1
|
Matching amino acids membrane preference profile to improve activity of antimicrobial peptides. Commun Biol 2022; 5:1199. [PMID: 36347951 PMCID: PMC9643456 DOI: 10.1038/s42003-022-04164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cationic antibiotics that can kill multidrug-resistant bacteria via membrane insertion. However, their weak activity limits their clinical use. Ironically, the cationic charge of AMPs is essential for membrane binding, but it obstructs membrane insertion. In this study, we postulate that this problem can be overcome by locating cationic amino acids at the energetically preferred membrane surface. All amino acids have an energetically preferred or less preferred membrane position profile, and this profile is strongly related to membrane insertion. However, most AMPs do not follow this profile. One exception is protegrin-1, a powerful but neglected AMP. In the present study, we found that a potent AMP, WCopW5, strongly resembles protegrin-1 and that the match between its sequence and the preferred position profile closely correlates with its antimicrobial activity. One of its derivatives, WCopW43, has antimicrobial activity comparable to that of the most effective AMPs in clinical use.
Collapse
|
2
|
Heberle FA, Myles DAA, Katsaras J. Biomembranes research using thermal and cold neutrons. Chem Phys Lipids 2015; 192:41-50. [PMID: 26241882 DOI: 10.1016/j.chemphyslip.2015.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/26/2023]
Abstract
In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques.
Collapse
Affiliation(s)
- F A Heberle
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - D A A Myles
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States
| | - J Katsaras
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
3
|
A membrane-translocating peptide penetrates into bilayers without significant bilayer perturbations. Biophys J 2014; 104:2419-28. [PMID: 23746514 DOI: 10.1016/j.bpj.2013.04.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022] Open
Abstract
Using a high throughput screen, we have identified a family of 12-residue long peptides that spontaneously translocate across membranes. These peptides function by a poorly understood mechanism that is very different from that of the well-known, highly cationic cell penetrating peptides such as the tat peptide from HIV. The newly discovered translocating peptides can carry polar cargoes across synthetic bilayers and across cellular membranes quickly and spontaneously without disrupting the membrane. Here we report on the biophysical characterization of a representative translocating peptide from the selected family, TP2, as well as a negative control peptide, ONEG, from the same library. We measured the binding of the two peptides to lipid bilayers, their secondary structure propensities, their dispositions in bilayers by neutron diffraction, and the response of the bilayer to the peptides. Compared to the negative control, TP2 has a greater propensity for membrane partitioning, although it still binds only weakly, and a higher propensity for secondary structure. Perhaps most revealing, TP2 has the ability to penetrate deep into the bilayer without causing significant bilayer perturbations, a property that may help explain its ability to translocate without bilayer permeabilization.
Collapse
|
4
|
Krauson AJ, He J, Wimley AW, Hoffmann AR, Wimley WC. Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening. ACS Chem Biol 2013; 8:823-31. [PMID: 23394375 DOI: 10.1021/cb300598k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We previously reported the de novo design of a combinatorial peptide library that was subjected to high-throughput screening to identify membrane-permeabilizing antimicrobial peptides that have β-sheet-like secondary structure. Those peptides do not form discrete pores in membranes but instead partition into membrane interfaces and cause transient permeabilization by membrane disruption, but only when present at high concentration. In this work, we used a consensus sequence from that initial screen as a template to design an iterative, second generation library. In the 24-26-residue, 16,200-member second generation library we varied six residues. Two diad repeat motifs of alternating polar and nonpolar amino acids were preserved to maintain a propensity for non-helical secondary structure. We used a new high-throughput assay to identify members that self-assemble into equilibrium pores in synthetic lipid bilayers. This screen was done at a very stringent peptide to lipid ratio of 1:1000 where most known membrane-permeabilizing peptides, including the template peptide, are not active. In a screen of 10,000 library members we identified 16 (~0.2%) that are equilibrium pore-formers at this high stringency. These rare and highly active peptides, which share a common sequence motif, are as potent as the most active pore-forming peptides known. Furthermore, they are not α-helical, which makes them unusual, as most of the highly potent pore-forming peptides are amphipathic α-helices. Here we demonstrate that this synthetic molecular evolution-based approach, taken together with the new high-throughput tools we have developed, enables the identification, refinement, and optimization of unique membrane active peptides.
Collapse
Affiliation(s)
- Aram J. Krauson
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - Jing He
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - Andrew W. Wimley
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - Andrew R. Hoffmann
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| | - William C. Wimley
- Department of Biochemistry
and Molecular Biology SL43, Tulane University School of Medicine, New Orleans,
Louisiana 70112, United States
| |
Collapse
|
5
|
Bishop CM, Wimley WC. Structural plasticity in self-assembling transmembrane β-sheets. Biophys J 2011; 101:828-36. [PMID: 21843473 DOI: 10.1016/j.bpj.2011.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022] Open
Abstract
Here we test the hypothesis that membrane-spanning β-sheets can exhibit structural plasticity in membranes due to their ability to shift hydrogen-bonding patterns. Transmembrane β-sheet forming peptides of the sequence AcWL(n), where n = 5, 6, or 7, which range from 21 to 27 Å in maximum length, were incorporated into bilayers made of phosphatidylcholine lipids with saturated acyl chains containing 14, 16, or 18 carbons, which are 36-50 Å in thickness. The effect of the peptide β-sheets on fluid- and gel-phase bilayers were studied with differential scanning calorimetry and circular dichroism spectroscopy. We show that AcWL₅ forms a stable, peptide-rich gel phase in all three lipids. The whole family of AcWL(n) peptides appears to form similarly stable, nonmembrane-disrupting β-sheets in all bilayer phases and thicknesses. Bilayers containing up to 20 mol % peptide, which is the maximum concentration tested, formed gel phases with melting temperatures that were equal to, or slightly higher than, the pure lipid transitions. Given the range of peptide lengths and bilayer thicknesses tested, these experiments show that the AcWL(n) family of membrane-inserted β-sheets exhibit remarkable structural plasticity in membranes.
Collapse
Affiliation(s)
- Christopher M Bishop
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | |
Collapse
|
6
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
7
|
Schick S, Chen L, Li E, Lin J, Köper I, Hristova K. Assembly of the m2 tetramer is strongly modulated by lipid chain length. Biophys J 2011; 99:1810-7. [PMID: 20858425 DOI: 10.1016/j.bpj.2010.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 12/17/2022] Open
Abstract
The influenza virus matrix protein 2 (M2) assembles into a tetramer in the host membrane during viral uncoating and maturation. It has been used as a model system to understand the relative contributions of protein-lipid and protein-protein interactions to membrane protein structure and association. Here we investigate the effect of lipid chain length on the association of the M2 transmembrane domain into tetramers using Förster resonance energy transfer. We observe that the interactions between the M2 helices are much stronger in 1,2-dilauroyl-sn-glycero-3-phosphocholine than in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Thus, lipid chain length and bilayer thickness not only modulate peptide interactions, but could also be a major determinant of the association of transmembrane helices into functional membrane protein oligomers.
Collapse
Affiliation(s)
- Sandra Schick
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lasagna-Reeves CA, Clos AL, Midoro-Hiriuti T, Goldblum RM, Jackson GR, Kayed R. Inhaled insulin forms toxic pulmonary amyloid aggregates. Endocrinology 2010; 151:4717-24. [PMID: 20685871 DOI: 10.1210/en.2010-0457] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well known that interfaces, such as polar-nonpolar or liquid-air, play a key role in triggering protein aggregation in vitro, in particular the aggregation of peptides and proteins with the predisposition of misfolding and aggregation. Here we show that the interface present in the lungs predisposes the lungs to form aggregation of inhaled insulin. Insulin inhalers were introduced, and a large number of diabetic patients have used them. Although inhalers were safe and effective, decreases in pulmonary capacity have been reported in response to inhaled insulin. We hypothesize that the lung air-tissue interface provides a template for the aggregation of inhaled insulin. Our studies were designed to investigate the harmful potential that inhaled insulin has in pulmonary tissue in vivo, through an amyloid formation mechanism. Our data demonstrate that inhaled insulin rapidly forms amyloid in the lungs causing a significant reduction in pulmonary air flow. Our studies exemplify the importance that interfaces play in protein aggregation in vivo, illustrating the potential aggregation of inhaled proteins and the formation of amyloid deposits in the lungs. These insulin deposits resemble the amyloid structures implicated in protein misfolding disorders, such as Alzheimer's and Parkinson's diseases, and could as well be deleterious in nature.
Collapse
Affiliation(s)
- Cristian A Lasagna-Reeves
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, 301 University Boulevard, Medical Research Building, Room 10.138C, Galveston, Texas 77555-1045, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chen L, Merzlyakov M, Cohen T, Shai Y, Hristova K. Energetics of ErbB1 transmembrane domain dimerization in lipid bilayers. Biophys J 2009; 96:4622-30. [PMID: 19486684 DOI: 10.1016/j.bpj.2009.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 01/12/2023] Open
Abstract
One of the most extensively studied receptor tyrosine kinases is EGFR/ErbB1. Although our knowledge of the role of the extracellular domains and ligands in ErbB1 activation has increased dramatically based on solved domain structures, the exact mechanism of signal transduction across the membrane remains unknown. The transmembrane domains are expected to play an important role in the dimerization process, but the contribution of ErbB1 TM domain to dimer stability is not known, with published results contradicting one another. We address this controversy by showing that ErbB1 TM domain dimerizes in lipid bilayers and by calculating its contribution to stability as -2.5 kcal/mol. The stability calculations use two different methods based on Förster resonance energy transfer, which give the same result. The ErbB1 TM domain contribution to stability exceeds the change in receptor tyrosine kinases dimerization propensities that can convert normal signaling processes into pathogenic processes, and is thus likely important for biological function.
Collapse
Affiliation(s)
- Lirong Chen
- Department of Materials Science and Engineering Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
10
|
Bossuyt J, Despa S, Han F, Hou Z, Robia SL, Lingrel JB, Bers DM. Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J Biol Chem 2009; 284:26749-57. [PMID: 19638348 DOI: 10.1074/jbc.m109.047357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholemman (PLM) phosphorylation mediates enhanced Na/K-ATPase (NKA) function during adrenergic stimulation of the heart. Multiple NKA isoforms exist, and their function/regulation may differ. We combined fluorescence resonance energy transfer (FRET) and functional measurements to investigate isoform specificity of the NKA-PLM interaction. FRET was measured as the increase in the donor fluorescence (CFP-NKA-alpha1 or CFP-NKA-alpha2) during progressive acceptor (PLM-YFP) photobleach in HEK-293 cells. Both pairs exhibited robust FRET (maximum of 23.6 +/- 3.4% for NKA-alpha1 and 27.5 +/- 2.5% for NKA-alpha2). Donor fluorescence depended linearly on acceptor fluorescence, indicating a 1:1 PLM:NKA stoichiometry for both isoforms. PLM phosphorylation induced by cAMP-dependent protein kinase and protein kinase C activation drastically reduced the FRET with both NKA isoforms. However, submaximal cAMP-dependent protein kinase activation had less effect on PLM-NKA-alpha2 versus PLM-NKA-alpha1. Surprisingly, ouabain virtually abolished NKA-PLM FRET but only partially reduced co-immunoprecipitation. PLM-CFP also showed FRET to PLM-YFP, but the relationship during progressive photobleach was highly nonlinear, indicating oligomers involving >or=3 monomers. Using cardiac myocytes from wild-type mice and mice where NKA-alpha1 is ouabain-sensitive and NKA-alpha2 is ouabain-resistant, we assessed the effects of PLM phosphorylation on NKA-alpha1 and NKA-alpha2 function. Isoproterenol enhanced internal Na(+) affinity of both isoforms (K((1/2)) decreased from 18.1 +/- 2.0 to 11.5 +/- 1.9 mm for NKA-alpha1 and from 16.4 +/- 2.5 to 10.4 +/- 1.5 mm for NKA-alpha2) without altering maximum transport rate (V(max)). Protein kinase C activation also decreased K((1/2)) for both NKA-alpha1 and NKA-alpha2 (to 9.4 +/- 1.0 and 9.1 +/- 1.1 mm, respectively) but increased V(max) only for NKA-alpha2 (1.9 +/- 0.4 versus 1.2 +/- 0.5 mm/min). In conclusion, PLM associates with and modulates both NKA-alpha1 and NKA-alpha2 in a comparable but not identical manner.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Han X, Hristova K. Viewing the bilayer hydrocarbon core using neutron diffraction. J Membr Biol 2009; 227:123-31. [PMID: 19169614 PMCID: PMC2667903 DOI: 10.1007/s00232-008-9151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Membrane proteins fold, assemble and function within their native fluid lipid environment. Structural studies of fluid lipid bilayers are thus critically important for understanding processes in membranes. Here, we propose a simple approach to visualize the hydrocarbon core using neutron diffraction and deuterated lipids that are commercially available. This method should have broad utility in structural studies of the bilayer response to protein insertion and folding in membranes.
Collapse
Affiliation(s)
- Xue Han
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
12
|
Babakhani A, Gorfe AA, Kim JE, McCammon JA. Thermodynamics of peptide insertion and aggregation in a lipid bilayer. J Phys Chem B 2008; 112:10528-34. [PMID: 18681475 PMCID: PMC2651738 DOI: 10.1021/jp804710v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of biomolecules mediate physiological processes by inserting and reorganizing in cell membranes, and the thermodynamic forces responsible for their partitioning are of great interest. Recent experiments provided valuable data on the free energy changes associated with the transfer of individual amino acids from water to membrane. However, a complete picture of the pathways and the associated changes in energy of peptide insertion into a membrane remains elusive. To this end, computational techniques supplement the experimental data with atomic-level details and shed light on the energetics of insertion. Here, we employed the technique of umbrella sampling in a total 850 ns of all-atom molecular dynamics simulations to study the free energy profile and the pathway of insertion of a model hexapeptide consisting of a tryptophan and five leucines (WL5). The computed free energy profile of the peptide as it travels from bulk solvent through the membrane core exhibits two minima: a local minimum at the water−membrane interface or the headgroup region and a global minimum at the hydrophobic−hydrophilic interface close to the lipid glycerol region. A rather small barrier of roughly 1 kcal mol−1 exists at the membrane core, which is explained by the enhanced flexibility of the peptide when deeply inserted. Combining our results with those in the literature, we present a thermodynamic model for peptide insertion and aggregation which involves peptide aggregation upon contact with the membrane at the solvent−lipid headgroup interface.
Collapse
Affiliation(s)
- Arneh Babakhani
- Department of Chemistry & Biochemistry, and Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, MC 0365 La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
13
|
Harroun TA, Katsaras J, Wassall SR. Cholesterol Is Found To Reside in the Center of a Polyunsaturated Lipid Membrane. Biochemistry 2008; 47:7090-6. [DOI: 10.1021/bi800123b] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thad A. Harroun
- Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada, Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada, Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-3273
| | - John Katsaras
- Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada, Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada, Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-3273
| | - Stephen R. Wassall
- Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada, Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario K0J 1J0, Canada, Guelph-Waterloo Physics Institute and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada, and Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-3273
| |
Collapse
|