1
|
Barati H, Fardmanesh M. 2D electrical admittance lattice model of biological cellular system for modeling electroporation. Biophys J 2024; 123:3176-3187. [PMID: 39014896 PMCID: PMC11427774 DOI: 10.1016/j.bpj.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
In this work, a new modeling approach is presented to obtain a two-dimensional transport lattice of a biological cellular system for the calculation of the potential distribution throughout the system and investigation of the corresponding membrane electroporation. The presented model has been obtained by a modified bilayer model of the cell membrane. This modified membrane model allows for an effective inclusion of the shape of the cell membrane in the potential calculation. The results of the model have shown good agreement with the results of the well-known Schwan equation and COMSOL Multiphysics for the circular cell. The simulation results show that both membranes of a mitochondrion can be simultaneously electroporated by an alternating voltage source with frequencies between 1 MHz and 1 GHz.
Collapse
Affiliation(s)
- Hadi Barati
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Tehran, Iran.
| | - Mehdi Fardmanesh
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Tehran, Iran
| |
Collapse
|
2
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
3
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Dastani K, Moghimi Zand M, Kavand H, Javidi R, Hadi A, Valadkhani Z, Renaud P. Effect of input voltage frequency on the distribution of electrical stresses on the cell surface based on single-cell dielectrophoresis analysis. Sci Rep 2020; 10:68. [PMID: 31919394 PMCID: PMC6952456 DOI: 10.1038/s41598-019-56952-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
Electroporation is defined as cell membrane permeabilization under the application of electric fields. The mechanism of hydrophilic pore formation is not yet well understood. When cells are exposed to electric fields, electrical stresses act on their surfaces. These electrical stresses play a crucial role in cell membrane structural changes, which lead to cell permeabilization. These electrical stresses depend on the dielectric properties of the cell, buffer solution, and the applied electric field characteristics. In the current study, the effect of electric field frequency on the electrical stresses distribution on the cell surface and cell deformation is numerically and experimentally investigated. As previous studies were mostly focused on the effect of electric fields on a group of cells, the present study focused on the behavior of a single cell exposed to an electric field. To accomplish this, the effect of cells on electrostatic potential distribution and electric field must be considered. To do this, Fast immersed interface method (IIM) was used to discretize the governing quasi-electrostatic equations. Numerical results confirmed the accuracy of fast IIM in satisfying the internal electrical boundary conditions on the cell surface. Finally, experimental results showed the effect of applied electric field on cell deformation at different frequencies.
Collapse
Affiliation(s)
- Kia Dastani
- Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran.,School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahdi Moghimi Zand
- Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran.
| | - Hanie Kavand
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4, Station 17, CH-1015, Lausanne, Switzerland
| | - Reza Javidi
- Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
| | - Amin Hadi
- Small Medical Devices, BioMEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
| | - Zarrintaj Valadkhani
- Department of Medical Parasitology, Pasteur Institute of Iran, Tehran, Post code: 1316943551, Iran
| | - Philippe Renaud
- École Polytechnique Fédérale de Lausanne, STI IMT LMIS4, Station 17, CH-1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018; 23:E3044. [PMID: 30469344 PMCID: PMC6278265 DOI: 10.3390/molecules23113044] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022] Open
Abstract
Intracellular delivery is a critical step in biological discoveries and has been widely utilized in biomedical research. A variety of molecular tools have been developed for cell-based gene therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery of biomolecules in a high-throughput manner has thus long fascinates the scientific community. As one of the most popular non-viral technologies for cell transfection, electroporation has gone through enormous development with the assist of nanotechnology and microfabrication. Emergence of miniatured electroporation system brought up many merits over the weakness of traditional electroporation system, including precise dose control and high cell viability. These new generation of electroporation systems are of considerable importance to expand the biological applications of intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go over the recent progresses in the electroporation-based intracellular delivery and several potential applications of cutting-edge research on the miniatured electroporation, including gene therapy, cellular reprogramming and intracellular probe.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL 33573, USA.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yicheng Yao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Schwarz D, Kollo M, Bosch C, Feinauer C, Whiteley I, Margrie TW, Cutforth T, Schaefer AT. Architecture of a mammalian glomerular domain revealed by novel volume electroporation using nanoengineered microelectrodes. Nat Commun 2018; 9:183. [PMID: 29330458 PMCID: PMC5766516 DOI: 10.1038/s41467-017-02560-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022] Open
Abstract
Dense microcircuit reconstruction techniques have begun to provide ultrafine insight into the architecture of small-scale networks. However, identifying the totality of cells belonging to such neuronal modules, the "inputs" and "outputs," remains a major challenge. Here, we present the development of nanoengineered electroporation microelectrodes (NEMs) for comprehensive manipulation of a substantial volume of neuronal tissue. Combining finite element modeling and focused ion beam milling, NEMs permit substantially higher stimulation intensities compared to conventional glass capillaries, allowing for larger volumes configurable to the geometry of the target circuit. We apply NEMs to achieve near-complete labeling of the neuronal network associated with a genetically identified olfactory glomerulus. This allows us to detect sparse higher-order features of the wiring architecture that are inaccessible to statistical labeling approaches. Thus, NEM labeling provides crucial complementary information to dense circuit reconstruction techniques. Relying solely on targeting an electrode to the region of interest and passive biophysical properties largely common across cell types, this can easily be employed anywhere in the CNS.
Collapse
Affiliation(s)
- D Schwarz
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, 69120, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
| | - M Kollo
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - C Bosch
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - C Feinauer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany
| | - I Whiteley
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - T W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - T Cutforth
- Department of Neurology, Columbia University Medical Center, 650 West 168th Street, New York, 10032, NY, USA
| | - A T Schaefer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany.
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany.
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Abstract
Here, we present a review of recent advances in electroporation for the delivery of nanomedicine as intracellular carriers by electroporation (NICE) in a drug format with functional nanoparticles.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Mechanical Engineering
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| | - Won Gu Lee
- Department of Mechanical Engineering
- Kyung Hee University
- Yongin 17104
- Republic of Korea
| |
Collapse
|
8
|
Chang L, Gallego-Perez D, Chiang CL, Bertani P, Kuang T, Sheng Y, Chen F, Chen Z, Shi J, Huang X, Malkoc V, Lu W, Lee LJ. Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5971-5980. [PMID: 27648733 PMCID: PMC5153662 DOI: 10.1002/smll.201601465] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/21/2016] [Indexed: 05/20/2023]
Abstract
While electroporation has been widely used as a physical method for gene transfection in vitro and in vivo, its application in gene therapy of cardiovascular cells remains challenging. Due to the high concentration of ion-transport proteins in the sarcolemma, conventional electroporation of primary cardiomyocytes tends to cause ion-channel activation and abnormal ion flux, resulting in low transfection efficiency and high mortality. In this work, a high-throughput nanoelectroporation technique based on a nanochannel array platform is reported, which enables massively parallel delivery of genetic cargo (microRNA, plasmids) into mouse primary cardiomyocytes in a controllable, highly efficient, and benign manner. A simple "dipping-trap" approach was implemented to precisely position a large number of cells on the nanoelectroporation platform. With dosage control, our device precisely titrates the level of miR-29, a potential therapeutic agent for cardiac fibrosis, and determines the minimum concentration of miR-29 causing side effects in mouse primary cardiomyocytes. Moreover, the dose-dependent effect of miR-29 on mitochondrial potential and homeostasis is monitored. Altogether, our nanochannel array platform provides efficient trapping and transfection of primary mouse cardiomyocyte, which can improve the quality control for future microRNA therapy in heart diseases.
Collapse
Affiliation(s)
- Lingqian Chang
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43209, USA
| | - Daniel Gallego-Perez
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43209, USA
- Department of Surgery; Center for Regenerative Medicine and Cell-based Therapies, Ohio State University, Columbus, OH 43209, USA
| | - Chi-Ling Chiang
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43209, USA
| | - Paul Bertani
- Electrical and Computer Engineering Department, Ohio State University, Columbus, OH 43209, USA
| | - Tairong Kuang
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
| | - Yan Sheng
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Feng Chen
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Zhou Chen
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
| | - Junfeng Shi
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
| | - Xiaomeng Huang
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43209, USA
| | - Veysi Malkoc
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Wu Lu
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Electrical and Computer Engineering Department, Ohio State University, Columbus, OH 43209, USA
| | - Ly James Lee
- NSEC Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43209, USA
- Chemical and Biomolecular Engineering Department, Ohio State University, Columbus, OH 43209, USA
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
9
|
Chang L, Li L, Shi J, Sheng Y, Lu W, Gallego-Perez D, Lee LJ. Micro-/nanoscale electroporation. LAB ON A CHIP 2016; 16:4047-4062. [PMID: 27713986 DOI: 10.1039/c6lc00840b] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electroporation has been one of the most popular non-viral technologies for cell transfection. However, conventional bulk electroporation (BEP) shows significant limitations in efficiency, cell viability and transfection uniformity. Recent advances in microscale-electroporation (MEP) resulted in improved cell viability. Further miniaturization of the electroporation system (i.e., nanoscale) has brought up many unique advantages, including negligible cell damage and dosage control capabilities with single-cell resolution, which has enabled more translational applications. In this review, we give an insight into the fundamental and technical aspects of micro- and nanoscale/nanochannel electroporation (NEP) and go over several examples of MEP/NEP-based cutting-edge research, including gene editing, adoptive immunotherapy, and cellular reprogramming. The challenges and opportunities of advanced electroporation technologies are also discussed.
Collapse
Affiliation(s)
- Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Junfeng Shi
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Sheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43209, USA
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43209, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA. and Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Ly James Lee
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA. and Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA and William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43209, USA
| |
Collapse
|
10
|
Ou Y, Wu J, Sandberg M, Weber SG. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures. Anal Bioanal Chem 2014; 406:6455-68. [PMID: 25168111 DOI: 10.1007/s00216-014-8067-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023]
Abstract
This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push-pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push-pull perfusion can distinguish ectoenzyme activity with a ~100 μm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | | | |
Collapse
|
11
|
Kurz V, Tanaka T, Timp G. Single cell transfection with single molecule resolution using a synthetic nanopore. NANO LETTERS 2014; 14:604-11. [PMID: 24471806 DOI: 10.1021/nl403789z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the development of a single cell gene delivery system based on electroporation using a synthetic nanopore, that is not only highly specific and very efficient but also transfects with single molecule resolution at low voltage (1 V) with minimal perturbation to the cell. Such a system can be used to control gene expression with unprecedented precision--no other method offers such capabilities.
Collapse
Affiliation(s)
- Volker Kurz
- Department of Electrical Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | |
Collapse
|
12
|
|
13
|
Daniel J, Polder HR, Lessmann V, Brigadski T. Single-cell juxtacellular transfection and recording technique. Pflugers Arch 2013; 465:1637-49. [PMID: 23748581 DOI: 10.1007/s00424-013-1304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Genetic modifications and pharmacological studies enable the analysis of protein function in living cells. While many of these studies investigate the effect of proteins by bulk administration or withdrawal of the protein in complex cellular networks, understanding the more subtle mechanisms of protein function requires fine-tuned changes on a single-cell level without affecting the balance of the system. In order to analyse the consequences of protein modification at the single-cell level, we have developed a single-cell transfection method in the loose patch configuration, which allows juxtacellular recordings of neuronal cells prior to juxtacellular transfection. CA1 pyramidal neurons were selected based on morphological and electrophysiological criteria. Using a patch clamp amplifier which allows sensitive recordings of action currents in the loose seal mode as well as electroporation with high-voltage electrical stimulation the identified neurons were transfected with a combination of specific nucleotides, e.g. siRNA and a plasmid coding for GFP for later cell retrieval. Two days after transfection, whole-cell patch clamp recordings of transfected cells were performed to analyse electrophysiological properties. Action potential firing and synaptic transmission of single electroporated CA1 pyramidal cells were comparable to untransfected cells. Our study presents a method which enables identification of neurons by juxtacellular recording prior to single-cell juxtacellular transfection, allowing subsequent analysis of morphological and electrophysiological parameters several days after the genetic modification.
Collapse
Affiliation(s)
- Julia Daniel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | | | | | | |
Collapse
|
14
|
Ainla A, Xu S, Sanchez N, Jeffries GDM, Jesorka A. Single-cell electroporation using a multifunctional pipette. LAB ON A CHIP 2012; 12:4605-9. [PMID: 22810424 PMCID: PMC3805499 DOI: 10.1039/c2lc40563f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present here a novel platform combination, using a multifunctional pipette to individually electroporate single-cells and to locally deliver an analyte, while in their culture environment. We demonstrate a method to fabricate low-resistance metallic electrodes into a PDMS pipette, followed by characterization of its effectiveness, benefits and limits in comparison with an external carbon microelectrode.
Collapse
Affiliation(s)
- Alar Ainla
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
15
|
Wang M, Orwar O, Olofsson J, Weber SG. Single-cell electroporation. Anal Bioanal Chem 2010; 397:3235-48. [PMID: 20496058 DOI: 10.1007/s00216-010-3744-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/24/2022]
Abstract
Single-cell electroporation (SCEP) is a relatively new technique that has emerged in the last decade or so for single-cell studies. When a large enough electric field is applied to a single cell, transient nano-pores form in the cell membrane allowing molecules to be transported into and out of the cell. Unlike bulk electroporation, in which a homogenous electric field is applied to a suspension of cells, in SCEP an electric field is created locally near a single cell. Today, single-cell-level studies are at the frontier of biochemical research, and SCEP is a promising tool in such studies. In this review, we discuss pore formation based on theoretical and experimental approaches. Current SCEP techniques using microelectrodes, micropipettes, electrolyte-filled capillaries, and microfabricated devices are all thoroughly discussed for adherent and suspended cells. SCEP has been applied in in-vivo and in-vitro studies for delivery of cell-impermeant molecules such as drugs, DNA, and siRNA, and for morphological observations.
Collapse
Affiliation(s)
- Manyan Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
16
|
Fei Z, Hu X, Choi HW, Wang S, Farson D, Lee LJ. Micronozzle array enhanced sandwich electroporation of embryonic stem cells. Anal Chem 2010; 82:353-8. [PMID: 19961232 DOI: 10.1021/ac902041h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electroporation is one of the most popular nonviral gene transfer methods for embryonic stem cell transfection. Bulk electroporation techniques, however, require a high electrical field and provide a nonuniform electrical field distribution among randomly distributed cells, leading to limited transfection efficiency and cell viability, especially for a low number of cells. We present here a membrane sandwich electroporation system using a well-defined micronozzle array. This device is capable of transfecting hundred to millions of cells with good performance. The ability to treat a small number of cells (i.e., a hundred) offers great potential to work with hard-to-harvest patient cells for pharmaceutical kinetic studies. Numerical simulation of the initial transmembrane potential distribution and propidium iodide (PI) dye diffusion experiments demonstrated the advantage of highly focused and localized electric field strength provided by the micronozzle array over conventional bulk electroporation.
Collapse
Affiliation(s)
- Zhengzheng Fei
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ivorra A, Villemejane J, Mir LM. Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys 2010; 12:10055-64. [DOI: 10.1039/c004419a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Agarwal A, Wang M, Olofsson J, Orwar O, Weber SG. Control of the release of freely diffusing molecules in single-cell electroporation. Anal Chem 2009; 81:8001-8. [PMID: 19731948 PMCID: PMC2938737 DOI: 10.1021/ac9010292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-cell electroporation using an electrolyte-filled capillary is an emerging technique for transient pore formation in adherent cells. Because adherent cells do not have a simple and consistent shape and because the electric field emanating from the tip of the capillary is inhomogeneous, the Schwan equation based on spherical cells in homogeneous electrical fields does not apply. We sought to determine experimental and cell parameters that influence the outcome of a single-cell electroporation experiment. A549 cells were exposed to the thiol-reactive dye Thioglo-1, leading to green fluorescence from intracellular thiol adducts. Electroporation causes a decrease with time of the intracellular fluorescence intensity of Thioglo-1-loaded cells from diffusive loss of thiol adducts. The transient curves thus obtained are well-described by a simple model originally developed by Puc et al. We find that the final fluorescence following electroporation is related to the capillary tip-to-cell distance and cell size (specifically, 2(A/pi)(1/2) where A is the area of the cell's image in pixels. This quantity is the diameter if the image is a circle). In separate experiments, the relationship obtained can be used to control the final fluorescence following electroporation by adjusting the tip-to-cell distance based on cell size. The relationship was applied successfully to A549 as well as DU 145 and PC-3 cells. Finally, F-tests show that the variability in the final fluorescence (following electroporation) is decreased when the tip-to-cell distance is controlled according to the derived relationship in comparison to experiments in which the tip-cell distance is a constant irrespective of cell size.
Collapse
Affiliation(s)
| | | | | | | | - Stephen G. Weber
- Corresponding author. Phone: +1(412)624-8520. Fax: +1(412)624-1668.
| |
Collapse
|
19
|
Sakaki K, Dechev N, Burke RD, Park EJ. Development of an Autonomous Biological Cell Manipulator With Single-Cell Electroporation and Visual Servoing Capabilities. IEEE Trans Biomed Eng 2009; 56:2064-74. [DOI: 10.1109/tbme.2009.2021577] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Wang M, Orwar O, Weber SG. Single-cell transfection by electroporation using an electrolyte/plasmid-filled capillary. Anal Chem 2009; 81:4060-7. [PMID: 19351139 DOI: 10.1021/ac900265f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell transfection of adherent cells has been accomplished using single-cell electroporation (SCEP) with a pulled capillary. HEPES-buffered physiological saline solution containing pEGFP plasmid at a low concentration (0.16 approximately 0.78 microg/microL) filled a 15 cm long capillary with a tip opening of 2 microm. The electric field is applied to individual cells by bringing the tip close to the cell and subsequently applying one or two brief electric pulses. Many individual cells can thus be transfected with a small volume of plasmid-containing solution (approximately 1 microL). The extent of electroporation is determined by measuring the percentage loss of freely diffusing thiols (chiefly reduced glutathione) that have been derivatized with the fluorogenic ThioGlo 1. A mass transport model is used to fit the time-dependent fluorescence intensity decay in the target cells. The fits, which are excellent, yield the electroporation-induced fluorescence loss at steady state and the mass transfer rate through the electroporated cell membrane. Steady-state fluorescence loss ranged approximately from 0 to about 80% (based on the fluorescence intensity before electroporation). For the cells having a loss of thiol-ThioGlo 1 fluorescence intensity greater than 10% and mass transfer rate greater than 0.03 s(-1), EGFP fluorescence is observed after 24 h. The EGFP fluorescence is increased at 48 h. With a loss smaller than 10% and a mass transfer rate smaller than 0.03 s(-1), no EGFP fluorescence is detected. Thus, transfection success is closely related to the small molecule mass transport dynamics as indicated by the loss of fluorescence from thiol-ThioGlo 1 conjugates. The EGFP expression is weaker than bulk lipid-mediated transfection, as indicated by the EGFP fluorescence intensities. However, the success with the single-cell approach is considerably greater than lipid-mediated transfection.
Collapse
Affiliation(s)
- Manyan Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
21
|
Towhidi L, Kotnik T, Pucihar G, Firoozabadi SMP, Mozdarani H, Miklavcic D. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn Biol Med 2009; 27:372-85. [PMID: 19037786 DOI: 10.1080/15368370802394644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present a study of the variability of the minimal transmembrane voltage resulting in detectable electroporation of the plasma membrane of spherical and irregularly shaped CHO cells (we denote this voltage by ITVc). Electroporation was detected by monitoring the influx of Ca(2+), and the transmembrane voltage was computed on a 3D finite-elements model of each cell constructed from its cross-section images. We found that ITVc was highly variable, particularly in irregularly shaped cells, where it ranged from 512-1028 mV. We show that this range is much too large to be an artifact due to numerical errors and experimental inaccuracies, implying that for cells of the same type and exposed to the same number of pulses with the same duration, the value of ITVc can differ considerably from one cell to another. We also observed that larger cells are in many cases characterized by a higher ITVc than a smaller one. This is in qualitative agreement with the reports that higher membrane curvature facilitates electroporation, but quantitative considerations suggest that the observed variability of ITVc cannot be attributed entirely to the differences in membrane curvature.
Collapse
Affiliation(s)
- Leila Towhidi
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
22
|
Lee WG, Demirci U, Khademhosseini A. Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol (Camb) 2009; 1:242-51. [PMID: 20023735 DOI: 10.1039/b819201d] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microscale engineering plays a significant role in developing tools for biological applications by miniaturizing devices and providing controllable microenvironments for in vitro cell research. Miniaturized devices offer numerous benefits in comparison to their macroscale counterparts, such as lower use of expensive reagents, biomimetic environments, and the ability to manipulate single cells. Microscale electroporation is one of the main beneficiaries of microscale engineering as it provides spatial and temporal control of various electrical parameters. Microscale electroporation devices can be used to reduce limitations associated with the conventional electroporation approaches such as variations in the local pH, electric field distortion, sample contamination, and the difficulties in transfecting and maintaining the viability of desired cell types. Here, we present an overview of recent advances of the microscale electroporation methods and their applications in biology, as well as current challenges for its use for clinical applications. We categorize microscale electroporation into microchannel and microcapillary electroporation. Microchannel-based electroporation can be used for transfecting cells within microchannels under dynamic flow conditions in a controlled and high-throughput fashion. In contrast, microcapillary-based electroporation can be used for transfecting cells within controlled reaction chambers under static flow conditions. Using these categories we examine the use of microscale electroporation for clinical applications related to HIV-1, stem cells, cancer and other diseases and discuss the challenges in further advancing this technology for use in clinical medicine and biology.
Collapse
Affiliation(s)
- Won Gu Lee
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|