1
|
Wei C, Pohorille A. Multi-oligomeric states of alamethicin ion channel: Assemblies and conductance. Biophys J 2023; 122:2531-2543. [PMID: 37161094 PMCID: PMC10323028 DOI: 10.1016/j.bpj.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023] Open
Abstract
Transmembrane assemblies of the peptaibol alamethicin (ALM) are among the most extensively studied ion channels not only because of their antimicrobial activity but also as models for channel structure and aggregation. In this study, several oligomeric states of ALM are investigated with molecular dynamics simulations to establish properties of the channel and obtain free energy profiles for ion transport and the corresponding values of conductance. The hexamer, heptamer, and octamer of ALM in phospholipid membrane are found to be stable but highly dynamic in barrel-stave structures, with calculated conductance equal to 18, 195, and 1270 pS, respectively, in 1 M KCl ion solution. The corresponding free energy profiles, reported for the first time, are reconstructed from simulations at applied voltage of 200 mV with the aid of the electrodiffusion model both with and without the knowledge of diffusivity. The calculated free energy barriers are equal to 2.5, 1.5, and 0.5 kcal/mol for K+ and 4.0, 2.2, and 1.5 kcal/mol for Cl-, for hexamer, heptamer, and octamer, respectively. The calculated conductance and the ratio between conductance in consecutive states are in good agreement with those measured experimentally. This suggests that the hexamer is the lowest conducting state, with measured conductance equal to 19 pS. The selectivity of K+ over Cl- is calculated as 1.5 and 2.3 for the octameric and heptameric channels, close to the selectivity measured for high-conductance states. Selectivity increases to 13 in the hexameric channel in which the narrowest Gln7 site has a pore radius of only ∼1.6 Å, again in accord with experiment. A good agreement found between calculated and measured conductance through a hexamer templated on cyclodextrin lands additional support for the results of our simulations, and the comparison with ALM reveals the dependence of conductance on the nature of phospholipid membrane.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Moffett Field, California; SETI Institute, Mountain View, California.
| | | |
Collapse
|
2
|
Kelley EG, Butler PD, Nagao M. Collective dynamics in lipid membranes containing transmembrane peptides. SOFT MATTER 2021; 17:5671-5681. [PMID: 33942045 PMCID: PMC10466476 DOI: 10.1039/d1sm00314c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological membranes are composed of complex mixtures of lipids and proteins that influence each other's structure and function. The biological activities of many channel-forming peptides and proteins are known to depend on the material properties of the surrounding lipid bilayer. However, less is known about how membrane-spanning channels affect the lipid bilayer properties, and in particular, their collective fluctuation dynamics. Here we use neutron spin echo spectroscopy (NSE) to measure the collective bending and thickness fluctuation dynamics in dimyristoylphosphatidylcholine (di 14 : 0 PC, DMPC) lipid membranes containing two different antimicrobial peptides, alamethicin (Ala) and gramicidin (gD). Ala and gD are both well-studied antimicrobial peptides that form oligomeric membrane-spanning channels with different structures. At low concentrations, the peptides did not have a measurable effect on the average bilayer structure, yet significantly changed the collective membrane dynamics. Despite both peptides forming transmembrane channels, they had opposite effects on the relaxation time of the collective bending fluctuations and associated effective bending modulus, where gD addition stiffened the membrane while Ala addition softened the membrane. Meanwhile, the lowest gD concentrations enhanced the collective thickness fluctuation dynamics, while the higher gD concentrations and all studied Ala concentrations dampened these dynamics. The results highlight the synergy between lipids and proteins in determining the collective membrane dynamics and that not all peptides can be universally treated as rigid bodies when considering their effects on the lipid bilayer fluctuations.
Collapse
Affiliation(s)
- Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | - Paul D Butler
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA. and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA and Department of Chemistry, The University of Tennessee Knoxville, TN 37996, USA
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA. and Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Hepatitis B virus X protein induces size-selective membrane permeabilization through interaction with cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:729-737. [DOI: 10.1016/j.bbamem.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/25/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
|
4
|
Idema T, Kraft DJ. Interactions between model inclusions on closed lipid bilayer membranes. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Abbasi F, Alvarez-Malmagro J, Su Z, Leitch JJ, Lipkowski J. Pore Forming Properties of Alamethicin in Negatively Charged Floating Bilayer Lipid Membranes Supported on Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13754-13765. [PMID: 30265810 DOI: 10.1021/acs.langmuir.8b02554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) were employed to investigate the formation of alamethicin pores in negatively charged bilayers composed of a mixture of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and egg-PG floating at gold (111) electrode surfaces modified by self-assembled monolayers of 1-thio-β-d-glucose (β-Tg). The EIS data showed that the presence of alamethicin decreases the membrane resistivity by about 1 order of magnitude. PM-IRRAS measurements provided information about the tilt angles of peptide helical axis with respect to the bilayer normal. The small tilt angles obtained for the peptide helical axis prove that the alamethicin molecules were inserted into the DMPC/egg-PG membranes. The tilt angles decreased when negative potentials were applied, which correlates with the observed decrease in membrane resistivity, indicating that ion pore formation is assisted by the transmembrane potential. Molecular resolution AFM images provided visual evidence that alamethicin molecules aggregate forming hexagonal porous 2D lattices with periodicities of 2.0 ± 0.2 nm. The pore formation by alamethicin in the negatively charged membrane was compared with the interaction of this peptide with a bilayer formed by zwitterionic lipids. The comparison of these results showed that alamethicin preferentially forms ion translocating pores in negatively charged phospholipid membranes.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | | | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
6
|
Su Z, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6249-6260. [PMID: 29722994 DOI: 10.1021/acs.langmuir.8b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The insertion and ion-conducting channel properties of alamethicin reconstituted into a 1,2-di- O-phytanyl- sn-glycero-3-phosphocholine bilayer floating on the surface of a gold (111) electrode modified with a 1-thio-β-d-glucose (β-Tg) self-assembled monolayer were investigated using a combination of electrochemical impedance spectroscopy (EIS) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The hydrophilic β-Tg monolayer separated the bilayer from the gold substrate and created a water-rich spacer region, which better represents natural cell membranes. The EIS measurements acquired information about the membrane resistivity (a measure of membrane porosity), and the PM-IRRAS experiments provided insight into the conformation and orientation of the membrane constituents as a function of the transmembrane potential. The results showed that the presence of alamethicin had a small effect on the conformation and orientation of phospholipid molecules within the bilayer for all studied potentials. In contrast, the alamethicin peptides assumed a surface state, where the helical axes adopted a large tilt angle with respect to the surface normal, at small transmembrane potentials, and inserted into the bilayer at sufficiently negative transmembrane potentials forming pores, which behaved as barrel-stave ion channels for ionic transport across the membrane. The results indicated that insertion of alamethincin peptides into the bilayer was driven by the dipole-field interactions and that the transitions between the inserted and surface states were electrochemically reversible. Additionally, the EIS measurements performed on phospholipid bilayers without alamethicin also showed that the application of negative transmembrane potentials introduces defects into the bilayer. The membrane resistances measured in both the absence and presence of alamethicin show similar dependencies on the electrode potential, suggesting that the insertion of the peptide may also be assisted by the electroporation of the membrane. The findings in this study provide new insights into the mechanism of alamethicin insertion into phospholipid bilayers.
Collapse
Affiliation(s)
- ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Muzaffar Shodiev
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
7
|
Bories F, Constantin D, Galatola P, Fournier JB. Coupling between Inclusions and Membranes at the Nanoscale. PHYSICAL REVIEW LETTERS 2018; 120:128104. [PMID: 29694104 DOI: 10.1103/physrevlett.120.128104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 06/08/2023]
Abstract
The activity of cell membrane inclusions (such as ion channels) is influenced by the host lipid membrane, to which they are elastically coupled. This coupling concerns the hydrophobic thickness of the bilayer (imposed by the length of the channel, as per the hydrophobic matching principle) but also its slope at the boundary of the inclusion. However, this parameter has never been measured so far. We combine small-angle x-ray scattering data and a complete elastic model to measure the slope for the model gramicidin channel and show that it is surprisingly steep in two membrane systems with very different elastic properties. This conclusion is confirmed and generalized by the comparison with recent results in the simulation literature and with conductivity measurements.
Collapse
Affiliation(s)
- Florent Bories
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Doru Constantin
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Paolo Galatola
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Jean-Baptiste Fournier
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
8
|
Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J. Direct visualization of alamethicin ion pores formed in a floating phospholipid membrane supported on a gold electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Benhamou M, Kaidi H, Hachem EK. Determination and classification of the effective potentials between nanoparticles and nanopores within bilayer-membranes versus their geometry and density. Experimental inspiration. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B. Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophys J 2017; 111:2450-2459. [PMID: 27926846 DOI: 10.1016/j.bpj.2016.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Jesus Raya
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Ekaterina Zaitseva
- Department of Membrane Physiology and Technology, Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Gema Ballano
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France.
| |
Collapse
|
12
|
Kang L, Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. Proc Natl Acad Sci U S A 2017; 114:E19-E27. [PMID: 27999184 PMCID: PMC5224397 DOI: 10.1073/pnas.1613732114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes.
Collapse
Affiliation(s)
- Louis Kang
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Tom C Lubensky
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Castro TG, Micaêlo NM. Conformational and thermodynamic properties of non-canonical α,α-dialkyl glycines in the peptaibol Alamethicin: molecular dynamics studies. J Phys Chem B 2014; 118:9861-70. [PMID: 25091499 DOI: 10.1021/jp505400q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the structure, dynamic and thermodynamic properties of noncanonical disubstituted amino acids (α,α-dialkyl glycines), also known as non-natural amino acids, in the peptaibol Alamethicin. The amino acids under study are Aib (α-amino isobutyric acid or α-methyl alanine), Deg (α,α-diethyl glycine), Dpg (α,α-dipropyl glycine), Dibg (α,α-di-isobutyl glycine), Dhg (α,α-dihexyl glycine), DΦg (α,α-diphenyl glycine), Dbzg (α,α-dibenzyl glycine), Ac6c (α,α-cyclohexyl glycine), and Dmg (α,α-dihydroxymethyl glycine). It is hypothesized that these amino acids are able to induce well-defined secondary structure in peptidomimetics. To test this hypothesis, new peptidomimetics of Alamethicin were constructed by replacing the native Aib positions of Alamethicin by one or more new α,α-dialkyl glycines. Dhg and Ac6c demonstrated the capacity to induce well-defined α-helical structures. Dhg and Ac6c also promote the thermodynamic stabilization of these peptides in a POPC model membrane and are better alternatives to the Aib in Alamethicin. These noncanonical amino acids also improved secondary structure properties, revealing preorganization in water and maintenance of α helical structure in POPC. We show that it is possible to optimize the helicity and thermodynamic properties of native Alamethicin, and we suggest that these amino acids could be incorporated in other peptides with similar structural effect.
Collapse
Affiliation(s)
- Tarsila G Castro
- Departamento de Química, Escola de Ciências, Universidade do Minho , Largo do Paço, Braga 4704-553, Portugal
| | | |
Collapse
|
14
|
LamellarLαMesophases Doped with Inorganic Nanoparticles. Chemphyschem 2014; 15:1270-82. [DOI: 10.1002/cphc.201301187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/07/2022]
|
15
|
Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc Natl Acad Sci U S A 2012; 109:21223-7. [PMID: 23236158 DOI: 10.1073/pnas.1201559110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present direct visualization of pores formed by alamethicin (Alm) in a matrix of phospholipids using electrochemical scanning tunneling microscopy (EC-STM). High-resolution EC-STM images show individual peptide molecules forming channels. The channels are not dispersed randomly in the monolayer but agglomerate forming 2D nanocrystals with a hexagonal lattice in which the average channel-channel distance is 1.90 ± 0.1 nm. The STM images suggest that each Alm is shared between the two adjacent channels. Every channel consists of six Alm molecules. Three or four of these molecules have the hydrophilic group oriented toward the center of the channel allowing for water column formation inside the channel. The dimensions of the central pore in the images are consistent with the dimension of the water column in a model of hexameric pore proposed in the literature. The images obtained in this work validate the barrel-stave model of the pore formed in phospholipid membranes by amphiphatic peptides. They also provide direct evidence for cluster formation by such pores.
Collapse
|
16
|
Hjørringgaard CU, Vad BS, Matchkov VV, Nielsen SB, Vosegaard T, Nielsen NC, Otzen DE, Skrydstrup T. Cyclodextrin-scaffolded alamethicin with remarkably efficient membrane permeabilizing properties and membrane current conductance. J Phys Chem B 2012; 116:7652-9. [PMID: 22676384 DOI: 10.1021/jp2098679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial resistance to classical antibiotics is a serious medical problem, which continues to grow. Small antimicrobial peptides represent a potential solution and are increasingly being developed as novel therapeutic agents. Many of these peptides owe their antibacterial activity to the formation of trans-membrane ion-channels resulting in cell lysis. However, to further develop the field of peptide antibiotics, a thorough understanding of their mechanism of action is needed. Alamethicin belongs to a class of peptides called peptaibols and represents one of these antimicrobial peptides. To examine the dynamics of assembly and to facilitate a thorough structural evaluation of the alamethicin ion-channels, we have applied click chemistry for the synthesis of templated alamethicin multimers covalently attached to cyclodextrin-scaffolds. Using oriented circular dichroism, calcein release assays, and single-channel current measurements, the α-helices of the templated multimers were demonstrated to insert into lipid bilayers forming highly efficient and remarkably stable ion-channels.
Collapse
Affiliation(s)
- Claudia U Hjørringgaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
17
|
SivakamaSundari C, Rukmani S, Nagaraj R. Effect of introducing a short amyloidogenic sequence from the Aβ peptide at the N-terminus of 18-residue amphipathic helical peptides. J Pept Sci 2012; 18:122-8. [DOI: 10.1002/psc.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/10/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Affiliation(s)
| | - Sridharan Rukmani
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad ; 500 007; India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad ; 500 007; India
| |
Collapse
|
18
|
Schneggenburger PE, Beerlink A, Weinhausen B, Salditt T, Diederichsen U. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:417-36. [PMID: 21181143 PMCID: PMC3070074 DOI: 10.1007/s00249-010-0645-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022]
Abstract
Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar membrane stacks. To this end, we have studied an artificial, designed β-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering. In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide's reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer.
Collapse
Affiliation(s)
- Philipp E. Schneggenburger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - André Beerlink
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
19
|
de Meyer FJM, Rodgers JM, Willems TF, Smit B. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions. Biophys J 2011; 99:3629-38. [PMID: 21112287 DOI: 10.1016/j.bpj.2010.09.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 12/01/2022] Open
Abstract
Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch.
Collapse
Affiliation(s)
- Frédérick J-M de Meyer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA.
| | | | | | | |
Collapse
|
20
|
Constantin D. The interaction of hybrid nanoparticles inserted within surfactant bilayers. J Chem Phys 2010; 133:144901. [PMID: 20950035 DOI: 10.1063/1.3499741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We determine by small-angle x-ray scattering the structure factor of hydrophobic particles inserted within lamellar surfactant phases for various particle concentrations. The data are then analyzed by numerically solving the Ornstein-Zernicke equation, taking into account both the intra- and interlayer interactions. We find that particles within the same layer repel each other and that the interaction potential (taken as independent of the concentration) has a contact value of 2.2k(B)T and a range of about 10 Å. If the amplitude is allowed to decrease with increasing concentration, the contact value in the dilute limit is about 5k(B)T for a similar range.
Collapse
Affiliation(s)
- Doru Constantin
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, 91405 Orsay, France.
| |
Collapse
|
21
|
Maisch D, Wadhwani P, Afonin S, Böttcher C, Koksch B, Ulrich AS. Chemical labeling strategy with (R)- and (S)-trifluoromethylalanine for solid state 19F NMR analysis of peptaibols in membranes. J Am Chem Soc 2010; 131:15596-7. [PMID: 19827760 DOI: 10.1021/ja9067595] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substitution of a single Aib-residue in a peptaibol with (R)- and (S)-trifluoromethylalanine yields two local orientational constraints theta by solid state (19)F NMR. The structure of the membrane-perturbing antibiotic alamethicin in DMPC bilayers was analyzed in terms of two angles tau and rho from six such constraints, showing that the N-terminus (up to a kink at Pro14) is folded as an alpha-helix, tilted away from the membrane normal by 8 degrees, and assembled as an oligomer. The new (19)F NMR label CF(3)-Ala has thus been demonstrated to be highly sensitive, virtually unperturbing, and ideally suited to characterize peptaibols in membranes.
Collapse
Affiliation(s)
- Daniel Maisch
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Pan J, Tristram-Nagle S, Nagle JF. Alamethicin aggregation in lipid membranes. J Membr Biol 2009; 231:11-27. [PMID: 19789905 DOI: 10.1007/s00232-009-9199-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
X-ray scattering features induced by aggregates of alamethicin (Alm) were obtained in oriented stacks of model membranes of DOPC(diC18:1PC) and diC22:1PC. The first feature obtained near full hydration was Bragg rod in-plane scattering near 0.11 A(-1) in DOPC and near 0.08 A(-1) in diC22:1PC at a 1:10 Alm:lipid ratio. This feature is interpreted as bundles consisting of n Alm monomers in a barrel-stave configuration surrounding a water pore. Fitting the scattering data to previously published molecular dynamics simulations indicates that the number of peptides per bundle is n = 6 in DOPC and n >or= 9 in diC22:1PC. The larger bundle size in diC22:1PC is explained by hydrophobic mismatch of Alm with the thicker bilayer. A second diffuse scattering peak located at q(r) approximately 0.7 A(-1) is obtained for both DOPC and diC22:1PC at several peptide concentrations. Theoretical calculations indicate that this peak cannot be caused by the Alm bundle structure. Instead, we interpret it as being due to two-dimensional hexagonally packed clusters in equilibrium with Alm bundles. As the relative humidity was reduced, interactions between Alm in neighboring bilayers produced more peaks with three-dimensional crystallographic character that do not index with the conventional hexagonal space groups.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
23
|
Schneggenburger PE, Beerlink A, Worbs B, Salditt T, Diederichsen U. A Novel Heavy-Atom Label for Side-Specific Peptide Iodination: Synthesis, Membrane Incorporation and X-ray Reflectivity. Chemphyschem 2009; 10:1567-76. [DOI: 10.1002/cphc.200900241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Milov AD, Samoilova RI, Tsvetkov YD, De Zotti M, Formaggio F, Toniolo C, Handgraaf JW, Raap J. Structure of self-aggregated alamethicin in ePC membranes detected by pulsed electron-electron double resonance and electron spin echo envelope modulation spectroscopies. Biophys J 2009; 96:3197-209. [PMID: 19383464 DOI: 10.1016/j.bpj.2009.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/17/2022] Open
Abstract
PELDOR spectroscopy was exploited to study the self-assembled super-structure of the [Glu(OMe)(7,18,19)]alamethicin molecules in vesicular membranes at peptide to lipid molar ratios in the range of 1:70-1:200. The peptide molecules were site-specifically labeled with TOAC electron spins. From the magnetic dipole-dipole interaction between the nitroxides of the monolabeled constituents and the PELDOR decay patterns measured at 77 K, intermolecular-distance distribution functions were obtained and the number of aggregated molecules (n approximately 4) was estimated. The distance distribution functions exhibit a similar maximum at 2.3 nm. In contrast to Alm16, for Alm1 and Alm8 additional maxima were recorded at 3.2 and approximately 5.2 nm. From ESEEM experiments and based on the membrane polarity profiles, the penetration depths of the different spin-labeled positions into the membrane were qualitatively estimated. It was found that the water accessibility of the spin-labels follows the order TOAC-1 > TOAC-8 approximately TOAC-16. The geometric data obtained are discussed in terms of a penknife molecular model. At least two peptide chains are aligned parallel and eight ester groups of the polar Glu(OMe)(18,19) residues are suggested to stabilize the self-aggregate superstructure.
Collapse
Affiliation(s)
- Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090 Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Membrane-mediated repulsion between gramicidin pores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1782-9. [PMID: 19464257 DOI: 10.1016/j.bbamem.2009.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/06/2009] [Accepted: 05/12/2009] [Indexed: 11/22/2022]
Abstract
We investigated the X-ray scattering signal of highly aligned multilayers of the zwitterionic lipid 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine containing pores formed by the antimicrobial peptide gramicidin as a function of the peptide/lipid ratio. We are able to obtain information on the structure factor of the pore fluid, which then yields the interaction potential between pores in the plane of the bilayers. Aside from a hard core with a radius close to the geometric radius of the pore, we find a repulsive exponential lipid-mediated interaction with a decay length of 2.5 A and an amplitude that decreases with the pore concentration, in agreement with the hydrophobic matching hypothesis. In dilute systems, the contact value of this interaction is about 30 k(B)T. Similar results are obtained for gramicidin pores inserted within bilayers formed by the nonionic surfactant pentaethylene glycol monododecyl ether.
Collapse
|
26
|
Dittmer J, Thøgersen L, Underhaug J, Bertelsen K, Vosegaard T, Pedersen JM, Schiøtt B, Tajkhorshid E, Skrydstrup T, Nielsen NC. Incorporation of Antimicrobial Peptides into Membranes: A Combined Liquid-State NMR and Molecular Dynamics Study of Alamethicin in DMPC/DHPC Bicelles. J Phys Chem B 2009; 113:6928-37. [DOI: 10.1021/jp811494p] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Dittmer
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Lea Thøgersen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Jarl Underhaug
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Jan M. Pedersen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Troels Skrydstrup
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Denmark, Laboratoire de Physique de l’Etat Condensé (LPEC), Université du Maine, Le Mans, France, Bioinformatics Research Center (BiRC), University of Aarhus, Denmark, and Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
27
|
Salnikov ES, Zotti MD, Formaggio F, Li X, Toniolo C, OʼNeil JDJ, Raap J, Dzuba SA, Bechinger B. Alamethicin Topology in Phospholipid Membranes by Oriented Solid-state NMR and EPR Spectroscopies: a Comparison. J Phys Chem B 2009; 113:3034-42. [DOI: 10.1021/jp8101805] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniy S. Salnikov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Marta De Zotti
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Fernando Formaggio
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Xing Li
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Claudio Toniolo
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Joe D. J. OʼNeil
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jan Raap
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Burkhard Bechinger
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation, University of Strasbourg/CNRS, UMR7177, Institut de Chimie, 67070 Strasbourg, France, Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131 Padova, Italy, Department of Chemistry, University of Manitoba, Winnipeg, Canada R3T 2N2, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
28
|
Constantin D, Pansu B, Impéror M, Davidson P, Ribot F. Repulsion between inorganic particles inserted within surfactant bilayers. PHYSICAL REVIEW LETTERS 2008; 101:098101. [PMID: 18851663 DOI: 10.1103/physrevlett.101.098101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Indexed: 05/26/2023]
Abstract
We study by synchrotron small-angle x-ray scattering highly aligned lamellar phases of a zwitterionic surfactant, doped with monodisperse and spherical hydrophobic inorganic particles as a function of particle concentration. Analysis of the structure factor of the two-dimensional fluid formed by the particles in the plane of the bilayer gives access to their membrane-mediated interaction, which is repulsive, with a contact value of about 4kBT and a range of 14 angstroms. Systematic application of this technique should lead to a better understanding of the interaction between membrane inclusions.
Collapse
Affiliation(s)
- Doru Constantin
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR8502, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|