023] Open
Abstract
Cardiac alternans has been linked to the onset of ventricular fibrillation and ventricular tachycardia, leading to life-threatening arrhythmias. Here, we investigated the effects of stretch-activated currents (ISAC) on alternans using a physiologically detailed model of the ventricular myocyte. We found that increasing ISAC suppresses alternans if the voltage-Ca coupling is positive or the alternans is voltage driven. However, for electromechanically discordant alternans, which occurs when the alternans is Ca driven with negative voltage-Ca coupling, increasing ISAC promotes Ca alternans. In addition, if action potential duration-Ca transients show quasiperiodicity, we observe a biphasic effect of ISAC, i.e., suppressing quasiperiodic oscillation at small stretch but promoting electromechanically discordant alternans at larger stretch. Our results demonstrate how ISAC interacts with coupled voltage-Ca dynamical systems with respect to alternans.
Collapse
Affiliation(s)
- Samuel Galice
- Department of Pharmacology, University of California, Davis, Davis, California
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, California
| | - Daisuke Sato
- Department of Pharmacology, University of California, Davis, Davis, California.
| |
Collapse
|
27
|
Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep 2017; 7:46143. [PMID: 28397830 PMCID: PMC5387404 DOI: 10.1038/srep46143,10.1038/srep46143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/13/2017] [Indexed: 04/01/2024] Open
Abstract
Mechanical function of the heart during open-chest cardiac surgery is exclusively monitored by echocardiographic techniques. However, little is known about local kinematics, particularly for the reperfused regions after ischemic events. We report a novel imaging modality, which extracts local and global kinematic parameters from videos of in situ beating hearts, displaying live video cardiograms of the contraction events. A custom algorithm tracked the movement of a video marker positioned ad hoc onto a selected area and analyzed, during the entire recording, the contraction trajectory, displacement, velocity, acceleration, kinetic energy and force. Moreover, global epicardial velocity and vorticity were analyzed by means of Particle Image Velocimetry tool. We validated our new technique by i) computational modeling of cardiac ischemia, ii) video recordings of ischemic/reperfused rat hearts, iii) videos of beating human hearts before and after coronary artery bypass graft, and iv) local Frank-Starling effect. In rats, we observed a decrement of kinematic parameters during acute ischemia and a significant increment in the same region after reperfusion. We detected similar behavior in operated patients. This modality adds important functional values on cardiac outcomes and supports the intervention in a contact-free and non-invasive mode. Moreover, it does not require particular operator-dependent skills.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
- Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Rozzi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Maricla Galetti
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Francesco Paolo Lo Muzio
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Fabrizio Del Bianco
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
- Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe Petrilli
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Giuseppe Faggian
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20090 Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Via Manzoni 56, 20090 Rozzano, Italy
| |
Collapse
|
28
|
Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep 2017; 7:46143. [PMID: 28397830 PMCID: PMC5387404 DOI: 10.1038/srep46143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Mechanical function of the heart during open-chest cardiac surgery is exclusively monitored by echocardiographic techniques. However, little is known about local kinematics, particularly for the reperfused regions after ischemic events. We report a novel imaging modality, which extracts local and global kinematic parameters from videos of in situ beating hearts, displaying live video cardiograms of the contraction events. A custom algorithm tracked the movement of a video marker positioned ad hoc onto a selected area and analyzed, during the entire recording, the contraction trajectory, displacement, velocity, acceleration, kinetic energy and force. Moreover, global epicardial velocity and vorticity were analyzed by means of Particle Image Velocimetry tool. We validated our new technique by i) computational modeling of cardiac ischemia, ii) video recordings of ischemic/reperfused rat hearts, iii) videos of beating human hearts before and after coronary artery bypass graft, and iv) local Frank-Starling effect. In rats, we observed a decrement of kinematic parameters during acute ischemia and a significant increment in the same region after reperfusion. We detected similar behavior in operated patients. This modality adds important functional values on cardiac outcomes and supports the intervention in a contact-free and non-invasive mode. Moreover, it does not require particular operator-dependent skills.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy.,Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Rozzi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Maricla Galetti
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Francesco Paolo Lo Muzio
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Fabrizio Del Bianco
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy.,Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe Petrilli
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Giuseppe Faggian
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,Humanitas Clinical and Research Center, Via Manzoni 56, 20090 Rozzano, Italy.,Institute of Genetic and Biomedical Research, National Research Council, Via Manzoni 56, 20090 Rozzano, Italy
| |
Collapse
|
29
|
Colli Franzone P, Pavarino LF, Scacchi S. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study. Math Biosci 2016; 280:71-86. [PMID: 27545966 DOI: 10.1016/j.mbs.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/25/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
The aim of this work is to investigate, by means of numerical simulations, the influence of myocardial deformation due to muscle contraction and relaxation on the cardiac repolarization process in presence of transmural intrinsic action potential duration (APD) heterogeneities. The three-dimensional electromechanical model considered consists of the following four coupled components: the quasi-static transversely isotropic finite elasticity equations for the deformation of the cardiac tissue; the active tension model for the intracellular calcium dynamics and cross-bridge binding; the anisotropic Bidomain model for the electrical current flow through the deforming cardiac tissue; the membrane model of ventricular myocytes, including stretch-activated channels. The numerical simulations are based on our finite element parallel solver, which employs Multilevel Additive Schwarz preconditioners for the solution of the discretized Bidomain equations and Newton-Krylov methods for the solution of the discretized non-linear finite elasticity equations. Our findings show that: (i) the presence of intrinsic transmural cellular APD heterogeneities is not fully masked by electrotonic current flow or by the presence of the mechanical deformation; (ii) despite the presence of transmural APD heterogeneities, the recovery process follows the activation sequence and there is no significant transmural repolarization gradient; (iii) with or without transmural APD heterogeneities, epicardial electrograms always display the same wave shape and discordance between the polarity of QRS complex and T-wave; (iv) the main effects of the mechanical deformation are an increase of the dispersion of repolarization time and APD, when computed over the total cardiac domain and over the endo- and epicardial surfaces, while there is a slight decrease along the transmural direction.
Collapse
Affiliation(s)
- P Colli Franzone
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, Pavia 27100, Italy.
| | - L F Pavarino
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, Milano 20133, Italy.
| | - S Scacchi
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, Milano 20133, Italy.
| |
Collapse
|
30
|
Devenyi RA, Sobie EA. There and back again: Iterating between population-based modeling and experiments reveals surprising regulation of calcium transients in rat cardiac myocytes. J Mol Cell Cardiol 2016; 96:38-48. [PMID: 26235057 PMCID: PMC4733425 DOI: 10.1016/j.yjmcc.2015.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 01/17/2023]
Abstract
While many ion channels and transporters involved in cardiac cellular physiology have been identified and described, the relative importance of each in determining emergent cellular behaviors remains unclear. Here we address this issue with a novel approach that combines population-based mathematical modeling with experimental tests to systematically quantify the relative contributions of different ion channels and transporters to the amplitude of the cellular Ca(2+) transient. Sensitivity analysis of a mathematical model of the rat ventricular cardiomyocyte quantified the response of cell behaviors to changes in the level of each ion channel and transporter, and experimental tests of these predictions were performed to validate or invalidate the predictions. The model analysis found that partial inhibition of the transient outward current in rat ventricular epicardial myocytes was predicted to have a greater impact on Ca(2+) transient amplitude than either: (1) inhibition of the same current in endocardial myocytes, or (2) comparable inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Experimental tests confirmed the model predictions qualitatively but showed some quantitative disagreement. This guided us to recalibrate the model by adjusting the relative importance of several Ca(2+) fluxes, thereby improving the consistency with experimental data and producing a more predictive model. Analysis of human cardiomyocyte models suggests that the relative importance of outward currents to Ca(2+) transporters is generalizable to human atrial cardiomyocytes, but not ventricular cardiomyocytes. Overall, our novel approach of combining population-based mathematical modeling with experimental tests has yielded new insight into the relative importance of different determinants of cell behavior.
Collapse
Affiliation(s)
- Ryan A Devenyi
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, USA.
| |
Collapse
|
31
|
Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases. PLoS One 2015; 10:e0145621. [PMID: 26716837 PMCID: PMC4696653 DOI: 10.1371/journal.pone.0145621] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.
Collapse
|
32
|
Myokit: A simple interface to cardiac cellular electrophysiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:100-14. [PMID: 26721671 DOI: 10.1016/j.pbiomolbio.2015.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/07/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022]
Abstract
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness.
Collapse
|
33
|
Winslow RL, Walker MA, Greenstein JL. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:37-67. [PMID: 26562359 DOI: 10.1002/wsbm.1322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Calcium (Ca(2+)) plays many important regulatory roles in cardiac muscle cells. In the initial phase of the action potential, influx of Ca(2+) through sarcolemmal voltage-gated L-type Ca(2+) channels (LCCs) acts as a feed-forward signal that triggers a large release of Ca(2+) from the junctional sarcoplasmic reticulum (SR). This Ca(2+) drives heart muscle contraction and pumping of blood in a process known as excitation-contraction coupling (ECC). Triggered and released Ca(2+) also feed back to inactivate LCCs, attenuating the triggered Ca(2+) signal once release has been achieved. The process of ECC consumes large amounts of ATP. It is now clear that in a process known as excitation-energetics coupling, Ca(2+) signals exert beat-to-beat regulation of mitochondrial ATP production that closely couples energy production with demand. This occurs through transport of Ca(2+) into mitochondria, where it regulates enzymes of the tricarboxylic acid cycle. In excitation-signaling coupling, Ca(2+) activates a number of signaling pathways in a feed-forward manner. Through effects on their target proteins, these interconnected pathways regulate Ca(2+) signals in complex ways to control electrical excitability and contractility of heart muscle. In a process known as excitation-transcription coupling, Ca(2+) acting primarily through signal transduction pathways also regulates the process of gene transcription. Because of these diverse and complex roles, experimentally based mechanistic computational models are proving to be very useful for understanding Ca(2+) signaling in the cardiac myocyte.
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Mark A Walker
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Joseph L Greenstein
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
34
|
Shimayoshi T, Cha CY, Amano A. Quantitative Decomposition of Dynamics of Mathematical Cell Models: Method and Application to Ventricular Myocyte Models. PLoS One 2015; 10:e0124970. [PMID: 26091413 PMCID: PMC4474442 DOI: 10.1371/journal.pone.0124970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
Mathematical cell models are effective tools to understand cellular physiological functions precisely. For detailed analysis of model dynamics in order to investigate how much each component affects cellular behaviour, mathematical approaches are essential. This article presents a numerical analysis technique, which is applicable to any complicated cell model formulated as a system of ordinary differential equations, to quantitatively evaluate contributions of respective model components to the model dynamics in the intact situation. The present technique employs a novel mathematical index for decomposed dynamics with respect to each differential variable, along with a concept named instantaneous equilibrium point, which represents the trend of a model variable at some instant. This article also illustrates applications of the method to comprehensive myocardial cell models for analysing insights into the mechanisms of action potential generation and calcium transient. The analysis results exhibit quantitative contributions of individual channel gating mechanisms and ion exchanger activities to membrane repolarization and of calcium fluxes and buffers to raising and descending of the cytosolic calcium level. These analyses quantitatively explicate principle of the model, which leads to a better understanding of cellular dynamics.
Collapse
Affiliation(s)
- Takao Shimayoshi
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Chae Young Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Akira Amano
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
35
|
Villa-Abrille MC, Pérez NG, Cingolani HE. Letter by Villa Abrille et al regarding article, "hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation". Circ Res 2015; 116:e11. [PMID: 25552698 DOI: 10.1161/circresaha.114.305543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- María Celeste Villa-Abrille
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas de La Plata, UNLP-CONICET, Argentina
| | - Néstor Gustavo Pérez
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas de La Plata, UNLP-CONICET, Argentina
| | - Horacio Eugenio Cingolani
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas de La Plata, UNLP-CONICET, Argentina
| |
Collapse
|
36
|
Aronsen JM, Skogestad J, Lewalle A, Louch WE, Hougen K, Stokke MK, Swift F, Niederer S, Smith NP, Sejersted OM, Sjaastad I. Hypokalaemia induces Ca²⁺ overload and Ca²⁺ waves in ventricular myocytes by reducing Na⁺,K⁺-ATPase α₂ activity. J Physiol 2014; 593:1509-21. [PMID: 25772299 DOI: 10.1113/jphysiol.2014.279893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypokalaemia is a risk factor for development of ventricular arrhythmias. In rat ventricular myocytes, low extracellular K(+) (corresponding to clinical moderate hypokalaemia) increased Ca(2+) wave probability, Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load and induced SR Ca(2+) leak. Low extracellular K(+) reduced Na(+),K(+)-ATPase (NKA) activity and hyperpolarized the resting membrane potential in ventricular myocytes. Both experimental data and modelling indicate that reduced NKA activity and subsequent Na(+) accumulation sensed by the Na(+), Ca(2+) exchanger (NCX) lead to increased Ca(2+) transient amplitude despite concomitant hyperpolarization of the resting membrane potential. Low extracellular K(+) induced Ca(2+) overload by lowering NKA α2 activity. Triggered ventricular arrhythmias in patients with hypokalaemia may therefore be attributed to reduced NCX forward mode activity linked to an effect on the NKA α2 isoform. ABSTRACT Hypokalaemia is a risk factor for development of ventricular arrhythmias. The aim of this study was to determine the cellular mechanisms leading to triggering of arrhythmias in ventricular myocytes exposed to low Ko. Low Ko, corresponding to moderate hypokalaemia, increased Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load, SR Ca(2+) leak and Ca(2+) wave probability in field stimulated rat ventricular myocytes. The mechanisms leading to Ca(2+) overload were examined. Low Ko reduced Na(+),K(+)-ATPase (NKA) currents, increased cytosolic Na(+) concentration and increased the Na(+) level sensed by the Na(+), Ca(2+) exchanger (NCX). Low Ko also hyperpolarized the resting membrane potential (RMP) without significant alterations in action potential duration. Experiments in voltage clamped and field stimulated ventricular myocytes, along with mathematical modelling, suggested that low Ko increases the Ca(2+) transient amplitude by reducing NKA activity despite hyperpolarization of the RMP. Selective inhibition of the NKA α2 isoform by low dose ouabain abolished the ability of low Ko to reduce NKA currents, to increase Na(+) levels sensed by NCX and to increase the Ca(2+) transient amplitude. We conclude that low Ko, within the range of moderate hypokalaemia, increases Ca(2+) levels in ventricular myocytes by reducing the pumping rate of the NKA α2 isoform with subsequent Na(+) accumulation sensed by the NCX. These data highlight reduced NKA α2 -mediated control of NCX activity as a possible mechanism underlying triggered ventricular arrhythmias in patients with hypokalaemia.
Collapse
Affiliation(s)
- J M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway; Bjørknes College, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH. J Mol Cell Cardiol 2013; 61:51-9. [PMID: 23602948 DOI: 10.1016/j.yjmcc.2013.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Carolina D Garciarena
- Burdon Sanderson Cardiac Science Centre, Department of Physiology Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|
38
|
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. PLoS One 2013; 8:e60323. [PMID: 23577101 PMCID: PMC3618345 DOI: 10.1371/journal.pone.0060323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of [Formula: see text] from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to [Formula: see text] depletion in the ischemic region.
Collapse
|
39
|
Sodium accumulation in SERCA knockout-induced heart failure. Biophys J 2012; 102:2039-48. [PMID: 22824267 DOI: 10.1016/j.bpj.2012.03.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 02/20/2012] [Accepted: 03/16/2012] [Indexed: 02/04/2023] Open
Abstract
In cardiomyocytes, a major decrease in the level of sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) can severely impair systolic and diastolic functions. In mice with cardiomyocyte-specific conditional excision of the Serca2 gene (SERCA2 KO), end-stage heart failure developed between four and seven weeks after gene deletion combined with [Na(+)](i) elevation and intracellular acidosis. In this study, to investigate the underpinning changes in Ca(2+) dynamics and metabolic homeostasis, we developed data-driven mathematical models of Ca(2+) dynamics in the ventricular myocytes of the control, four-week, and seven-week SERCA2 knockout (KO) mice. The seven-week KO model showed that elevated [Na(+)](i) was due to increased Na(+) influxes through the Na(+)/Ca(2+) exchanger (NCX) and the Na(+)/H(+) exchanger, with the latter exacerbated by intracellular acidosis. Furthermore, NCX upregulation in the seven-week KO model resulted in increased ATP consumption for ion transport. Na(+) accumulation in the SERCA KO due to NCX upregulation and intracellular acidosis potentially play a role in the development of heart failure, by initiating a reinforcing cycle involving: a mismatch between ATP demand and supply; an increasingly compromised metabolism; a decreased pH(i); and, finally, an even greater [Na(+)](i) elevation.
Collapse
|
40
|
Abstract
Myocardial stretch elicits a rapid increase in developed force, which is mainly caused by an increase in myofilament calcium sensitivity (Frank-Starling mechanism). Over the ensuing 10-15 min, a second gradual increase in force takes place. This slow force response to stretch is known to be the result of an increase in the calcium transient amplitude and constitutes the in vitro equivalent of the Anrep effect described 100 years ago in the intact heart. In the present review, we will update and discuss what is known about the Anrep effect as the mechanical counterpart of autocrine/paracrine mechanisms involved in its genesis. The chain of events triggered by myocardial stretch comprises 1) release of angiotensin II, 2) release of endothelin, 3) activation of the mineralocorticoid receptor, 4) transactivation of the epidermal growth factor receptor, 5) increased formation of mitochondria reactive oxygen species, 6) activation of redox-sensitive kinases upstream myocardial Na(+)/H(+) exchanger (NHE1), 7) NHE1 activation, 8) increase in intracellular Na(+) concentration, and 9) increase in Ca(2+) transient amplitude through the Na(+)/Ca(2+) exchanger. We will present the experimental evidence supporting each of the signaling steps leading to the Anrep effect and its blunting by silencing NHE1 expression with a specific small hairpin interference RNA injected into the ventricular wall.
Collapse
Affiliation(s)
- Horacio E Cingolani
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | |
Collapse
|
41
|
Markhasin VS, Balakin AA, Katsnelson LB, Konovalov P, Lookin ON, Protsenko Y, Solovyova O. Slow force response and auto-regulation of contractility in heterogeneous myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:305-18. [DOI: 10.1016/j.pbiomolbio.2012.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 11/25/2022]
|
42
|
Noble D, Garny A, Noble PJ. How the Hodgkin-Huxley equations inspired the Cardiac Physiome Project. J Physiol 2012; 590:2613-28. [PMID: 22473779 DOI: 10.1113/jphysiol.2011.224238] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early modelling of cardiac cells (1960-1980) was based on extensions of the Hodgkin-Huxley nerve axon equations with additional channels incorporated, but after 1980 it became clear that processes other than ion channel gating were also critical in generating electrical activity. This article reviews the development of models representing almost all cell types in the heart, many different species, and the software tools that have been created to facilitate the cardiac Physiome Project.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | | | |
Collapse
|
43
|
Abstract
The link between experimental data and biophysically based mathematical models is key to computational simulation meeting its potential to provide physiological insight. However, despite the importance of this link, scrutiny and analysis of the processes by which models are parameterised from data are currently lacking. While this situation is common to many areas of physiological modelling, to provide a concrete context, we use examples drawn from detailed models of cardiac electro-mechanics. Using this biophysically detailed cohort of models we highlight the specific issues of model parameterization and propose this process can be separated into three stages: observation, fitting and validation. Finally, future research challenges and directions in this area are discussed.
Collapse
Affiliation(s)
- S A Niederer
- Imaging Sciences & Biomedical Engineering Division, King's College London, London, UK
| | | |
Collapse
|
44
|
Youm JB, Choi SW, Jang CH, Kim HK, Leem CH, Kim N, Han J. A computational model of cytosolic and mitochondrial [ca] in paced rat ventricular myocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:217-39. [PMID: 21994480 DOI: 10.4196/kjpp.2011.15.4.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 11/15/2022]
Abstract
We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial Ca(2+) transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [Ca(2+)] bigger in mitochondria as well as in cytosol. As L-type Ca(2+) channel has key influence on the amplitude of Ca(2+)-induced Ca(2+) release, the relation between stimulus frequency and the amplitude of Ca(2+) transients was examined under the low density (1/10 of control) of L-type Ca(2+) channel in model simulation, where the relation was reversed. In experiment, block of Ca(2+) uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial Ca(2+) transients, while it failed to affect the cytosolic Ca(2+) transients. In computer simulation, the amplitude of cytosolic Ca(2+) transients was not affected by removal of Ca(2+) uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [Ca(2+)] in cytosol and eventually abolished the Ca(2+) transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type Ca(2+) channel to total transsarcolemmal Ca(2+) flux could determine whether the cytosolic Ca(2+) transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic Ca(2+) affects mitochondrial Ca(2+) in a beat-to-beat manner, however, removal of Ca(2+) influx mechanism into mitochondria does not affect the amplitude of cytosolic Ca(2+) transients.
Collapse
Affiliation(s)
- Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Trayanova NA, Rice JJ. Cardiac electromechanical models: from cell to organ. Front Physiol 2011; 2:43. [PMID: 21886622 PMCID: PMC3154390 DOI: 10.3389/fphys.2011.00043] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/12/2011] [Indexed: 11/13/2022] Open
Abstract
The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single-cell models and the second half addresses organ models. At the subcellular level, myofilament models represent actin–myosin interaction and Ca-based activation. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered to be the cellular basis of the Frank–Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of the field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction–diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and defibrillation.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University Baltimore, MD, USA
| | | |
Collapse
|
46
|
Campbell SG, McCulloch AD. Multi-scale computational models of familial hypertrophic cardiomyopathy: genotype to phenotype. J R Soc Interface 2011; 8:1550-61. [PMID: 21831889 DOI: 10.1098/rsif.2011.0184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an inherited disorder affecting roughly one in 500 people. Its hallmark is abnormal thickening of the ventricular wall, leading to serious complications that include heart failure and sudden cardiac death. Treatment is complicated by variation in the severity, symptoms and risks for sudden death within the patient population. Nearly all of the genetic lesions associated with FHC occur in genes encoding sarcomeric proteins, indicating that defects in cardiac muscle contraction underlie the condition. Detailed biophysical data are increasingly available for computational analyses that could be used to predict heart phenotypes based on genotype. These models must integrate the dynamic processes occurring in cardiac cells with properties of myocardial tissue, heart geometry and haemodynamic load in order to predict strain and stress in the ventricular walls and overall pump function. Recent advances have increased the biophysical detail in these models at the myofilament level, which will allow properties of FHC-linked mutant proteins to be accurately represented in simulations of whole heart function. The short-term impact of these models will be detailed descriptions of contractile dysfunction and altered myocardial strain patterns at the earliest stages of the disease-predictions that could be validated in genetically modified animals. Long term, these multi-scale models have the potential to improve clinical management of FHC through genotype-based risk stratification and personalized therapy.
Collapse
Affiliation(s)
- Stuart G Campbell
- Department of Bioengineering, University of California San Diego, , 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
47
|
Katsnelson LB, Solovyova O, Balakin A, Lookin O, Konovalov P, Protsenko Y, Sulman T, Markhasin VS. Contribution of mechanical factors to arrhythmogenesis in calcium overloaded cardiomyocytes: model predictions and experiments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:81-9. [PMID: 21699912 DOI: 10.1016/j.pbiomolbio.2011.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
It is well-known that Ca²⁺ overload in cardiomyocytes may underlie arrhythmias. However, the possible contribution of mechanical factors to rhythm disturbances in Ca²⁺ overloaded myocytes has not been sufficiently investigated. We used a mathematical model of the electrical and mechanical activity of cardiomyocytes to reveal an essential role of the mechanisms of cardiac mechano-electric feedback in arrhythmogenesis in Ca²⁺ overloaded myocardium. In the model, the following mechanical factors increased Ca²⁺ overload in contracting cardiomyocytes and promoted rhythm disturbances: i) a decrease in the mechanical load for afterloaded contractions; and ii) a decrease in the initial length of sarcomeres for isometric twitches. In exact accordance with the model predictions, in experiments on papillary muscles from the right ventricle of guinea pigs with Ca²⁺ overloaded cardiomyocytes (using 0.5-1 μM of ouabain), we found that emergence of rhythm disturbances and extrasystoles depends on the mechanical conditions of muscle contraction.
Collapse
Affiliation(s)
- Leonid B Katsnelson
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya str, Ekaterinburg 620049, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Patrick SM, White E, Shiels HA. Rainbow trout myocardium does not exhibit a slow inotropic response to stretch. J Exp Biol 2011; 214:1118-22. [DOI: 10.1242/jeb.048546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SUMMARY
Mammalian myocardial studies reveal a biphasic increase in the force of contraction due to stretch. The first rapid response, known as the Frank-Starling response, occurs within one heartbeat of stretch. A second positive inotropic response occurs over the minutes following the initial stretch and is known as the slow force response (SFR). The SFR has been observed in mammalian isolated whole hearts, muscle preparations and individual myocytes. We present the first direct study into the SFR in the heart of a non-mammalian vertebrate, the rainbow trout (Oncorhynchus mykiss). We stretched ventricular trabecular muscle preparations from 88% to 98% of their optimal length and individual ventricular myocytes by 7% of their slack sarcomere length (SL). Stretch caused an immediate increase in force in both preparations, indicative of the Frank-Starling response. However, we found no significant effect of prolonged stretch on the force of contraction in either the ventricular trabecular preparations or the single myocytes. This indicates that rainbow trout ventricular myocardium does not exhibit a SFR and that, in contrast to mammals, the piscine Frank-Starling response may not be associated with the SFR. We speculate that this is due to the fish myocardium modulating cardiac output via changes in stroke volume to a larger extent than heart rate.
Collapse
Affiliation(s)
- Simon M. Patrick
- Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Ed White
- Institute of Membrane and Systems Biology, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Holly A. Shiels
- Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
49
|
Yang JH, Saucerman JJ. Computational models reduce complexity and accelerate insight into cardiac signaling networks. Circ Res 2011; 108:85-97. [PMID: 21212391 DOI: 10.1161/circresaha.110.223602] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac signaling networks exhibit considerable complexity in size and connectivity. The intrinsic complexity of these networks complicates the interpretation of experimental findings. This motivates new methods for investigating the mechanisms regulating cardiac signaling networks and the consequences these networks have on cardiac physiology and disease. Next-generation experimental techniques are also generating a wealth of genomic and proteomic data that can be difficult to analyze or interpret. Computational models are poised to play a key role in addressing these challenges. Computational models have a long history in contributing to the understanding of cardiac physiology and are useful for identifying biological mechanisms, inferring multiscale consequences to cell signaling activities and reducing the complexity of large data sets. Models also integrate well with experimental studies to explain experimental observations and generate new hypotheses. Here, we review the contributions computational modeling approaches have made to the analysis of cardiac signaling networks and forecast opportunities for computational models to accelerate cardiac signaling research.
Collapse
Affiliation(s)
- Jason H Yang
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
50
|
Winslow RL, Cortassa S, O'Rourke B, Hashambhoy YL, Rice JJ, Greenstein JL. Integrative modeling of the cardiac ventricular myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:392-413. [PMID: 20865780 DOI: 10.1002/wsbm.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. WIREs Syst Biol Med 2011 3 392-413 DOI: 10.1002/wsbm.122
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute of Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|