1
|
Moreau A, Yaya F, Lu H, Surendranath A, Charrier A, Dehapiot B, Helfer E, Viallat A, Peng Z. Physical mechanisms of red blood cell splenic filtration. Proc Natl Acad Sci U S A 2023; 120:e2300095120. [PMID: 37874856 PMCID: PMC10622898 DOI: 10.1073/pnas.2300095120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/02/2023] [Indexed: 10/26/2023] Open
Abstract
The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8 [Formula: see text]m RBCs pass through 0.3 [Formula: see text]m-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28 [Formula: see text]m-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4 [Formula: see text]m-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a [Formula: see text]1 and [Formula: see text]3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.
Collapse
Affiliation(s)
- Alexis Moreau
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - François Yaya
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - Huijie Lu
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL60612
| | - Anagha Surendranath
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - Anne Charrier
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - Benoit Dehapiot
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - Emmanuèle Helfer
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - Annie Viallat
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Turing Centre for Living Systems, Marseille13009, France
| | - Zhangli Peng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL60612
| |
Collapse
|
2
|
Chai Z, Gu S, Lykotrafitis G. Dynamics of the axon plasma membrane skeleton. SOFT MATTER 2023; 19:2514-2528. [PMID: 36939651 DOI: 10.1039/d2sm01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It was recently revealed via super-resolution microscopy experiments that the axon plasma membrane skeleton (APMS) comprises a series of periodically arranged azimuthal actin rings connected via longitudinal spectrin filaments forming an orthotropic network. The common perception is that APMS enhances structural stability of the axon but its impact on axon deformation is unknown. To investigate the response of the APMS to extension, we introduce a coarse-grain molecular dynamics model consisting of actin particles forming rings and chains of particles representing spectrin tetramers with repeats than can unfold. We observe that the shape of force-extension curve is initially linear and the force level depends on the extension rate. Even during the initial deformation stage, unfolding of spectrin repeats occurs, but the saw-tooth shape of the corresponding force-extension curve observed in the case of one spectrin tetramer does not appear in the case of the entire APMS. The reason is that spectrin unfolding is not synchronized across filaments during extension. If actin-spectrin associations remain intact, the force-extension response reaches a perfectly plastic region because of increased spectrin unfolding frequency. However, when actin-spectrin links dissociate, which can happen at moderate and high extension rates, APMS softens and the resistance force decreases linearly as the axon elongates until it reaches a point where the APMS is completely severed. Furthermore, when the ring-to-ring distance is maintained fixed under stretch, the resistance force relaxes exponentially as a function of time due to additional unfolding of spectrin tetramers following the Kelvin-Voigt representation of the Zener model.
Collapse
Affiliation(s)
- Zhaojie Chai
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Shiju Gu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Zhu Q, Bi X. Dynamics of erythrocytes in oscillatory shear flows: effects of S/V ratio. SOFT MATTER 2022; 18:964-974. [PMID: 35029271 DOI: 10.1039/d1sm01430g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By combining a multiscale structural model of erythrocyte with a fluid-cell interaction model based on the boundary-integral method, we numerically investigate the dynamic response of erythrocytes in oscillatory shear flows (OSFs). The goal is to develop a novel experimental method to test the structural robustness of erythrocytes in transient mechanical loads with small time scales, conditions closely imitating the mechanical environment in vivo. Following the discovery of multiple response modes (wheeling, mode 1 tank treading, and mode 2 tank treading) under these conditions (Zhu & Asaro, 2019), we concentrate on deformation and stress inside RBCs driven by OSF, especially shear deformation of the membrane and the skeleton-bilayer dissociation stress, parameters that are related to mechanically induced structural remodeling such as vesiculation. Effects related to changes in surface area-to-volume (S/V) ratio are considered. Our results show that with the variation of the S/V ratio there could be significant change in terms of the occurrence of response modes even if other parameters are kept unchanged. For example, by reducing the S/V ratio of the cell, an asymmetric mode featuring a mixture of the wheeling and mode 2 tank treading responses is discovered. This mode is found to be associated with large skeleton-bilayer dissociation stress so that its potential impact on OSF-driven vesiculation should not be overlooked. By systematically examining the dependencies of skeleton deformation and skeleton-bilayer dissociation stress upon S/V, this study is critical for the development of the OSF technique in applications such as diagnosis since cell conditions are often reflected in its geometric properties.
Collapse
Affiliation(s)
- Qiang Zhu
- Dept. Struc. Engr., UC San Diego, La Jolla, USA.
| | - Xiaobo Bi
- Dept. Struc. Engr., UC San Diego, La Jolla, USA.
| |
Collapse
|
4
|
Khan MI, Ferdous SF, Adnan A. Mechanical behavior of actin and spectrin subjected to high strain rate: A molecular dynamics simulation study. Comput Struct Biotechnol J 2021; 19:1738-1749. [PMID: 33897978 PMCID: PMC8050423 DOI: 10.1016/j.csbj.2021.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recent nanoscopy and super-resolution microscopy studies have substantiated the structural contribution of periodic actin-spectrin lattice to the axonal cytoskeleton of neuron. However, sufficient mechanical insight is not present for spectrin and actin-spectrin network, especially in high strain rate scenario. To quantify the mechanical behavior of actin-spectrin cytoskeleton in such conditions, this study determines individual stretching characteristics of actin and spectrin at high strain rate by molecular dynamics (MD) simulation. The actin-spectrin separation criteria are also determined. It is found that both actin and spectrin have high stiffness when susceptible to high strain rate and show strong dependence on applied strain rate. The stretching stiffness of actin and forced unfolding mechanism of spectrin are in harmony with the current literature. Actin-spectrin model provides novel insight into their interaction and separation stretch. It is shown that the region vulnerable to failure is the actin-spectrin interface at lower strain rate, while it is the inter-repeat region of spectrin at higher strain rate.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sheikh Fahad Ferdous
- Department of Applied Engineering and Technology Management, Indiana State University, Terre Haute, IN 47809, USA
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
5
|
Feng Z, Waugh RE, Peng Z. Constitutive Model of Erythrocyte Membranes with Distributions of Spectrin Orientations and Lengths. Biophys J 2020; 119:2190-2204. [PMID: 33130121 PMCID: PMC7732770 DOI: 10.1016/j.bpj.2020.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022] Open
Abstract
We present an analytical hyperelastic constitutive model of the red blood cell (erythrocyte) membrane based on recently improved characterizations of density and microscopic structure of its spectrin network from proteomics and cryo-electron tomography. The model includes distributions of both orientations and natural lengths of spectrin and updated copy numbers of proteins. By applying finite deformation to the spectrin network, we obtain the total free energy and stresses in terms of invariants of shear and area deformation. We generalize an expression of the initial shear modulus, which is independent of the number of molecular orientations within the network and also derive a simplified version of the model. We apply the model and its simplified version to analyze micropipette aspiration computationally and analytically and explore the effect of local cytoskeletal density change. We also explore the discrepancies among shear modulus values measured using different experimental techniques reported in the literature. We find that the model exhibits hardening behavior and can explain many of these discrepancies. Moreover, we find that the distribution of natural lengths plays a crucial role in the hardening behavior when the correct copy numbers of proteins are used. The initial shear modulus values we obtain using our current model (5.9-15.6 pN/μm) are close to the early estimates (6-9 pN/μm). This new, to our knowledge, constitutive model establishes a direct connection between the molecular structure of spectrin networks and constitutive laws and also defines a new picture of a much denser spectrin network than assumed in prior studies.
Collapse
Affiliation(s)
- Zhe Feng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Zhangli Peng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Asaro RJ, Zhu Q, MacDonald IC. Tethering, evagination, and vesiculation via cell-cell interactions in microvascular flow. Biomech Model Mechanobiol 2020; 20:31-53. [PMID: 32656697 DOI: 10.1007/s10237-020-01366-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Vesiculation is a ubiquitous process undergone by most cell types and serves a variety of vital cell functions; vesiculation from erythrocytes, in particular, is a well-known example and constitutes a self-protection mechanism against premature clearance, inter alia. Herein, we explore a paradigm that red blood cell derived vesicles may form within the microvascular, in intense shear flow, where cells become adhered to either other cells or the extracellular matrix, by forming tethers or an evagination. Adherence may be enhanced, or caused, by diseased states or chemical anomalies as are discussed herein. The mechanisms for such processes are detailed via numerical simulations that are patterned directly from video-recorded cell microflow within the splenic venous sinus (MacDonald et al. 1987), as included, e.g., as Supplementary Material. The mechanisms uncovered highlight the necessity of accounting for remodeling of the erythrocyte's membrane skeleton and, specifically, for the time scales associated with that process that is an integral part of cell deformation. In this way, the analysis provides pointed, and vital, insights into the notion of what the, often used phrase, cell deformability actually entails in a more holistic manner. The analysis also details what data are required to make further quantitative descriptions possible and suggests experimental pathways for acquiring such.
Collapse
Affiliation(s)
- Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, CA, USA.
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, CA, USA
| | - Ian C MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
7
|
Li J, Chen K, Zhu R, Zhang M. Structural Basis Underlying Strong Interactions between Ankyrins and Spectrins. J Mol Biol 2020; 432:3838-3850. [DOI: 10.1016/j.jmb.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
|
8
|
|
9
|
Dubey S, Bhembre N, Bodas S, Veer S, Ghose A, Callan-Jones A, Pullarkat P. The axonal actin-spectrin lattice acts as a tension buffering shock absorber. eLife 2020; 9:51772. [PMID: 32267230 PMCID: PMC7190353 DOI: 10.7554/elife.51772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Axons span extreme distances and are subject to significant stretch deformations during limb movements or sudden head movements, especially during impacts. Yet, axon biomechanics, and its relation to the ultrastructure that allows axons to withstand mechanical stress, is poorly understood. Using a custom developed force apparatus, we demonstrate that chick dorsal root ganglion axons exhibit a tension buffering or strain-softening response, where its steady state elastic modulus decreases with increasing strain. We then explore the contributions from the various cytoskeletal components of the axon to show that the recently discovered membrane-associated actin-spectrin scaffold plays a prominent mechanical role. Finally, using a theoretical model, we argue that the actin-spectrin skeleton acts as an axonal tension buffer by reversibly unfolding repeat domains of the spectrin tetramers to release excess mechanical stress. Our results revise the current viewpoint that microtubules and their associated proteins are the only significant load-bearing elements in axons.
Collapse
Affiliation(s)
| | | | - Shivani Bodas
- Indian Institute of Science Education and Research, Pune, India
| | - Sukh Veer
- Raman Research Institute, Bangalore, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research, Pune, India
| | - Andrew Callan-Jones
- Laboratory of Complex Materials Systems, Paris Diderot University, Paris, France
| | | |
Collapse
|
10
|
Asaro RJ, Zhu Q. Vital erythrocyte phenomena: what can theory, modeling, and simulation offer? Biomech Model Mechanobiol 2020; 19:1361-1388. [DOI: 10.1007/s10237-020-01302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
11
|
Asaro RJ, Lin K, Zhu Q. Mechanosensitivity Occurs along the Adhesome's Force Train and Affects Traction Stress. Biophys J 2019; 117:1599-1614. [PMID: 31604520 DOI: 10.1016/j.bpj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.
Collapse
Affiliation(s)
- Robert J Asaro
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California.
| | - Kuanpo Lin
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| | - Qiang Zhu
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| |
Collapse
|
12
|
Asaro RJ, Zhu Q, Cabrales P. Erythrocyte Aging, Protection via Vesiculation: An Analysis Methodology via Oscillatory Flow. Front Physiol 2018; 9:1607. [PMID: 30505281 PMCID: PMC6250888 DOI: 10.3389/fphys.2018.01607] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023] Open
Abstract
We demonstrate that erythrocyte deformations, specifically of a type as occur in splenic flow (Zhu et al., 2017), and of the type that promote vesiculation can be caused by simple, yet tailored, oscillatory shear flow. We show that such oscillatory shear flow provides an ideal environment to explore a wide variety of metabolic and biochemical effects that promote erythrocyte vesiculation. Deformation details, typical of splenic flow, such as in-folding and implications for membrane/skeleton interaction are demonstrated and quantitatively analyzed. We introduce a theoretical, essentially analytical, vesiculation model that directly couples to our more complex numerical, multilevel, model that clearly delineates various fundamental elements, i.e., sub-processes, that are involved and mediate the vesiculation process. This analytical model highlights particulary important vesiculation precursors such as areas of membrane/skeleton disruptions that trigger the vesiculation process. We demonstrate, using flow cytometry, that the deformations we experimentally induce on cells, and numerically simulate, do not induce lethal forms of cell damage but do induce vesiculation as theoretically forecasted. This, we demonstrate, provides a direct link to cell membrane/skeletal damage such as is associated with metabolic and aging damage. An additional noteworthy feature of this approach is the avoidance of artificial devices, e.g., micro-fluidic chambers, in which deformations and their time scales are often unrepresentative of physiological processes such as splenic flow.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, San Diego, CA, United States
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, San Diego, CA, United States
| | - Pedro Cabrales
- Biological Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Asaro RJ, Zhu Q, Cabrales P, Carruthers A. Do Skeletal Dynamics Mediate Sugar Uptake and Transport in Human Erythrocytes? Biophys J 2018; 114:1440-1454. [PMID: 29590601 PMCID: PMC5883875 DOI: 10.1016/j.bpj.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
We explore, herein, the hypothesis that transport of molecules or ions into erythrocytes may be affected and directly stimulated by the dynamics of the spectrin/actin skeleton. Skeleton/actin motions are driven by thermal fluctuations that may be influenced by ATP hydrolysis as well as by structural alterations of the junctional complexes that connect the skeleton to the cell's lipid membrane. Specifically, we focus on the uptake of glucose into erythrocytes via glucose transporter 1 and on the kinetics of glucose disassociation at the endofacial side of glucose transporter 1. We argue that glucose disassociation is affected by both hydrodynamic forces induced by the actin/spectrin skeleton and by probable contact of the swinging 37-nm-long F-actin protofilament with glucose, an effect we dub the "stickball effect." Our hypothesis and results are interpreted within the framework of the kinetic measurements and compartmental kinetic models of Carruthers and co-workers; these experimental results and models describe glucose disassociation as the "slow step" (i.e., rate-limiting step) in the uptake process. Our hypothesis is further supported by direct simulations of skeleton-enhanced transport using our molecular-based models for the actin/spectrin skeleton as well as by experimental measurements of glucose uptake into cells subject to shear deformations, which demonstrate the hydrodynamic effects of advection. Our simulations have, in fact, previously demonstrated enhanced skeletal dynamics in cells in shear deformations, as they occur naturally within the skeleton, which is an effect also supported by experimental observations.
Collapse
Affiliation(s)
- Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, California.
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Pedro Cabrales
- Department of Biological Engineering, University of California, San Diego, La Jolla, California
| | | |
Collapse
|
14
|
Zhou S, Huang YS, Kingsley PD, Cyr KH, Palis J, Wan J. Microfluidic assay of the deformability of primitive erythroblasts. BIOMICROFLUIDICS 2017; 11:054112. [PMID: 29085523 PMCID: PMC5653377 DOI: 10.1063/1.4999949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
Collapse
Affiliation(s)
- Sitong Zhou
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Yu-Shan Huang
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, USA
| | - Paul D Kingsley
- Department of Pediatric and Center for Pediatric Biomedical Research, University of Rochester, Rochester, New York 14642, USA
| | - Kathryn H Cyr
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
| | | | | |
Collapse
|
15
|
Zhu Q, Salehyar S, Cabrales P, Asaro RJ. Prospects for Human Erythrocyte Skeleton-Bilayer Dissociation during Splenic Flow. Biophys J 2017; 113:900-912. [PMID: 28834726 PMCID: PMC5567461 DOI: 10.1016/j.bpj.2017.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
Prospects of vesiculation occurring during splenic flow of erythrocytes are addressed via model simulations of RBC flow through the venous slits of the human spleen. Our model is multiscale and contains a thermally activated rate-dependent description of the entropic elasticity of the RBC spectrin cytoskeleton, including domain unfolding/refolding. Our model also includes detail of the skeleton attachment to the fluidlike lipid bilayer membrane, including a specific accounting for the expansion/contraction of the skeleton that may occur via anchor protein diffusive motion, that is, band 3 and glycophorin, through the membrane. This ability allows us to follow the change in anchor density and thereby the strength of the skeleton/membrane attachment. We define a negative pressure between the skeleton/membrane connection that promotes separation; critical levels for this are estimated using published data on the work of adhesion of this connection. By following the maximum range of negative pressure, along with the observed slight decrease in skeletal density, we conclude that there must be biochemical influences that probably include binding of degraded hemoglobin, among other things, that significantly reduce effective attachment density. These findings are consistent with reported trends in vesiculation that are believed to occur in cases of various hereditary anemias and during blood storage. Our findings also suggest pathways for further study of erythrocyte vesiculation that point to the criticality of understanding the biochemical phenomena involved with cytoskeleton/membrane attachment.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Sara Salehyar
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Pedro Cabrales
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, California.
| |
Collapse
|
16
|
Salehyar S, Zhu Q. Effects of stiffness and volume on the transit time of an erythrocyte through a slit. Biomech Model Mechanobiol 2016; 16:921-931. [PMID: 27889852 DOI: 10.1007/s10237-016-0861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
By using a fully coupled fluid-cell interaction model, we numerically simulate the dynamic process of a red blood cell passing through a slit driven by an incoming flow. The model is achieved by combining a multiscale model of the composite cell membrane with a boundary element fluid dynamics model based on the Stokes flow assumption. Our concentration is on the correlation between the transit time (the time it takes to finish the whole translocation process) and different conditions (flow speed, cell orientation, cell stiffness, cell volume, etc.) that are involved. According to the numerical prediction (with some exceptions), the transit time rises as the cell is stiffened. It is also highly sensitive to volume increase inside the cell. In general, even slightly swollen cells (i.e., the internal volume is increased while the surface area of the cell kept unchanged) travel dramatically slower through the slit. For these cells, there is also an increased chance of blockage.
Collapse
Affiliation(s)
- Sara Salehyar
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Creep and stress relaxation of human red cell membrane. Biomech Model Mechanobiol 2016; 16:239-247. [PMID: 27514540 DOI: 10.1007/s10237-016-0813-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/02/2016] [Indexed: 11/27/2022]
Abstract
In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is presented that allows measurement of [Formula: see text] up to values of about 10 h. The membrane skeleton was deformed passively by changing the spontaneous curvature of the bilayer thus transforming the natively biconcave red cells into echinocytes. This shape and the concomitant deformation of the skeleton were kept up to 4 h by incubation at 37 ℃. During this period, no plastic deformation (creep) was observed. After the incubation, the spontaneous curvature was returned to normal. The resulting shape was smooth showing no remnants of the echinocytic shape. Both observations indicate [Formula: see text] 10 h. This result is in gross disagreement to postulates or assumptions existing in the literature.
Collapse
|
18
|
Salehyar S, Zhu Q. Deformation and internal stress in a red blood cell as it is driven through a slit by an incoming flow. SOFT MATTER 2016; 12:3156-3164. [PMID: 26865054 DOI: 10.1039/c5sm02933c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To understand the deformation and internal stress of a red blood cell when it is pushed through a slit by an incoming flow, we conduct a numerical investigation by combining a fluid-cell interaction model based on boundary-integral equations with a multiscale structural model of the cell membrane that takes into account the detailed molecular architecture of this biological system. Our results confirm the existence of cell 'infolding', during which part of the membrane is inwardly bent to form a concave region. The time histories and distributions of area deformation, shear deformation, and contact pressure during and after the translocation are examined. Most interestingly, it is found that in the recovery phase after the translocation significant dissociation pressure may develop between the cytoskeleton and the lipid bilayer. The magnitude of this pressure is closely related to the locations of the dimple elements during the transit. Large dissociation pressure in certain cases suggests the possibility of mechanically induced structural remodeling and structural damage such as vesiculation. With quantitative knowledge about the stability of intra-protein, inter-protein and protein-to-lipid linkages under dynamic loads, it will be possible to achieve numerical prediction of these processes.
Collapse
|
19
|
Svetina S, Kokot G, Kebe TŠ, Žekš B, Waugh RE. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Biomech Model Mechanobiol 2015; 15:745-58. [PMID: 26376642 DOI: 10.1007/s10237-015-0721-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Red blood cell (RBC) membrane skeleton is a closed two-dimensional elastic network of spectrin tetramers with nodes formed by short actin filaments. Its three-dimensional shape conforms to the shape of the bilayer, to which it is connected through vertical linkages to integral membrane proteins. Numerous methods have been devised over the years to predict the response of the RBC membrane to applied forces and determine the corresponding increase in the skeleton elastic energy arising either directly from continuum descriptions of its deformation, or seeking to relate the macroscopic behavior of the membrane to its molecular constituents. In the current work, we present a novel continuum formulation rooted in the molecular structure of the membrane and apply it to analyze model deformations similar to those that occur during aspiration of RBCs into micropipettes. The microscopic elastic properties of the skeleton are derived by treating spectrin tetramers as simple linear springs. For a given local deformation of the skeleton, we determine the average bond energy and define the corresponding strain energy function and stress-strain relationships. The lateral redistribution of the skeleton is determined variationally to correspond to the minimum of its total energy. The predicted dependence of the length of the aspirated tongue on the aspiration pressure is shown to describe the experimentally observed system behavior in a quantitative manner by taking into account in addition to the skeleton energy an energy of attraction between RBC membrane and the micropipette surface.
Collapse
Affiliation(s)
- Saša Svetina
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Jožef Stefan Institute, Ljubljana, Slovenia
| | - Gašper Kokot
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Tjaša Švelc Kebe
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Jožef Stefan Institute, Ljubljana, Slovenia
| | - Boštjan Žekš
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
20
|
Zhang B, Liu B, Zhang H, Wang J. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation. PLoS One 2014; 9:e112624. [PMID: 25401336 PMCID: PMC4234377 DOI: 10.1371/journal.pone.0112624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/03/2014] [Indexed: 12/21/2022] Open
Abstract
The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new strategy for enhancing the assessment of the curative effects and safety of clinical radiotherapy, as well as reducing adverse effects.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, 730000, PR China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Liu
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jizeng Wang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, 730000, PR China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
21
|
Ivanov IT, Paarvanova B, Slavov T. Dipole relaxation in erythrocyte membrane: involvement of spectrin skeleton. Bioelectrochemistry 2012; 88:148-55. [PMID: 22513264 DOI: 10.1016/j.bioelechem.2012.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/16/2022]
Abstract
Polarization of spectrin-actin undermembrane skeleton of red blood cell (RBC) plasma membranes was studied by impedance spectroscopy. Relatedly, dielectric spectra of suspensions that contained RBCs of humans, mammals (bovine, horse, dog, cat) and birds (turkey, pigeon, duck), and human RBC ghost membranes were continuously obtained during heating from 20 to 70°C. Data for the complex admittance and capacitance were used to derive the suspension resistance, R, and capacitance, C, as well as the energy loss as a function of temperature. As in previous studies, two irreversible temperature-induced transitions in the human RBC plasma membrane were detected at 49.5°C and at 60.7°C (at low heating rate). The transition at 49.5°C was evident from the abrupt changes in R, and C and the fall in the energy loss, due to dipole relaxation. For the erythrocytes of indicated species the changes in R and C displayed remarkable and similar frequency profiles within the 0.05-13MHz domain. These changes were subdued after cross-linking of membranes by diamide (0.3-1.3mM) and glutaraldehyde (0.1-0.4%) and at the presence of glycerol (10%). Based on the above results and previous reports, the dielectric changes at 49.5°C were related to dipole relaxation and segmental mobility of spectrin cytoskeleton. The results open the possibility for selective dielectric thermolysis of cell cytoskeleton.
Collapse
Affiliation(s)
- I T Ivanov
- Dept. of Physics, Biophysics, Roentgenology and Radiology, Medical Faculty, Thracian University, Stara Zagora 6000, Bulgaria.
| | | | | |
Collapse
|
22
|
Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects. Q Rev Biophys 2011; 44:391-432. [PMID: 21729348 DOI: 10.1017/s0033583511000047] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditional particle-based simulation strategies are impractical for the study of lipid bilayers and biological membranes over the longest length and time scales (microns, seconds and longer) relevant to cellular biology. Continuum-based models developed within the frameworks of elasticity theory, fluid dynamics and statistical mechanics provide a framework for studying membrane biophysics over a range of mesoscopic to macroscopic length and time regimes, but the application of such ideas to simulation studies has occurred only relatively recently. We review some of our efforts in this direction with emphasis on the dynamics in model membrane systems. Several examples are presented that highlight the prominent role of hydrodynamics in membrane dynamics and we argue that careful consideration of fluid dynamics is key to understanding membrane biophysics at the cellular scale.
Collapse
|
23
|
Nanomechanics of multiple units in the erythrocyte membrane skeletal network. Ann Biomed Eng 2010; 38:2956-67. [PMID: 20490687 PMCID: PMC2914261 DOI: 10.1007/s10439-010-0040-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 04/06/2010] [Indexed: 11/23/2022]
Abstract
Erythrocytes undergo deformations when they transport O2 and CO2 across the membrane, yet the 3D nanomechanics of the skeletal network remains poorly understood. Expanding from our previous single isolated unit, we now simulate networks consisting of 1–10 concentric rings of repeating units in equibiaxial deformation. The networks are organized with (1) a 3D model for a single unit, (2) a wrap-around mode between Sp and actin protofilament in the intra-unit interaction, and (3) a random inter-unit connectivity. These assumptions permit efficient five-degrees-of-freedom (5DOF) simulations when up to 30 pN of radial forces are applied to the boundary spectrin (Sp) and the center and other units are analyzed. As 6 Sp balance their tensions, hexagonal units become irregular. While actin protofilaments remain tangent to the network, their yaw (Φ) angles change drastically with addition of neighboring units or an Sp unfolding. It is anticipated that during deformation, transmembrane complexes associated with the network move laterally through the lipid bilayer and increase the diffusion of molecules across the membrane. When protofilament/Sp sweeps under the lipid bilayer, they mix up the submembrane concentration gradient. Thus, the nanomechanics of actin protofilaments and Sp may enhance the transport of molecules during erythrocyte deformation.
Collapse
|
24
|
Peng Z, Asaro RJ, Zhu Q. Multiscale simulation of erythrocyte membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031904. [PMID: 20365767 PMCID: PMC2876725 DOI: 10.1103/physreve.81.031904] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/15/2010] [Indexed: 05/07/2023]
Abstract
To quantitatively predict the mechanical response and mechanically induced remodeling of red blood cells, we developed a multiscale method to correlate distributions of internal stress with overall cell deformation. This method consists of three models at different length scales: in the complete cell level the membrane is modeled as two distinct layers of continuum shells using finite element method (Level III), in which the skeleton-bilayer interactions are depicted as a slide in the lateral (i.e., in-plane) direction (caused by the mobility of the skeleton-bilayer pinning points) and a normal contact force; the constitutive laws of the inner layer (the protein skeleton) are obtained from a molecular-based model (Level II); the mechanical properties of the spectrin (Sp, a key component of the skeleton), including its folding/unfolding reactions, are obtained with a stress-strain model (Level I). Model verification is achieved through comparisons with existing numerical and experimental studies in terms of the resting shape of the cell as well as cell deformations induced by micropipettes and optical tweezers. Detailed distributions of the interaction force between the lipid bilayer and the skeleton that may cause their dissociation and lead to phenomena such as vesiculation are predicted. Specifically, our model predicts correlation between the occurrence of Sp unfolding and increase in the mechanical load upon individual skeleton-bilayer pinning points. Finally a simulation of the necking process after skeleton-bilayer dissociation, a precursor of vesiculation, is conducted.
Collapse
Affiliation(s)
- Zhangli Peng
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
25
|
Bezares J, Asaro RJ, Hawley M. Macromolecular structure of the organic framework of nacre in Haliotis rufescens: implications for mechanical response. J Struct Biol 2010; 170:484-500. [PMID: 20109552 DOI: 10.1016/j.jsb.2010.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/25/2022]
Abstract
Direct experimental probes of the mechanical response of the biopolymer framework of nacre extracted from the shell of the gastropod Haliotis rufescens have been performed. Both monotonic tensile, and time dependent relaxation, tests revealed that the tissue comprising the interlamellar layers within nacre obeyed a simple constitutive model conforming to the visco-elastic standard linear solid, with time constants in the range tau=140+/-4s. We conclude that the behavior is essentially that imparted by the chitin core of these layers. Interestingly we find that the chitin network of the core appears to be connected over multiple CaCO(3) tiles. A simple composite model is formulated and used to interpret the observed behavior.
Collapse
Affiliation(s)
- Jiddu Bezares
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
26
|
Zhang R, Brown FLH. Cytoskeleton mediated effective elastic properties of model red blood cell membranes. J Chem Phys 2008; 129:065101. [PMID: 18715105 DOI: 10.1063/1.2958268] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The plasma membrane of human red blood cells consists of a lipid bilayer attached to a regular network of underlying cytoskeletal polymers. We model this system at a dynamic coarse-grained level, treating the bilayer as an elastic sheet and the cytoskeletal network as a series of phantom entropic springs. In contrast to prior simulation efforts, we explicitly account for dynamics of the cytoskeletal network, both via motion of the protein anchors that attach the cytoskeleton to the bilayer and through breaking and reconnection of individual cytoskeletal filaments. Simulation results are explained in the context of a simple mean field percolation model and comparison is made to experimental measurements of red blood cell fluctuation amplitudes.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|