1
|
Jovičić SM. Review of contemporary fluorescence correlation spectroscopy method in diverse solution studies. Q Rev Biophys 2024; 57:e13. [PMID: 39465646 DOI: 10.1017/s003358352400012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fluorescence correlation spectroscopy (FCS) is a well-known and established non-invasive method for quantification of physical parameters that preside over molecular mechanisms and dynamics. It combines maximum sensitivity and statistical confidence for the analysis of speed, size, and number of fluorescent molecules and interactions with surrounding molecules by time-averaging fluctuation analysis in a well-defined volume element. The narrow compass of this study is to acquaint the basic principle of diffusion and the FCS method in general regarding variable magnitudes and standardization adjustment. In this review, we give a theoretical introduction, examples of experimental applications, and utensils in solution systems with future perspectives.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Kosheleva I, Henning R, Kim I, Kim SO, Kusel M, Srajer V. Sample-minimizing co-flow cell for time-resolved pump-probe X-ray solution scattering. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:490-499. [PMID: 36891863 PMCID: PMC10000795 DOI: 10.1107/s1600577522012127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 06/10/2023]
Abstract
A fundamental problem in biological sciences is understanding how macromolecular machines work and how the structural changes of a molecule are connected to its function. Time-resolved techniques are vital in this regard and essential for understanding the structural dynamics of biomolecules. Time-resolved small- and wide-angle X-ray solution scattering has the capability to provide a multitude of information about the kinetics and global structural changes of molecules under their physiological conditions. However, standard protocols for such time-resolved measurements often require significant amounts of sample, which frequently render time-resolved measurements impossible. A cytometry-type sheath co-flow cell, developed at the BioCARS 14-ID beamline at the Advanced Photon Source, USA, allows time-resolved pump-probe X-ray solution scattering measurements to be conducted with sample consumption reduced by more than ten times compared with standard sample cells and protocols. The comparative capabilities of the standard and co-flow experimental setups were demonstrated by studying time-resolved signals in photoactive yellow protein.
Collapse
Affiliation(s)
- Irina Kosheleva
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Robert Henning
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Insik Kim
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| | - Seong Ok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, E6-6 #513, 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Michael Kusel
- Kusel Design, 12 Coghlan Street, Niddrie, Wurundjeri Country 3042, Australia
| | - Vukica Srajer
- BioCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Ave, Bld 434B, Lemont, IL 60439, USA
| |
Collapse
|
3
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
4
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
5
|
Huyke DA, Ramachandran A, Oyarzun DI, Kroll T, DePonte DP, Santiago JG. On the competition between mixing rate and uniformity in a coaxial hydrodynamic focusing mixer. Anal Chim Acta 2020; 1103:1-10. [PMID: 32081173 DOI: 10.1016/j.aca.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Fast microfluidic mixers for use with line-of-sight integrating detection schemes pose unique challenges. Such detectors typically cannot discriminate signal from slow moving (e.g. near internal walls) and fast-moving portions of the fluid stream. This convolves reaction rate dynamics with fluid flow residence time dynamics. Further, the small cross sections of typical three-dimensional hydrodynamic focusing devices lead to lower detection signals. The current study focuses on achieving both small time scales of mixing and homogenous residence times. This is achieved by injecting sample through a center capillary and hydrodynamically focusing using a sheath flow within a tapered second capillary. The current design also features a third, larger coaxial capillary. The mixed stream flows into the large cross-section of this third capillary to decelerate and expand the stream by up to 14-fold to improve line-of-sight signal strength of reaction products. Hydrodynamic focusing, mixing, and expansion are studied using analytical and numerical models and also studied experimentally using a fluorescein-iodide quenching reaction. The experimentally validated models are used to explore trade-offs between mixing rate and uniformity. For the first time, this work presents detailed analysis of the Lagrangian time history of species transport during mixing inside coaxial capillaries to measure mixing nonuniformity. The mixing region enables order 100 μs mixing times and residence time widths of the same order (140 μs).
Collapse
Affiliation(s)
- Diego A Huyke
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, USA
| | - Diego I Oyarzun
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Daniel P DePonte
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Observation of Continuous Contraction and a Metastable Misfolded State during the Collapse and Folding of a Small Protein. J Mol Biol 2019; 431:3814-3826. [DOI: 10.1016/j.jmb.2019.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023]
|
7
|
Quast RB, Margeat E. Studying GPCR conformational dynamics by single molecule fluorescence. Mol Cell Endocrinol 2019; 493:110469. [PMID: 31163201 DOI: 10.1016/j.mce.2019.110469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Over the last decades, G protein coupled receptors (GPCRs) have experienced a tremendous amount of attention, which has led to a boost of structural and pharmacological insights on this large membrane protein superfamily involved in various essential physiological functions. Recently, evidence has emerged that, rather than being activated by ligands in an on/off manner switching from an inactive to an active state, GPCRs exhibit high structural flexibility in the absence and even in the presence of ligands. So far the physiological as well as pharmacological impact of this structural flexibility remains largely unexplored albeit its potential role in precisely fine-tuning receptor function and regulating the specificity of signal transduction into the cell. By complementing other biophysical approaches, single molecule fluorescence (SMF) offers the advantage of monitoring structural dynamics in biomolecules in real-time, with minimal structural invasiveness and in the context of complex biological environments. In this review a general introduction to GPCR structural dynamics is given followed by a presentation of SMF methods used to explore them. Particular attention is paid to single molecule Förster resonance energy transfer (smFRET), a key method to measure actual distance changes between two probes, and highlight conformational changes occurring at timescales relevant for protein conformational movements. The available literature reporting on GPCR structural dynamics by SMF is discussed with a focus on the newly gained biological insights on receptor activation and signaling, in particular for the β2 adrenergic and the metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Robert B Quast
- CBS, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Emmanuel Margeat
- CBS, CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
High-throughput smFRET analysis of freely diffusing nucleic acid molecules and associated proteins. Methods 2019; 169:21-45. [PMID: 31356875 DOI: 10.1016/j.ymeth.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for nanometer-scale studies of single molecules. Solution-based smFRET, in particular, can be used to study equilibrium intra- and intermolecular conformations, binding/unbinding events and conformational changes under biologically relevant conditions without ensemble averaging. However, single-spot smFRET measurements in solution are slow. Here, we detail a high-throughput smFRET approach that extends the traditional single-spot confocal geometry to a multispot one. The excitation spots are optically conjugated to two custom silicon single photon avalanche diode (SPAD) arrays. Two-color excitation is implemented using a periodic acceptor excitation (PAX), allowing distinguishing between singly- and doubly-labeled molecules. We demonstrate the ability of this setup to rapidly and accurately determine FRET efficiencies and population stoichiometries by pooling the data collected independently from the multiple spots. We also show how the high throughput of this approach can be used o increase the temporal resolution of single-molecule FRET population characterization from minutes to seconds. Combined with microfluidics, this high-throughput approach will enable simple real-time kinetic studies as well as powerful molecular screening applications.
Collapse
|
9
|
Hamadani KM, Howe J, Jensen MK, Wu P, Cate JHD, Marqusee S. An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer. J Biol Chem 2017; 292:15636-15648. [PMID: 28754692 DOI: 10.1074/jbc.m117.791723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational phenotypes of interest.
Collapse
Affiliation(s)
- Kambiz M Hamadani
- From the California Institute for Quantitative Biosciences and .,the Department of Chemistry and Biochemistry, California State University, San Marcos, California 92096, and
| | - Jesse Howe
- the Department of Chemistry and Biochemistry, California State University, San Marcos, California 92096, and
| | | | - Peng Wu
- the Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Jamie H D Cate
- From the California Institute for Quantitative Biosciences and .,the Departments of Molecular and Cell Biology and.,Chemistry, University of California, Berkeley, California 94720
| | - Susan Marqusee
- From the California Institute for Quantitative Biosciences and .,the Departments of Molecular and Cell Biology and
| |
Collapse
|
10
|
Goluguri RR, Udgaonkar JB. Microsecond Rearrangements of Hydrophobic Clusters in an Initially Collapsed Globule Prime Structure Formation during the Folding of a Small Protein. J Mol Biol 2016; 428:3102-17. [PMID: 27370109 DOI: 10.1016/j.jmb.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 12/14/2022]
Abstract
Determining how polypeptide chain collapse initiates structure formation during protein folding is a long standing goal. It has been challenging to characterize experimentally the dynamics of the polypeptide chain, which lead to the formation of a compact kinetic molten globule (MG) in about a millisecond. In this study, the sub-millisecond events that occur early during the folding of monellin from the guanidine hydrochloride-unfolded state have been characterized using multiple fluorescence and fluorescence resonance energy transfer probes. The kinetic MG is shown to form in a noncooperative manner from the unfolded (U) state as a result of at least three different processes happening during the first millisecond of folding. Initial chain compaction completes within the first 37μs, and further compaction occurs only after structure formation commences at a few milliseconds of folding. The transient nonnative and native-like hydrophobic clusters with side chains of certain residues buried form during the initial chain collapse and the nonnative clusters quickly disassemble. Subsequently, partial chain desolvation occurs, leading to the formation of a kinetic MG. The initial chain compaction and subsequent chain rearrangement appear to be barrierless processes. The two structural rearrangements within the collapsed globule appear to prime the protein for the actual folding transition.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.
| |
Collapse
|
11
|
Kapanidis A, Majumdar D, Heilemann M, Nir E, Weiss S. Alternating Laser Excitation for Solution-Based Single-Molecule FRET. Cold Spring Harb Protoc 2015; 2015:979-987. [PMID: 26527772 DOI: 10.1101/pdb.top086405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) has been widely applied to the study of fluorescently labeled biomolecules on surfaces and in solution. Sorting single molecules based on fluorescent dye stoichiometry provides one with further layers of information and also enables "filtering" of unwanted molecules from the analysis. We accomplish this sorting by using alternating laser excitation (ALEX) in combination with smFRET measurements; here we describe the implementation of these methodologies for the study of biomolecules in solution.
Collapse
|
12
|
Goluguri RR, Udgaonkar JB. Rise of the Helix from a Collapsed Globule during the Folding of Monellin. Biochemistry 2015; 54:5356-65. [DOI: 10.1021/acs.biochem.5b00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
13
|
Probing Microsecond Reactions with Microfluidic Mixers and TCSPC. SPRINGER SERIES IN CHEMICAL PHYSICS 2015. [DOI: 10.1007/978-3-319-14929-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88. [PMID: 24336839 DOI: 10.1039/c3cs60311c] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
15
|
Microfluidics for biological measurements with single-molecule resolution. Curr Opin Biotechnol 2014; 25:69-77. [DOI: 10.1016/j.copbio.2013.08.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|
16
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
17
|
Wunderlich B, Nettels D, Schuler B. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices. LAB ON A CHIP 2014; 14:219-28. [PMID: 24195996 DOI: 10.1039/c3lc51002f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic mixing devices are increasingly popular tools for probing the non-equilibrium dynamics of biomolecular systems. Commonly, hydrodynamic focusing is used to reduce the length scales that limit the time of diffusive mixing in the laminar flow regime, such that even sub-millisecond dead times for triggering a reaction have been achieved. Detection of a suitable signal at different points along the channel downstream of the mixing region, corresponding to different times after mixing, then allows the kinetics of the reaction to be obtained. However, the requisite accurate conversion of the positions in the channel to times after mixing is complicated by Taylor dispersion, the combined effect of diffusion and shear flow on the dispersion of the molecules in the microfluidic device. As a result, an accurate position-to-time conversion has only been possible in the limiting regimes, i.e. for very early times, where sample diffusion can be neglected, and for very long times, where the molecules have uniformly sampled the entire channel cross-section. Here, we use detailed three-dimensional, time-dependent finite-element calculations to obtain an accurate position-to-time conversion that bridges these two limits and allows us to quantify the effects of Taylor dispersion on the time resolution of a representative mixing device optimized for single-molecule fluorescence detection. The accuracy of the calculations is confirmed by direct comparison of the calculated velocity field with dual-focus fluorescence correlation spectroscopy measurements.
Collapse
Affiliation(s)
- B Wunderlich
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | | | | |
Collapse
|
18
|
Abstract
Single-molecule spectroscopy has developed into a widely used method for probing the structure, dynamics, and mechanisms of biomolecular systems, especially in combination with Förster resonance energy transfer (FRET). In this introductory tutorial, essential concepts and methods will be outlined, from the FRET process and the basic considerations for sample preparation and instrumentation to some key elements of data analysis and photon statistics. Different approaches for obtaining dynamic information over a wide range of timescales will be explained and illustrated with examples, including the quantitative analysis of FRET efficiency histograms, correlation spectroscopy, fluorescence trajectories, and microfluidic mixing.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057
Zurich, Switzerland
| |
Collapse
|
19
|
Holzmeister P, Acuna GP, Grohmann D, Tinnefeld P. Breaking the concentration limit of optical single-molecule detection. Chem Soc Rev 2013; 43:1014-28. [PMID: 24019005 DOI: 10.1039/c3cs60207a] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade, single-molecule detection has been successfully utilized in the life sciences and materials science. Yet, single-molecule measurements only yield meaningful results when working in a suitable, narrow concentration range. On the one hand, diffraction limits the minimal size of the observation volume in optical single-molecule measurements and consequently a sample must be adequately diluted so that only one molecule resides within the observation volume. On the other hand, at ultra-low concentrations relevant for sensing, the detection volume has to be increased in order to detect molecules in a reasonable timespan. This in turn results in the loss of an optimal signal-to-noise ratio necessary for single-molecule detection. This review discusses the requirements for effective single-molecule fluorescence applications, reflects on the motivation for the extension of the dynamic concentration range of single-molecule measurements and reviews various approaches that have been introduced recently to solve these issues. For the high-concentration limit, we identify four promising strategies including molecular confinement, optical observation volume reduction, temporal separation of signals and well-conceived experimental designs that specifically circumvent the high concentration limit. The low concentration limit is addressed by increasing the measurement speed, parallelization, signal amplification and preconcentration. The further development of these ideas will expand our possibilities to interrogate research questions with the clarity and precision provided only by the single-molecule approach.
Collapse
Affiliation(s)
- Phil Holzmeister
- Braunschweig University of Technology, Institute for Physical & Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
20
|
Burke KS, Parul D, Reddish MJ, Dyer RB. A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics. LAB ON A CHIP 2013; 13:2912-21. [PMID: 23760106 PMCID: PMC3733270 DOI: 10.1039/c3lc50497b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic focusing of a protein sample stream by a surrounding sheath solution to achieve rapid diffusional mixing between the sample and sheath. Mixing initiates the reaction of interest. Reactions can be spatially observed by fluorescence or absorbance spectroscopy. We characterized the pixel-to-time calibration and diffusional mixing experimentally. We achieved a mixing time as short as 80 μs. We studied the kinetics of horse apomyoglobin (apoMb) unfolding from the intermediate (I) state to its completely unfolded (U) state, induced by a pH jump from the initial pH of 4.5 in the sample stream to a final pH of 2.0 in the sheath solution. The reaction time was probed using the fluorescence of 1-anilinonaphthalene-8-sulfonate (1,8-ANS) bound to the folded protein. We observed unfolding of apoMb within 760 μs, without populating additional intermediate states under these conditions. We also studied the reaction kinetics of the conversion of pyruvate to lactate catalyzed by lactate dehydrogenase using the intrinsic tryptophan emission of the enzyme. We observe sub-millisecond kinetics that we attribute to Michaelis complex formation and loop domain closure. These results demonstrate the utility of the three-dimensional focusing mixer for biophysical studies of protein dynamics.
Collapse
Affiliation(s)
- Kelly S. Burke
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | | | - Michael J. Reddish
- Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States of America
| | - R. Brian Dyer
- Emory University, 1515 Dickey Drive, Atlanta, GA 30322, United States of America
| |
Collapse
|
21
|
Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat Protoc 2013; 8:1459-74. [PMID: 23845960 DOI: 10.1038/nprot.2013.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic mixing in combination with single-molecule spectroscopy allows the investigation of complex biomolecular processes under non-equilibrium conditions. Here we present a protocol for building, installing and operating microfluidic mixing devices optimized for this purpose. The mixer is fabricated by replica molding with polydimethylsiloxane (PDMS), which allows the production of large numbers of devices at a low cost using a single microfabricated silicon mold. The design is based on hydrodynamic focusing combined with diffusive mixing and allows single-molecule kinetics to be recorded over five orders of magnitude in time, from 1 ms to ∼100 s. Owing to microfabricated particle filters incorporated in the inlet channels, the devices provide stable flow for many hours to days without channel blockage, which allows reliable collection of high-quality data. Modular design enables rapid exchange of samples and mixing devices, which are mounted in a specifically designed holder for use with a confocal microscopy detection system. Integrated Peltier elements provide temperature control from 4 to 37 °C. The protocol includes the fabrication of a silicon master, production of the microfluidic devices, instrumentation setup and data acquisition. Once a silicon master is available, devices can be produced and experiments started within ∼1 d of preparation. We demonstrate the performance of the system with single-molecule Förster resonance energy transfer (FRET) measurements of kinetics of protein folding and conformational changes. The dead time of 1 ms, as predicted from finite element calculations, was confirmed by the measurements.
Collapse
|
22
|
Udgaonkar JB. Polypeptide chain collapse and protein folding. Arch Biochem Biophys 2013; 531:24-33. [DOI: 10.1016/j.abb.2012.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022]
|
23
|
Schuler B, Hofmann H. Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr Opin Struct Biol 2013; 23:36-47. [DOI: 10.1016/j.sbi.2012.10.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
24
|
Lesoine JF, Venkataraman PA, Maloney PC, Dumont M, Novotny L. Nanochannel-based single molecule recycling. NANO LETTERS 2012; 12:3273-8. [PMID: 22662745 PMCID: PMC3377747 DOI: 10.1021/nl301341m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly reverse the electrical potential controlling the flow direction. Our method does not rely on continuous observation and therefore is less susceptible to fluorescence blinking than existing fluorescence-based trapping schemes. The variation in the turnaround times can be used to measure the diffusion coefficient on a single molecule level. We demonstrate the ability to recycle both proteins and DNA in nanochannels and show that the procedure can be combined with single-pair Förster energy transfer. Nanochannel-based single molecule recycling holds promise for studying conformational dynamics on the same single molecule in solution and without surface tethering.
Collapse
Affiliation(s)
- John F. Lesoine
- Institute of Optics, University of Rochester, Rochester NY 14627
| | - Prahnesh A. Venkataraman
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14627
| | - Peter C. Maloney
- Department of Physiology, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Mark Dumont
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14627
| | - Lukas Novotny
- Institute of Optics, University of Rochester, Rochester NY 14627
| |
Collapse
|
25
|
Schuler B, Müller-Späth S, Soranno A, Nettels D. Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 2012; 896:21-45. [PMID: 22821515 DOI: 10.1007/978-1-4614-3704-8_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intrinsically disordered proteins (IDPs) are characterized by a large degree of conformational heterogeneity. In such cases, classical experimental methods often yield only mean values, averaged over the entire ensemble of molecules. The microscopic distributions of conformations, trajectories, or sequences of events often remain unknown, and with them the underlying molecular mechanisms. Signal averaging can be avoided by observing individual molecules. A particularly versatile method is highly sensitive fluorescence detection. In combination with Förster resonance energy transfer (FRET), distances and conformational dynamics can be investigated in single molecules. This chapter introduces the practical aspects of applying confocal single-molecule FRET experiments to the study of IDPs.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
26
|
Haran G. How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol 2011; 22:14-20. [PMID: 22104965 DOI: 10.1016/j.sbi.2011.10.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/15/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
Unfolded proteins under strongly denaturing conditions are highly expanded. However, when the conditions are more close to native, an unfolded protein may collapse to a compact globular structure distinct from the folded state. This transition is akin to the coil-globule transition of homopolymers. Single-molecule FRET experiments have been particularly conducive in revealing the collapsed state under conditions of coexistence with the folded state. The collapse can be even more readily observed in natively unfolded proteins. Time-resolved studies, using FRET and small-angle scattering, have shown that the collapse transition is a very fast event, probably occurring on the submicrosecond time scale. The forces driving collapse are likely to involve both hydrophobic and backbone interactions. The loss of configurational entropy during collapse makes the unfolded state less stable compared to the folded state, thus facilitating folding.
Collapse
Affiliation(s)
- Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
27
|
Zhi Z, Liu P, Wang P, Huang Y, Zhao XS. Domain-Specific Folding Kinetics of Staphylococcal Nuclease Observed through Single-Molecule FRET in a Microfluidic Mixer. Chemphyschem 2011; 12:3515-8. [DOI: 10.1002/cphc.201100652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/17/2011] [Indexed: 11/07/2022]
|
28
|
Sharma C, Malhotra D, Rathore AS. Review of Computational fluid dynamics applications in biotechnology processes. Biotechnol Prog 2011; 27:1497-1510. [DOI: 10.1002/btpr.689] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Gambin Y, Vandelinder V, Ferreon ACM, Lemke EA, Groisman A, Deniz AA. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat Methods 2011; 8:239-41. [PMID: 21297620 PMCID: PMC3071799 DOI: 10.1038/nmeth.1568] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/14/2010] [Indexed: 11/09/2022]
Abstract
We combined rapid microfluidic mixing with single-molecule fluorescence resonance energy transfer to study the folding kinetics of the intrinsically disordered human protein α-synuclein. The time-resolution of 0.2 ms revealed initial collapse of the unfolded protein induced by binding with lipid mimics and subsequent rapid formation of transient structures in the encounter complex. The method also enabled analysis of rapid dissociation and unfolding of weakly bound complexes triggered by massive dilution.
Collapse
Affiliation(s)
- Yann Gambin
- Dept of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Edward A. Lemke
- Dept of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex Groisman
- Dept of Physics, University of California San Diego, San Diego, CA, USA
| | - Ashok A. Deniz
- Dept of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
30
|
Ferreon ACM, Deniz AA. Protein folding at single-molecule resolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1021-9. [PMID: 21303706 DOI: 10.1016/j.bbapap.2011.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/22/2011] [Accepted: 01/25/2011] [Indexed: 12/15/2022]
Abstract
The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Allan Chris M Ferreon
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines MB-19, La Jolla, CA 92037, USA
| | | |
Collapse
|
31
|
Hoffmann A, Nettels D, Clark J, Borgia A, Radford SE, Clarke J, Schuler B. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). Phys Chem Chem Phys 2011; 13:1857-71. [PMID: 21218223 PMCID: PMC3378030 DOI: 10.1039/c0cp01911a] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Single molecule Förster resonance energy transfer (FRET) experiments are a versatile method for investigating the conformational distributions and dynamics of biological macromolecules. In a common type of experiment, the fluorescence bursts from individual molecules freely diffusing in solution are detected as they pass through the observation volume of a confocal microscope. Correlation analysis of the fluorescence bursts shows that under typical experimental conditions, for time scales up to several tens of milliseconds, the probability for a molecule to return to the confocal volume is greater than the probability of a new molecule being detected. Here we present RASP (recurrence analysis of single particles), a method that is based on this recurrence behavior and allows us to significantly extend the information that can be extracted from single molecule FRET experiments. The number and peak shapes of subpopulations within the sample can be identified essentially in a model-free way by constructing recurrence FRET efficiency histograms. These are obtained by first selecting photon bursts from a small transfer efficiency range (initial bursts), and then building the FRET efficiency histogram only from bursts detected within a short time (the recurrence interval) after the initial bursts. Systematic variation of the recurrence interval allows the kinetics of interconversion between subpopulations to be determined on time scales from ~50 μs up to ~100 ms from equilibrium measurements. We demonstrate the applicability of the method on measurements of several peptides and proteins with different degrees of conformational heterogeneity and folding dynamics. The concepts presented here can be extended to other observables available from single molecule fluorescence experiments.
Collapse
Affiliation(s)
- Armin Hoffmann
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Jennifer Clark
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
- Astbury Centre for Structural Molecular Biology; Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
- Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology; Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jane Clarke
- Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, UK
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
High-throughput single-molecule optofluidic analysis. Nat Methods 2011; 8:242-5. [PMID: 21297618 DOI: 10.1038/nmeth.1569] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/12/2011] [Indexed: 11/08/2022]
Abstract
We describe a high-throughput, automated single-molecule measurement system, equipped with microfluidics. The microfluidic mixing device has integrated valves and pumps to accurately accomplish titration of biomolecules with picoliter resolution. We demonstrate that the approach enabled rapid sampling of biomolecule conformational landscape and of enzymatic activity, in the form of transcription by Escherichia coli RNA polymerase, as a function of the chemical environment.
Collapse
|
33
|
Orte A, Clarke RW, Klenerman D. Single-molecule fluorescence coincidence spectroscopy and its application to resonance energy transfer. Chemphyschem 2010; 12:491-9. [PMID: 20922742 DOI: 10.1002/cphc.201000636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Indexed: 12/23/2022]
Abstract
The use of Förster resonance energy transfer (FRET) as a tool to study biomolecules has been greatly enhanced by new advances in single-molecule fluorescence (SMF) techniques. This has allowed new insights into the structure and dynamics of complex biomolecular machinery. However, there are still technical drawbacks in the application of conventional SMF-FRET. Herein, we review the use of single-molecule coincidence spectroscopy to study FRET systems, an analytical variation of the conventional scheme, using one or two confocal lasers of different colours. We highlight the advantages of the coincidence spectroscopy and illustrate this with examples of its application to some biological systems of interest.
Collapse
Affiliation(s)
- Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada, Spain.
| | | | | |
Collapse
|
34
|
Buchner GS, Murphy RD, Buchete NV, Kubelka J. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1001-20. [PMID: 20883829 DOI: 10.1016/j.bbapap.2010.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at multiple levels, from atomistic to coarse-grained representations. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ginka S Buchner
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA; Universität Würzbug, Würzburg, Germany
| | | | | | | |
Collapse
|
35
|
Dasgupta A, Udgaonkar JB. Evidence for initial non-specific polypeptide chain collapse during the refolding of the SH3 domain of PI3 kinase. J Mol Biol 2010; 403:430-45. [PMID: 20837026 DOI: 10.1016/j.jmb.2010.08.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 12/01/2022]
Abstract
Refolding of the SH3 domain of PI3 kinase from the guanidine hydrochloride (GdnHCl)-unfolded state has been probed with millisecond (stopped flow) and sub-millisecond (continuous flow) measurements of the change in fluorescence, circular dichroism, ANS fluorescence and three-site fluorescence resonance energy transfer (FRET) efficiency. Fluorescence measurements are unable to detect structural changes preceding the rate-limiting step of folding, whereas measurements of changes in ANS fluorescence and FRET efficiency indicate that polypeptide chain collapse precedes the major structural transition. The initial chain collapse reaction is complete within 150 μs. The collapsed form at this time possesses hydrophobic clusters to which ANS binds. Each of the three measured intra-molecular distances has contracted to an extent predicted by the dependence of the FRET signal in completely unfolded protein on denaturant concentration, indicating that contraction is non-specific. The extent of contraction of each intra-molecular distance in the collapsed product of sub-millisecond folding increases continuously with a decrease in [GdnHCl]. The gradual contraction is continuous with the gradual contraction seen in completely unfolded protein, and its dependence on [GdnHCl] is not indicative of an all-or-none collapse reaction. The dependence of the extent of contraction on [GdnHCl] was similar for the three distances, indicating that chain collapse occurs in a synchronous manner across different segments of the polypeptide chain. The sub-millisecond measurements of folding in GdnHCl were unable to determine whether hydrophobic cluster formation, probed by ANS fluorescence measurement, precedes chain contraction probed by FRET. To determine whether hydrogen bonding plays a role in initial chain collapse, folding was initiated by dilution of the urea-unfolded state. The extent of contraction of at least one intra-molecular distance in the collapsed product of sub-millisecond folding in urea is similar to that seen in GdnHCl, and the initial contraction in urea too appears to be gradual.
Collapse
Affiliation(s)
- Amrita Dasgupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | |
Collapse
|
36
|
Gambin Y, Deniz AA. Multicolor single-molecule FRET to explore protein folding and binding. MOLECULAR BIOSYSTEMS 2010; 6:1540-7. [PMID: 20601974 PMCID: PMC3005188 DOI: 10.1039/c003024d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Proper protein function in cells, tissues and organisms depends critically on correct protein folding or interaction with partners. Over the last decade, single-molecule FRET (smFRET) has emerged as a powerful tool to probe complex distributions, dynamics, pathways and landscapes in protein folding and binding reactions, leveraging its ability to avoid averaging over an ensemble of molecules. While smFRET was practiced in a two-color form until recently, the last few years have seen the development of enhanced multicolor smFRET methods that provide additional structural information permitting us to probe more complex mechanisms. In this review, we provide a brief introduction to the smFRET technique, then follow with advanced multicolor measurements and end with ongoing methodology developments in microfluidics and protein labeling that are beginning to make these techniques more broadly applicable to answering a number of key questions about folding and binding.
Collapse
Affiliation(s)
- Yann Gambin
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla CA 92037, USA. Fax: +1 (858) 784-9067; Tel: +1 (858) 784-9192
| | - Ashok A. Deniz
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla CA 92037, USA. Fax: +1 (858) 784-9067; Tel: +1 (858) 784-9192
| |
Collapse
|
37
|
Ensign DL, Pande VS. Bayesian inference for Brownian dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:016705. [PMID: 20866759 DOI: 10.1103/physreve.82.016705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Indexed: 05/29/2023]
Abstract
We present a Bayesian method for inferring the potential energy experienced by a particle subject to Brownian dynamics. Assuming polynomial potentials, the best polynomial order can be determined by analytical computation of a series of Bayes factors. The coefficients can be estimated from marginal posterior distributions. The method is applicable not only for the motion of an actual Brownian particle but to many kinds of single degree-of-freedom trajectories with Gaussian noise and short, nonzero correlation times.
Collapse
Affiliation(s)
- Daniel L Ensign
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
38
|
Gambin Y, Simonnet C, VanDelinder V, Deniz A, Groisman A. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. LAB ON A CHIP 2010; 10:598-609. [PMID: 20162235 DOI: 10.1039/b914174j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Studies of the kinetics of biochemical reactions, especially of folding of proteins and RNA, are important for understanding the function of biomolecules and processes in live cells. Many biochemical reactions occur rapidly and thus need to be triggered on very short time scales for their kinetics to be studied, which is often accomplished by mixing in a turbulent flow. More rapid and sample-efficient mixing is achieved in laminar flow in a microfluidic device, in which the sample is two-dimensionally (2D) focused to a thin sheet. Here we describe the design and operation of an ultrafast microfluidic mixer with three-dimensional (3D) flow focusing. The confinement of a 3D-focused sample to a narrow stream near the middle of a microchannel renders its velocity nearly uniform and makes it possible to monitor the reaction kinetics without exclusion of any parts of the sample. Hence, the sample consumption is substantially reduced and the fluorescence of the sample can be monitored without a confocal setup. Moreover, the 3D-focusing allows facile measurements of velocity of the sample with a high spatial resolution using a specially developed technique based on epi-fluorescence imaging. The data on the velocity vs. position are used to precisely calibrate the conversion between position and the reaction time, which is essential for accurate kinetic measurements. The device performs mixing on a 10 micros scale, which is comparable to that of the laminar mixers with 2D focusing. Unlike previous ultrafast laminar mixers, which were machined in hard materials, the present microfluidic device is made of a single cast of poly(dimethylsiloxane), PDMS, and is thus simpler and less expensive to manufacture.
Collapse
Affiliation(s)
- Yann Gambin
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
39
|
Ferreon ACM, Moran CR, Gambin Y, Deniz AA. Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 2010; 472:179-204. [PMID: 20580965 DOI: 10.1016/s0076-6879(10)72010-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) (also referred to as natively unfolded proteins) play critical roles in a variety of cellular processes such as transcription and translation and also are linked to several human diseases. Biophysical studies of IDPs present unusual experimental challenges due in part to their broad conformational heterogeneity and potentially complex binding-induced folding behavior. By minimizing the averaging over an ensemble (which is typical of most conventional experiments), single-molecule fluorescence (SMF) techniques have recently begun to add advanced capabilities for structural studies to the experimental arsenal of IDP investigators. Here, we briefly discuss a few common SMF methods that are particularly useful for IDP studies, including SMF resonance energy transfer and fluorescence correlation spectroscopy, along with site-specific protein-labeling methods that are essential for application of these methods to IDPs. We then present an overview of a few studies in this area, highlighting how SMF methods are being used to gain valuable information about two amyloidogenic IDPs, the Parkinson's disease-linked alpha-synuclein and the NM domain of the yeast prion protein Sup 35. SMF experiments provided new information about the proteins' rapidly fluctuating IDP forms, and the complex alpha-synuclein folding behavior upon its binding to lipid and membrane mimics. We anticipate that SMF and single-molecule methods, in general, will find broad application for structural and mechanistic studies of a wide variety of IDPs, both of their disordered conformations, and their ordered ensembles relevant for function and disease.
Collapse
Affiliation(s)
- Allan Chris M Ferreon
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
40
|
Lemke EA, Gambin Y, Vandelinder V, Brustad EM, Liu HW, Schultz PG, Groisman A, Deniz AA. Microfluidic device for single-molecule experiments with enhanced photostability. J Am Chem Soc 2009; 131:13610-2. [PMID: 19772358 DOI: 10.1021/ja9027023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microfluidic device made of polydimethylsiloxane (PDMS) addresses key limitations in single-molecule fluorescence experiments by providing high dye photostability and low sample sticking. Photobleaching is dramatically reduced by deoxygenation via gas diffusion through porous channel walls. Rapid buffer exchange in a laminar sheath flow followed by optical interrogation minimizes surface-sample contacts and allows the in situ addition and combination of other reagents.
Collapse
Affiliation(s)
- Edward A Lemke
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pfeil SH, Wickersham CE, Hoffmann A, Lipman EA. A microfluidic mixing system for single-molecule measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:055105. [PMID: 19485532 DOI: 10.1063/1.3125643] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This article describes the design and fabrication of a microfluidic mixing system optimized for ultrasensitive optical measurements. Channels are replica-molded in polydimethylsiloxane elastomer and sealed with fused-silica coverglass. The resulting devices have broad chemical compatibility and extremely low fluorescence background, enabling measurements of individual molecules under well-characterized nonequilibrium conditions. Fluid delivery and pressure connections are made using an interface that allows for rapid assembly, rapid sample exchange, and modular device replacement while providing access for high numerical aperture optics.
Collapse
Affiliation(s)
- Shawn H Pfeil
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
42
|
Abstract
The coil-globule transition, a tenet of the physics of polymers, has been identified in recent years as an important unresolved aspect of the initial stages of the folding of proteins. We describe the basics of the collapse transition, starting with homopolymers and continuing with proteins. Studies of denatured-state collapse under equilibrium are then presented. An emphasis is placed on single-molecule fluorescence experiments, which are particularly useful for measuring properties of the denatured state even under conditions of coexistence with the folded state. Attempts to understand the dynamics of collapse, both theoretically and experimentally, are then described. Only an upper limit for the rate of collapse has been obtained so far. Improvements in experimental and theoretical methodology are likely to continue to push our understanding of the importance of the denatured-state thermodynamics and dynamics for protein folding in the coming years.
Collapse
Affiliation(s)
- Guy Ziv
- Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel. E-mail:
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Gilad Haran
- Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel. E-mail:
| |
Collapse
|
43
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|