1
|
Guo X, Liu S, Hu W, Lyu X, Xu H, Zhu H, Pan H, Wang L, Wan Y, Yang H, Gong F. The association between metabolite profiles and impaired bone microstructure in adult growth hormone deficient rats. BMC Musculoskelet Disord 2024; 25:883. [PMID: 39508246 PMCID: PMC11539809 DOI: 10.1186/s12891-024-08010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Adult growth hormone deficiency (AGHD) is associated with an increased risk of fractures and impaired bone microstructure. Understanding the metabolic changes accompanying bone deterioration in AGHD might provide insights into mechanisms behind molecular changes and develop new biomarkers or nutritional strategies for bone destruction. Our study aimed to investigate the association between altered metabolite patterns and impaired bone microstructure in adult rats with growth hormone deficiency. METHODS Thirty seven-week-aged adult Lewis dwarf homozygous (dw/dw) rats (five females and five males), and adult Lewis dwarf heterozygous (dw/ +) rats (five females and five males) rats were compared. Micro-computed tomography (Micro-CT) was used to examine the bone's microstructure. Hematoxylin and eosin (H&E) staining were used to quantify the histological characteristics. Liquid chromatography-mass spectrometry untargeted serum metabolomic analysis was applied in the study. ELISA was used to measure serum bone turnover markers and IGF-1 levels. RESULTS Adult dw/dw rats exhibited great reductions in trabecular volume bone density (Tb.vBMD), bone volume/total volume (BV/TV), and cortical thickness (Ct. Th) compared with adult dw/ + rats (all p values < 0.05), indicating significant impairment in bone microstructure. The serum metabolite profiles revealed substantial differences between the dw/dw rats and dw/ + rats. A total of 134 differential metabolites in positive ion mode and 49 differential metabolites in negative mode were identified. Five metabolites, including Lysophosphatidylcholine(LPC) 20:3, LPC22:6, LPC22:4, cortisol and histamine levels were upregulated in dw/dw rats. The steroid hormone biosynthesis and bile secretion pathways were the main perturbed metabolic pathways. There were significant associations between differential metabolites and the impaired bone microstructure parameters, indicating that the selected metabolites might serve as potential biomarkers for deteriorated bone microstructure in AGHD. CONCLUSION Adult dw/dw rats exhibit impaired bone microstructure and distinct serum metabolic profiles, and the altered metabolites were significantly associated with bone microstructure destruction. This provides a new insight into understanding the mechanism of bone deterioration in AGHD patients from a metabolic perspective.
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Shanshan Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Wenjing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xiaorui Lyu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Hanyuan Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Huijuan Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Linjie Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongbo Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
2
|
Aversa LS, Cuboni D, Grottoli S, Ghigo E, Gasco V. A 2024 Update on Growth Hormone Deficiency Syndrome in Adults: From Guidelines to Real Life. J Clin Med 2024; 13:6079. [PMID: 39458028 PMCID: PMC11508958 DOI: 10.3390/jcm13206079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Adult growth hormone deficiency (GHD) has been recognized since the late 1980s. The clinical manifestations of adult GHD are often nonspecific, and diagnosis relies on GH stimulation tests, which are intricate, costly, time-consuming, and may carry the risk of adverse effects. Diagnosis is further complicated by factors like age, sex, and BMI, which affect GH response during testing. Therefore, GH replacement therapy remains challenging, requiring careful individualized evaluation of risks and benefits. The aim of this review is to provide an update on diagnosing and treating adult GHD, addressing current limitations and challenges based on recent studies. Methods: We conducted a comprehensive review of the literature regarding the diagnosis and management of adult GHD by searching PubMed and EMBASE. Only articles in English were included, and searches were conducted up to August 2024. Results: A review of guidelines and literature up to 2024 highlights the significant heterogeneity in the data and reveals various protocols for managing GHD, covering both diagnostic and therapeutic approaches. Conclusions: Despite diagnostic and treatment advances, managing adult GHD remains challenging due to variable presentation and the need for personalized GH therapy. Future efforts should aim to improve and standardize diagnostic and treatment protocols.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Gasco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.S.A.); (D.C.); (S.G.); (E.G.)
| |
Collapse
|
3
|
Li L, Wang Y, Huang Y, Lu Y, Wang W, Chen X, Shan X, Gao H, Yan Z. Impact of different growth hormone levels on gut microbiota and metabolism in short stature. Pediatr Res 2024; 96:115-123. [PMID: 38582946 DOI: 10.1038/s41390-024-03140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Growth hormone deficiency(GHD) and idiopathic short stature(ISS) are the primary causes of short stature in children. Animal experiments have revealed a link between growth hormone(GH), gut microbiota and metabolism, however, limited information is available from human trials. METHODS Fecal samples collected from GHD (n = 36), ISS (n = 32) and healthy control (HC) children(n = 16) were subjected to microbiome (16 S rRNA gene sequencing) and metabolome (nuclear magnetic resonance,NMR) analyses. RESULTS GHD, ISS and HC exhibit distinct differences in beta diversity of gut microbiota.In addition, short stature (GHD and ISS) exhibit higher relative abundance of Prevotellaceae_NK3B31_group at genus level compared to HC, whereas Rodentibacter, Rothia, and Pelomonas showed lower abundance. Additionally,Fusobacterium_mortiferum was identified as the characteristic species of GHD. Moreover, glucose metabolism, pyruvate metabolism and pyrimidine metabolism might play significant roles for distinguishing between GHD and normal GH groups (ISS and HC). Furthermore, a disease prediction model based on differential bacteria and metabolites between GHD and ISS exhibited high diagnostic value. CONCLUSION These findings highlight the characteristics of different GH levels on the gut microbiota and metabolism in children, providing novel perspectives for early diagnosis and prognostic treatment of short stature with abnormal GH levels. IMPACT The key message of our study is to identify human-relevant gut microbiota and host metabolic patterns that are interfered with growth hormone levels, and to develop biomarker models to identify short stature associated with growth hormone deficiency. We used idiopathic short stature as a control group for growth hormone deficiency, complementing the absence of height as a factor in the existing literature. Our study ultimately hopes to shed new light on the diagnosis and treatment of short stature children associated with growth hormone deficiency.
Collapse
Affiliation(s)
- Lan Li
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Radiology, First affiliated Hospital of Huzhou University, Huzhou, China
| | - Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinyin Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Lu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, China
| | - Weiyi Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoou Shan
- Department of Pediatric Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and encephalopathy research of Zhejiang Province, Wenzhou, China.
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, China.
| |
Collapse
|
4
|
Ratku B, Lőrincz H, Csiha S, Sebestyén V, Berta E, Bodor M, Nagy EV, Szabó Z, Harangi M, Somodi S. Serum afamin and its implications in adult growth hormone deficiency: a prospective GH-withdrawal study. Front Endocrinol (Lausanne) 2024; 15:1348046. [PMID: 38379862 PMCID: PMC10876836 DOI: 10.3389/fendo.2024.1348046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Adult growth hormone deficiency (AGHD) is associated with a high prevalence of metabolic syndrome (MS), which contributes to the unfavorable cardiovascular risk profile in these patients. Insulin like growth factor-1 (IGF-1) is a widely used biomarker, however it does not always reflect the cardiometabolic risk and has a poor relationship with clinical efficacy endpoints. Consequently, there is an unmet need for biomarkers to monitor responses to GH-replacement. Afamin is a hormone-like glycoprotein, expressed in the liver. Higher afamin levels are strongly associated with MS and insulin resistance (IR). Although both MS and IR are very common in AGHD, afamin has not been investigated in these patients. Purpose To investigate afamin as a potential biomarker in patients with AGHD. Materials and methods Participants included 20 AGHD patients (11 GH-substituted and 9 GH-unsubstituted) and 37 healthy controls. Subjects underwent routine laboratory examinations, anthropometric measurements, body composition analysis using multi-frequency bioelectrical impedance analysis (InBody720) and measurement of serum afamin concentrations. In GH-substituted subjects, GH-substitution was withdrawn for 2 months. Measurements were carried out right before GH-withdrawal, at the end of the 2-month withdrawal period, and 1 month after reinstituting GH-replacement therapy (GHRT). Results GH-unsubstituted patients demonstrated higher afamin levels compared to controls (p=0.03). Afamin positively correlated with skeletal muscle mass, bone mineral content, total body water, extracellular- and intracellular water content, insulin (all, p<0.01), HOMA-IR (p=0.01) and C-peptide (p=0.03) levels in AGHD but not in healthy controls. In GH-substituted patients 2-month of GH-withdrawal caused significant changes in body composition, including decreased fat-free mass, skeletal muscle mass, total body water, and intracellular water content (all, p<0.01); but these changes almost fully recovered 1 month after reinstituting GHRT. Unexpectedly, afamin levels decreased after GH-withdrawal (p=0.03) and increased with reinstitution (p<0.01). Changes of afamin levels during GH-withdrawal positively correlated with changes of HOMA-IR (r=0.80; p<0.01) and changes of insulin (r=0.71; p=0.02). Conclusion Higher afamin levels in unsubstituted AGHD patients might indicate severe metabolic dysregulation. Significant changes accompanying GH-withdrawal and reinstitution, along with strong correlations with measures of IR, suggest that afamin could be a promising biomarker to monitor GHRT-associated changes of insulin sensitivity.
Collapse
Affiliation(s)
- Balázs Ratku
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sára Csiha
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Veronika Sebestyén
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Miklós Bodor
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Harangi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Somodi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Zhao D, Zhuang W, Wang Y, Xu X, Qiao L. In-depth mass spectrometry analysis of rhGH administration altered energy metabolism and steroidogenesis. Talanta 2024; 266:125069. [PMID: 37574608 DOI: 10.1016/j.talanta.2023.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Growth hormone, as a proteohormone, is primarily known of its dramatic effect on longitudinal growth. Recombinant DNA technology has provided a safe, abundant and comparatively cheap supply of human GH for growth hormone-deficient individuals. However, many healthy subjects, especially athletics, administrate GH for enhanced athletic performance or strength. A better and more comprehensive understanding of rhGH effect in healthy individuals is urgent and essential. In this study, we recruited 14 healthy young male and injected rhGH once. Untargeted LC-MS metabolomics profiling of serum and urine was performed before and after the rhGH injection. The GH-induced dysregulation of energy related pathways, such as amino acid metabolism, nucleotide metabolism, glycolysis and TCA cycle, was revealed. Moreover, individuals supplemented with micro-doses of rhGH exhibited significantly changed urinary steroidal profiles, suggesting a role of rhGH in both energy metabolism and steroidogenesis. We expect that our results will be helpful to provide new evidence on the effects of rhGH injection and provide potential biomarkers for rhGH administration.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China
| | - Wenqian Zhuang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China
| | - Yang Wang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China
| | - Xin Xu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, 200000, China.
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
6
|
Yang H, Chen M, Wang Y, Jiang L, Wang L, Duan L, Gong F, Zhu H, Pan H. High-Performance Liquid Chromatography-Mass Spectrometry-based Metabolic Profiling of Adult Growth Hormone Deficiency. J Clin Endocrinol Metab 2023; 108:2272-2281. [PMID: 36883594 DOI: 10.1210/clinem/dgad129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
CONTEXT Patients with adult growth hormone deficiency (AGHD) are at increased risk of metabolic syndrome. Metabolic profiles in AGHD patients have been insufficiently evaluated. OBJECTIVE This work aims to explore serum metabolite profiles by metabolomics analysis and assess potential metabolites associated with recombinant human growth hormone (rhGH) treatment. METHODS Thirty-one AGHD patients and 31 healthy controls were enrolled. Untargeted ultra-performance liquid chromatography-coupled mass spectroscopy was conducted in all patients and controls at baseline and during 12 months of rhGH treatment in 11 AGHD patients. Data were processed by principal component analysis, variable importance in projection scoring, orthogonal partial least squares-discriminant analysis, and MetaboAnalyst 5.0. We further explored the associations between metabolites and clinical parameters. RESULTS Metabolomics indicated a distinct metabolic pattern between AGHD patients and healthy controls. The perturbed pathways mainly include the biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid elongation, degradation, and biosynthesis. rhGH treatment increased the levels of specific glycerophospholipids compounds and reduced fatty acid ester compounds. Significant correlations existed between the 40 identified metabolites and insulin-like growth factor-1 SD score (IGF-1 SDS), body composition, and glucose and lipid metabolism plasma markers. During rhGH treatment, there was a statistically significant negative correlation between deoxycholic acid glycine conjugate and waist-to-hip ratio, while a statistically significant positive correlation existed between decanoylcarnitine and serum low-density lipoprotein levels. CONCLUSION AGHD patients have unique metabolomic profiles. rhGH treatment alters the serum levels of several fatty acid compounds/amino acids, which may contribute to the improvement of metabolic status in AGHD patients.
Collapse
Affiliation(s)
- Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Meiping Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Yujie Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lingjuan Jiang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
7
|
Growth Hormone Alters Circulating Levels of Glycine and Hydroxyproline in Mice. Metabolites 2023; 13:metabo13020191. [PMID: 36837810 PMCID: PMC9959592 DOI: 10.3390/metabo13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Growth hormone (GH) has established effects on protein metabolism, such as increasing protein synthesis and decreasing amino acid degradation, but its effects on circulating amino acid levels are less studied. To investigate this relationship, metabolomic analyses were used to measure amino acid concentrations in plasma and feces of mice with alterations to the GH axis, namely bovine GH transgenic (bGH; increased GH action) and GH receptor knockout (GHRKO; GH resistant) mice. To determine the effects of acute GH treatment, GH-injected GH knockout (GHKO) mice were used to measure serum glycine. Furthermore, liver gene expression of glycine metabolism genes was assessed in bGH, GHRKO, and GH-injected GHKO mice. bGH mice had significantly decreased plasma glycine and increased hydroxyproline in both sexes, while GHRKO mice had increased plasma glycine in both sexes and decreased hydroxyproline in males. Glycine synthesis gene expression was decreased in bGH mice (Shmt1 in females and Shmt2 in males) and increased in GHRKO mice (Shmt2 in males). Acute GH treatment of GHKO mice caused decreased liver Shmt1 and Shmt2 expression and decreased serum glycine. In conclusion, GH alters circulating glycine and hydroxyproline levels in opposing directions, with the glycine changes at least partially driven by decreased glycine synthesis.
Collapse
|
8
|
Li J, Pan W, Qian J, Ni Y, Fu J, Ni S. Metabolomic Differential Compounds Reflecting the Clinical Efficacy of Polyethylene Glycol Recombinant Human Growth Hormone in the Treatment of Childhood Growth Hormone Deficiency. Front Pharmacol 2022; 13:864058. [PMID: 35571140 PMCID: PMC9092529 DOI: 10.3389/fphar.2022.864058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding metabolite profiles may aid in providing a reference for individualized treatment using PEG-rhGH. Therefore, this study aimed to evaluate the clinical efficacy of PEG-rhGH in treating GHD patients by using a metabolomic approach. Fifty-seven pediatric participants treated with PEG-rhGH were enrolled (28 GHD patients with high clinical efficacy and 29 GHD patients with lower clinical efficacy). Serum samples from all patients were first collected at baseline for biochemical detection; then metabolite levels were measured using gas chromatography time-of-flight mass spectrometry. The candidates included heptadecanoic acid, stearic acid, 2-hydroxybutyric acid, myristic acid, palmitoleic acid, D-galactose, dodecanoic acid, and oleic acid. The related metabolic pathways involved fatty acid metabolism and energy metabolism. This study suggested that growth gains of PEG-rhGH treatment might be differentiated by altered serum levels of fatty acid. Collectively, the metabolomic study provides unique insights into the use of PEG-rhGH as a therapeutic strategy for individualized treatment.
Collapse
Affiliation(s)
- Ji Li
- National Clinical Trial Institute, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiwei Pan
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianqin Qian
- National Clinical Trial Institute, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junfen Fu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaoqing Ni
- National Clinical Trial Institute, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Leogrande P, Jardines D, Martinez-Brito D, Domenici E, de la Torre X, Parr MK, Botrè F. Metabolomics workflow as a driven tool for rapid detection of metabolites in doping analysis. Development and validation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9217. [PMID: 34738273 DOI: 10.1002/rcm.9217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE This work demonstrates the high potential of combining high-resolution mass spectrometry with chemometric tools, using metabolomics as a guided tool for anti-doping analysis. The administration of 7-keto-DHEA was studied as a proof-of-concept of the effectiveness of the combination of knowledge-based and machine-learning approaches to differentiate the changes due to the athletic activities from those due to the recourse to doping substances and methods. METHODS Urine samples were collected from five healthy volunteers before and after an oral administration by identifying three time intervals. Raw data were acquired by injecting less than 1 μL of derivatized samples into a model 8890 gas chromatograph coupled to a model 7250 accurate-mass quadrupole time-of-flight analyzer (both from Agilent Technologies), by using a low-energy electron ionization source; the samples were then preprocessed to align peak retention times with the same accurate mass. The resulting data table was subjected to multivariate analysis. RESULTS Multivariate analysis showed a high similarity between the samples belonging to the same collection interval and a clear separation between the different excretion intervals. The discrimination between blank and long excretion groups may suggest the presence of long excretion markers, which are particularly significant in anti-doping analysis. Furthermore, matching the most significant features with some of the metabolites reported in the literature data demonstrated the rationality of the proposed metabolomics-based approach. CONCLUSIONS The application of metabolomics tools as an investigation strategy could reduce the time and resources required to identify and characterize intake markers maximizing the information that can be extracted from the data and extending the research field by avoiding a priori bias. Therefore, metabolic fingerprinting of prohibited substance intakes could be an appropriate analytical approach to reduce the risk of false-positive/negative results, aiding in the interpretation of "abnormal" profiles and discrimination of pseudo-endogenous steroid intake in the anti-doping field.
Collapse
Affiliation(s)
- Patrizia Leogrande
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Daniel Jardines
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Eleonora Domenici
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
- Center of Research and Expertise in Anti-Doping Sciences - REDs; ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, Lausanne, Switzerland
| |
Collapse
|
10
|
De San-Martin BS, Ferreira VG, Bitencourt MR, Pereira PCG, Carrilho E, de Assunção NA, de Carvalho LRS. Metabolomics as a potential tool for the diagnosis of growth hormone deficiency (GHD): a review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2021; 64:654-663. [PMID: 33085993 PMCID: PMC10528619 DOI: 10.20945/2359-3997000000300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022]
Abstract
Metabolomics uses several analytical tools to identify the chemical diversity of metabolites present in organisms. These metabolites are low molecular weight molecules (<1500 Da) classified as a final or intermediary product of metabolic processes. The application of this omics technology has become prominent in inferring physiological conditions through reporting on the phenotypic state; therefore, the introduction of metabolomics into clinical studies has been growing in recent years due to its efficiency in discriminating pathophysiological states. Regarding endocrine diseases, there is a great interest in verifying comprehensive and individualized physiological scenarios, in particular for growth hormone deficiency (GHD). The current GHD diagnostic tests are laborious and invasive and there is no exam with ideal reproducibility and sensitivity for diagnosis neither standard GH cut-off point. Therefore, this review was focussed on articles that applied metabolomics in the search for new biomarkers for GHD. The present work shows that the applications of metabolomics in GHD are still limited, since the little complementarily of analytical techniques, a low number of samples, GHD combined to other deficiencies, and idiopathic diagnosis shows a lack of progress. The results of the research are relevant and similar; however, their results do not provide an application for clinical practice due to the lack of multidisciplinary actions that would be needed to mediate the translation of the knowledge produced in the laboratory, if transferred to the medical setting.
Collapse
Affiliation(s)
- Breno Sena De San-Martin
- Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brasil
| | - Vinícius Guimarães Ferreira
- Instituto de Química de São Carlos da Universidade de São Paulo (IQSC-USP), São Carlos, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, Campinas, SP, Brasil
| | - Mariana Rechia Bitencourt
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brasil
| | - Paulo Cesar Gonçalves Pereira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brasil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos da Universidade de São Paulo (IQSC-USP), São Carlos, SP, Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, Campinas, SP, Brasil
| | - Nilson Antônio de Assunção
- Escola Paulista de Medicina da Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brasil
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brasil,
| | - Luciani Renata Silveira de Carvalho
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brasil,
| |
Collapse
|
11
|
Zhang Y, Sun S, Wang M, Yu W, Chen P, Yuan F, Fang X. Untargeted LC/MS-Based Metabolic Phenotyping of Hypopituitarism in Young Males. Front Pharmacol 2021; 12:684869. [PMID: 34305597 PMCID: PMC8295757 DOI: 10.3389/fphar.2021.684869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Hypopituitarism (Hypo-Pit) is partial or complete insufficiency of anterior pituitary hormones. Besides hormone metabolism, the global metabolomics in Hypo-Pit are largely unknown. We aimed to explore potential biomarkers to aid in diagnosis and personalized treatment. Methods: Using both univariate and multivariate statistical methods, we identified 72 differentially abundant features through liquid chromatography coupled to high-resolution mass spectrometry, obtained in 134 males with Hypo-Pit and 90 age matched healthy controls. Results: Hypopituitarism exhibits an increased abundance of metabolites involved in amino acid degradation and glycerophospholipid synthesis, but decreased content of metabolites in steroid hormone synthesis and fatty acid beta-oxidation. Significantly changed metabolites included creatine, creatinine, L-alanine, phosphocholines, androstenedione, hydroprenenolone, and acylcarnitines. In Hypo-Pit patients, the increased ratio of creatine/creatinine suggested reduced creatine uptake and impaired creatine utilization, whereas the decreased level of beta-hydroxybutyrate, acetylcarnitine (C2) and a significantly decreased ratio of decanoylcarnitine (C10) to free carnitine suggested an impaired beta-oxidation. Furthermore, the creatine/creatinine and decanoylcarnitine/carnitine ratio were identified as diagnostic biomarkers for Hypo-Pit with AUCs of 0.976 and 0.988, respectively. Finally, we found that the creatinine and decanoylcarnitine/carnitine ratio could distinguish cases that were sensitive vs. resistant to human chorionic gonadotropin therapy. Conclusion: We provided a global picture of altered metabolic pathways in Hypo-Pit, and the identified biomarkers in creatine metabolism and beta-oxidation might be useful for the preliminary screening and diagnosis of Hypo-Pit.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai, China
| | - Shouyue Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai, China
| | - Ming Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Yu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Peizhan Chen
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Gossing W, Radke L, Biering H, Diederich S, Mai K, Frohme M. The ElonginB/C-Cullin5-SOCS-Box-Complex Is a Potential Biomarker for Growth Hormone Disorders. Biomedicines 2021; 9:biomedicines9020201. [PMID: 33671326 PMCID: PMC7921923 DOI: 10.3390/biomedicines9020201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is the standard biochemical marker for the diagnosis and treatment control of acromegaly and growth hormone deficiency (GHD). However, its limitations necessitate the screening for new specific and sensitive biomarkers. The elonginB/C-cullin5-SOCS-box-complex (ECS-complex) (an intracellular five-protein complex) is stimulated by circulating growth hormone (GH) and regulates GH receptor levels through a negative feedback loop. It mediates the cells' sensitivity for GH and therefore, represents a potent new biomarker for those diseases. In this study, individual ECS-complex proteins were measured in whole blood samples of patients with acromegaly (n = 32) or GHD (n = 12) via ELISA and compared to controls. Hierarchical clustering of the results revealed that by combining the three ECS-complex proteins suppressor of cytokine signaling 2 (SOCS2), cullin-5 and ring-box protein 2 (Rbx-2), 93% of patient samples could be separated from controls, despite many patients having a normal IGF-1 or not receiving medical treatment. SOCS2 showed the best individual diagnostic performance with an overall accuracy of 0.93, while the combination of the three proteins correctly identified all patients and controls. This resulted in perfect sensitivity and specificity for all patient groups, which demonstrates potential benefits of the ECS-complex proteins as clinical biomarkers for the diagnostics of GH-related diseases and substantiates their important role in GH metabolism.
Collapse
Affiliation(s)
- Wilhelm Gossing
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
| | - Lars Radke
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
| | - Henrik Biering
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Praxis an der Kaisereiche, Innere Medizin, Endokrinologie, Diabetologie, 12159 Berlin, Germany
| | - Sven Diederich
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
- MVZ Medicover Berlin-Mitte, Innere Medizin, Endokrinologie, Andrologie, 10117 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.D.); (K.M.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences, 15745 Wildau, Germany; (W.G.); (L.R.); (H.B.)
- Correspondence:
| |
Collapse
|
13
|
Narduzzi L, Dervilly G, Audran M, Le Bizec B, Buisson C. A role for metabolomics in the antidoping toolbox? Drug Test Anal 2020; 12:677-690. [DOI: 10.1002/dta.2788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Narduzzi
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA)Oniris, INRAE Nantes France
| | - Gaud Dervilly
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA)Oniris, INRAE Nantes France
| | - Michel Audran
- Département des analysesAgence Française de Lutte contre le Dopage (AFLD) Châtenay‐Malabry France
| | - Bruno Le Bizec
- Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA)Oniris, INRAE Nantes France
| | - Corinne Buisson
- Département des analysesAgence Française de Lutte contre le Dopage (AFLD) Châtenay‐Malabry France
| |
Collapse
|
14
|
Yu H, Zhao Y, Zhang Y, Zhong L. Metabolic profiling of acromegaly using a GC-MS-based nontargeted metabolomic approach. Endocrine 2020; 67:433-441. [PMID: 31875304 DOI: 10.1007/s12020-019-02143-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Acromegaly is a rare disease caused by chronic hypersecretion of growth hormone, which leads to multiple comorbidities and reduced life expectancy. The objective of this study was to characterize the serum metabolic profiles of acromegaly patients and identify metabolic biomarkers using metabolomics. METHODS Twenty-nine active acromegaly patients and age- and sex-matched normal controls were recruited. Serum samples were collected, and serum metabolites were analyzed using gas chromatography-mass spectrometry coupled with a series of multivariate statistical analyses. RESULTS The orthogonal projections to latent structures-discriminate analysis (OPLS-DA) model identified and validated significant metabolic differences between individuals with acromegaly and normal controls (R2Y = 0.908 and Q2Y = 0.601). Compared with normal controls, acromegaly patients had elevated levels of 5-aminovaleric acid, glyceric acid, L-dithiothreitol, dihydrocoumarin, N-acetyl-L-glutamic acid, gluconic acid, and monoolein (P < 0.05) and reduced serum levels of D-erythronolactone, taurine, carbamoyl-aspartic acid, and mucic acid (P < 0.01). Furthermore, glyceric acid and taurine possessed higher area under the receiver operating characteristic curve values (AUC values, 0.914 and 0.931, respectively), suggesting an excellent clinical ability to distinguish acromegaly patients from normal controls. Pathway analysis revealed that the pentose phosphate pathway and the taurine and hypotaurine metabolic pathway are significant pathways (P = 0.002 and 0.004, respectively). CONCLUSIONS Metabolic activity is significantly altered in the serum of individuals with active acromegaly. Glyceric acid and taurine may be considered potential biomarkers for distinguishing acromegaly patients from normal controls.
Collapse
Affiliation(s)
- Hengchi Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Yaqun Zhao
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, PR China
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| |
Collapse
|
15
|
Carneiro G, Radcenco AL, Evaristo J, Monnerat G. Novel strategies for clinical investigation and biomarker discovery: a guide to applied metabolomics. Horm Mol Biol Clin Investig 2019; 38:/j/hmbci.ahead-of-print/hmbci-2018-0045/hmbci-2018-0045.xml. [PMID: 30653466 DOI: 10.1515/hmbci-2018-0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/13/2018] [Indexed: 01/16/2023]
Abstract
Metabolomics is an emerging technology that is increasing both in basic science and in human applications, providing a physiological snapshot. It has been highlighted as one of the most wide ranging and reliable tools for the investigation of physiological status, the discovery of new biomarkers and the analysis of metabolic pathways. Metabolomics uses innovative mass spectrometry (MS) allied to chromatography or nuclear magnetic resonance (NMR). The recent advances in bioinformatics, databases and statistics, have provided a unique perception of metabolites interaction and the dynamics of metabolic pathways at a system level. In this context, several studies have applied metabolomics in physiology- and disease-related works. The application of metabolomics includes, physiological and metabolic evaluation/monitoring, individual response to different exercise, nutritional interventions, pathological processes, responses to pharmacological interventions, biomarker discovery and monitoring for distinct aspects, such as: physiological capacity, fatigue/recovery and aging among other applications. For metabolomic analyses, despite huge improvements in the field, several complex methodological steps must be taken into consideration. In this regard, the present article aims to summarize the novel aspects of metabolomics and provide a guide for metabolomics for professionals related to physiologist and medical applications.
Collapse
Affiliation(s)
- Gabriel Carneiro
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andres Lopez Radcenco
- Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Montevideo, Uruguay
| | - Joseph Evaristo
- Proteomics Laboratoy, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, IBCCF-UFRJ, Av. Carlos Chagas Filho 373 - CCS - Bloco G, Rio de Janeiro 21941-902, Brazil, Phone/Fax: +55 21 25626555
| |
Collapse
|
16
|
Boerboom G, van Kempen T, Navarro-Villa A, Pérez-Bonilla A. Unraveling the cause of white striping in broilers using metabolomics. Poult Sci 2018; 97:3977-3986. [PMID: 29931266 PMCID: PMC6162359 DOI: 10.3382/ps/pey266] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023] Open
Abstract
White striping (WS) is a major problem affecting the broiler industry. Fillets affected by this myopathy present pathologies that compromise the quality of the meat, and most importantly, make the fillets more prone to rejection by the consumer. The exact etiology is still unknown, which is why a metabolomics analysis was performed on breast samples of broilers. The overall objective was to identify biological pathways involved in the pathogenesis of WS. The analysis was performed on a total of 51 muscle samples and distinction was made between normal (n = 19), moderately affected (n = 24) and severely affected (n = 8) breast fillets. Samples were analyzed using gas chromatographic mass spectral analysis and liquid chromatography quadrupole time-of-flight mass spectrometry. Data were subsequently standardized, normalized and analyzed using various multivariate statistical procedures. Metabolomics allowed for the identification of several pathways that were altered in white striped breast fillets. The tricarboxylic acid cycle exhibited opposing directionalities. This is described in literature as the backflux and enables the TCA cycle to produce high-energy phosphates through matrix-level phosphorylation and, therefore, produce energy under conditions of hypoxia. Mitochondrial fatty acid oxidation was limited due to disturbances in especially cis-5–14:1 carnitine (log2 FC of 2, P < 0.01). Because of this, accumulation of harmful fatty acids took place, especially long-chain ones, which damages cell structures. Conversion of arginine to citrulline increased presumably to produce nitric oxide, which enhances blood flow under conditions of hypoxia. Nitric oxide however also increases oxidative damage. Increases in taurine (log2 FC of 1.2, P < 0.05) suggests stabilization of the sarcolemma under hypoxic conditions. Lastly, organic osmolytes (sorbitol, taurine, and alanine) increased (P < 0.05) in severely affected birds; likely this disrupts cell volume maintenance. Based on the results of this study, hypoxia was the most likely cause/initiator of WS in broilers. We speculate that birds suffering from WS have a vascular support system in muscle that is borderline adequate to support growth, but triggers like activity results in local hypoxia that damages tissue.
Collapse
Affiliation(s)
- Gavin Boerboom
- Trouw Nutrition R&D Amersfoort, 3811 MH, The Netherlands
| | - Theo van Kempen
- Trouw Nutrition R&D Amersfoort, 3811 MH, The Netherlands.,Department of Animal Science, North Carolina State University, Raleigh, 27695, NC, USA
| | | | | |
Collapse
|
17
|
Mastrangelo A, Martos-Moreno GÁ, Rupérez FJ, Chowen JA, Barbas C, Argente J. Metabolomics changes in patients with PAPP-A2 deficiency in response to rhIGF1 treatment. Growth Horm IGF Res 2018; 42-43:28-31. [PMID: 30119035 DOI: 10.1016/j.ghir.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/05/2018] [Accepted: 08/12/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Mutations in the pregnancy-associated plasma protein A2 (PAPP-A2) gene have recently been shown to cause postnatal growth failure in two prepubertal patients from a non-consanguineous Spanish family due to the resulting decrease in IGF1 bioavailability. Although a specific pharmacological treatment of this entity is yet to be established, both children received progressive subcutaneous doses (40 to 120 μg/kg) of rhIGF1 twice daily for 2 years. The improvements in growth, hyperinsulinemia and bone mineral density have been previously reported. The objective of this study was to analyze the changes in metabolism associated with these responses to rhIGF1 treatment. DESIGN Herein we present a detailed characterization of the acute and long-term changes in the metabolic profiles of these two siblings with PAPP-A2 deficiency after the initial injections of rhIGF1 and after two years of treatment. RESULTS By using a GC-MS-based untargeted metabolomics approach, metabolic fingerprinting yielded the identification of 70 serum metabolites including amino acids (46%), organic acids (21%) carbohydrates (16%), fatty acids (14%), and purine bases (3%). Free fatty acids (FFAs) and amino acids showed the largest changes in the compared metabolic profiles, suggesting that rhIGF1 treatment has the greatest effects on lipid and protein metabolic pathways in the PAPP-A2 deficient subjects. CONCLUSIONS The administration of rhIGF1 resulted in changes related to crucial metabolic pathways, including lipid and protein metabolism, and this could be associated with the previously reported treatment-induced improvement in the mild basal hyperinsulinemia.
Collapse
Affiliation(s)
- Annalaura Mastrangelo
- Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo CEU University, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; La Princesa Research Institute, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo CEU University, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; La Princesa Research Institute, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, CEI UAM & CSIC, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo CEU University, Madrid, Spain.
| | - Jesús Argente
- Departments of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; La Princesa Research Institute, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, CEI UAM & CSIC, Madrid, Spain.
| |
Collapse
|
18
|
Pînzariu O, Georgescu B, Georgescu CE. Metabolomics-A Promising Approach to Pituitary Adenomas. Front Endocrinol (Lausanne) 2018; 9:814. [PMID: 30705668 PMCID: PMC6345099 DOI: 10.3389/fendo.2018.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Metabolomics-the novel science that evaluates the multitude of low-molecular-weight metabolites in a biological system, provides new data on pathogenic mechanisms of diseases, including endocrine tumors. Although development of metabolomic profiling in pituitary disorders is at an early stage, it seems to be a promising approach in the near future in identifying specific disease biomarkers and understanding cellular signaling networks. Objectives: To review the metabolomic profile and the contributions of metabolomics in pituitary adenomas (PA). Methods: A systematic review was conducted via PubMed, Web of Science Core Collection and Scopus databases, summarizing studies that have described metabolomic aspects of PA. Results: Liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectrometry, which are traditional techniques employed in metabolomics, suggest amino acids metabolism appears to be primarily altered in PA. N-acetyl aspartate, choline-containing compounds and creatine appear as highly effective in differentiating PA from healthy tissue. Deoxycholic and 4-pyridoxic acids, 3-methyladipate, short chain fatty acids and glucose-6-phosphate unveil metabolite biomarkers in patients with Cushing's disease. Phosphoethanolamine, N-acetyl aspartate and myo-inositol are down regulated in prolactinoma, whereas aspartate, glutamate and glutamine are up regulated. Phosphoethanolamine, taurine, alanine, choline-containing compounds, homocysteine, and methionine were up regulated in unclassified PA across studies. Intraoperative use of ultra high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which allows localization and delineation between functional PA and healthy pituitary tissue, may contribute to achievement of complete tumor resection in addition to preservation of pituitary cell lines and vasopressin secretory cells, thus avoiding postoperative diabetes insipidus. Conclusion: Implementation of ultra high performance metabolomics analysis techniques in the study of PA will significantly improve diagnosis and, potentially, the therapeutic approach, by identifying highly specific disease biomarkers in addition to novel molecular pathogenic mechanisms. Ultra high mass resolution MALDI-MSI emerges as a helpful clinical tool in the neurosurgical treatment of pituitary tumors. Therefore, metabolomics appears to be a science with a promising prospect in the sphere of PA, and a starting point in pituitary care.
Collapse
Affiliation(s)
- Oana Pînzariu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Georgescu
- Department of Ecology, Environmental Protection and Zoology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen E. Georgescu
- 6 Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
- *Correspondence: Carmen E. Georgescu
| |
Collapse
|
19
|
De Leonibus C, De Marco S, Stevens A, Clayton P, Chiarelli F, Mohn A. Growth Hormone Deficiency in Prepubertal Children: Predictive Markers of Cardiovascular Disease. Horm Res Paediatr 2017; 85:363-71. [PMID: 26960169 DOI: 10.1159/000444143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular (CV) risk factors have been identified in adults with untreated growth hormone deficiency (GHD). Existing evidence suggests that the development of the atheromatous plaque begins early in childhood. Previous reports have shown that GHD children are prone to increased CV risks including impaired cardiac function, dyslipidemia and abnormalities in body composition. Recent studies in epigenetics and metabolomics have defined specific fingerprints that might be associated with an increased risk of CV disease. AIM The aim of this review is to point out the most significant biochemical and clinical predictive markers of CV disease in prepubertal children and to evaluate the effect of recombinant human growth hormone therapy on most of these alterations. The novel findings in epigenetics and metabolomics are also reviewed, with a particular focus on translating them into clinical practice.
Collapse
|