1
|
Sólis-Suarez DL, Cifuentes-Mendiola SE, González-Alva P, Rodríguez-Hernández AP, Martínez-Dávalos A, Llamosas-Hernandez FE, Godínez-Victoria M, García-Hernández AL. Lipocalin-2 as a fundamental protein in type 2 diabetes and periodontitis in mice. J Periodontol 2024. [PMID: 39189666 DOI: 10.1002/jper.24-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Lipocalin-2 (LCN-2) is an osteokine that suppresses appetite, stimulates insulin secretion, regulates bone remodeling, and is induced by proinflammatory cytokines. The aim of this work was to investigate the participation of LCN-2 in periodontitis associated with type 2 diabetes (T2D) by evaluating alveolar bone loss, glycemic control, inflammation, and femur fragility. METHODS A murine model of periodontitis with T2D and elevated LCN-2 concentration was used. Functional LCN-2 inhibition was achieved using an anti-LCN-2 polyclonal antibody, and isotype immunoglobulin G was used as a control. The alveolar bone and femur were evaluated by micro-CT. Glucose metabolism was determined. Tumor necrosis factor (TNF-α) and receptor activator of nuclear factor kappa-B ligand (RANKL) levels in alveolar bone lysates were quantified using ELISA, and serum cytokines were quantified using flow cytometry. A three-point bending test was performed in the femur, and RANKL levels were measured in femur lysates using ELISA. RESULTS Functional inhibition of LCN-2 in T2D-periodontitis mice decreased alveolar bone loss in buccal and palatal surfaces and preserved the microarchitecture of the remaining bone, decreased TNF-α and RANKL in alveolar bone, reduced hyperglycemia, glucose intolerance, and insulin resistance, and increased insulin production through improving the functionality of pancreatic β cells. Furthermore, this inhibition increased serum free-glycerol levels, decreased serum interleukin (IL)-6, increased serum IL-4, and reduced femur fragility and RANKL expression in the femur. CONCLUSIONS LCN-2 participates in periodontitis associated with T2D. Inhibiting its function in mice with T2D and periodontitis improves pancreatic β-cell function, and glucose metabolism and decreases inflammatory cytokines and bone-RANKL levels, which results in the preservation of femoral and alveolar bone microarchitecture. PLAIN LANGUAGE SUMMARY In this study, we explored the role of a bone protein known as lipocalin-2 (LCN-2) in the connection between periodontitis and type 2 diabetes (T2D). Periodontitis is a destructive gum and alveolar bone disease. LCN-2 levels are increased in both T2D and periodontitis. Using a mouse model of T2D with periodontitis, we examined how blocking LCN-2 function affected various aspects of these two diseases. We found that this inhibition led to significant improvements. First, it reduced alveolar bone loss and preserved bone structure by decreasing local inflammation and bone resorption. Second, it improved glucose and lipid metabolism, leading to better blood-sugar control and decreased insulin resistance. Blocking the functions of LCN-2 also decreased systemic inflammation throughout the body and strengthened bone integrity. Overall, our results suggest that LCN-2 plays a crucial role in the periodontitis associated with T2D. By inhibiting LCN-2 function, we were able to improve pancreatic function, improve glucose metabolism, reduce inflammation, and enhance bone health. Targeting LCN-2 could be a promising strategy for the harmful effects of T2D and periodontitis.
Collapse
Affiliation(s)
- Diana Laura Sólis-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
- Postgraduate Course in Dental Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saúl Ernesto Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Arnulfo Martínez-Dávalos
- Endo-periodontology Department, Physics Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | | | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ana Lilia García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico (UNAM), State of Mexico, Mexico, Mexico
| |
Collapse
|
2
|
Gumpper-Fedus K, Chasser K, Pita-Grisanti V, Torok M, Pfau T, Mace TA, Cole RM, Belury MA, Culp S, Hart PA, Krishna SG, Lara LF, Ramsey ML, Fisher W, Fogel EL, Forsmark CE, Li L, Pandol S, Park WG, Serrano J, Van Den Eeden SK, Vege SS, Yadav D, Conwell DL, Cruz-Monserrate Z. Systemic Neutrophil Gelatinase-Associated Lipocalin Alterations in Chronic Pancreatitis: A Multicenter, Cross-Sectional Study. Clin Transl Gastroenterol 2024; 15:e00686. [PMID: 38284831 PMCID: PMC11042777 DOI: 10.14309/ctg.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations. METHODS NGAL was measured by immunoassay, and FA composition was measured by gas chromatography in plasma (n = 171) from a multicenter study, including controls (n = 50), acute and recurrent acute pancreatitis (AP/RAP) (n = 71), and CP (n = 50). Peripheral blood mononuclear cells (PBMCs) from controls (n = 16), AP/RAP (n = 17), and CP (n = 15) were measured by cytometry by time-of-flight. RESULTS Plasma NGAL was elevated in subjects with CP compared with controls (area under the curve [AUC] = 0.777) or AP/RAP (AUC = 0.754) in univariate and multivariate analyses with sex, age, body mass index, and smoking (control AUC = 0.874; AP/RAP AUC = 0.819). NGAL was elevated in CP and diabetes compared with CP without diabetes ( P < 0.001). NGAL + PBMC populations distinguished CP from controls (AUC = 0.950) or AP/RAP (AUC = 0.941). Linoleic acid was lower, whereas dihomo-γ-linolenic and adrenic acids were elevated in CP ( P < 0.05). Linoleic acid was elevated in CP with diabetes compared with CP subjects without diabetes ( P = 0.0471). DISCUSSION Elevated plasma NGAL and differences in NGAL + PBMCs indicate an immune response shift that may serve as biomarkers of CP. The potential interaction of FAs and NGAL levels provide insights into the metabolic pathophysiology and improve diagnostic classification of CP.
Collapse
Affiliation(s)
- Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Molly Torok
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Timothy Pfau
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas A. Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachel M. Cole
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Martha A. Belury
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mitchell L. Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - William Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Evan L. Fogel
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Chris E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Walter G. Park
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Santhi Swaroop Vege
- Department of Gastroenterology and Hepatology, The Mayo Clinic, Rochester, Minnesota, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Bazid HAS, Sakr HG, Abdallah RA, Arafat ES, Ragheb A, Seleit I. Serum and Tissue Lipocalin-2 Expression in Chronic Kidney Disease Pruritic Patients. Appl Immunohistochem Mol Morphol 2023; 31:635-643. [PMID: 37698956 DOI: 10.1097/pai.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/19/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Uremic pruritus is an irritating symptom for patients with end-stage kidney disease. Lipocalin-2 (LCN2) has relevant importance in several biological cellular processes and immunity. It is also a major player in the progression of many disorders, such as renal injury. AIM To evaluate LCN2 expression in chronic kidney disease (CKD) pruritic patients in serum together with immunohistochemical expression in skin samples and further correlation of their results with the studied clinicopathologic parameters. MATERIALS AND METHODS Serum level of LCN2 (assessed by enzyme-linked immunosorbent assay) and skin immunohistochemical expression were investigated in 25 CKD patients and 25 healthy controls. Ten patients were subjected to narrowband ultraviolet B phototherapy for 12 weeks then re-evaluated for serum and tissue LCN2 after therapy. RESULTS LCN2 expression was increased significantly in both the epidermis and dermal adnexa in CKD patients over controls. Also, serum LCN2 level was higher in patients than in healthy subjects and was significantly associated with itching severity, grades of CKD, urea, and creatinine serum level. Tissue and serum levels of LCN2 were significantly diminished in CKD patients following narrowband therapy along with improvement of the severity of pruritus. CONCLUSIONS The increased serum and tissue LCN2 expression in CKD pruritic patients and its pronounced decrease, in addition to the improvement of pruritus after treatment, suggest a major pathogenic role of LCN2 in uremic pruritus.
Collapse
Affiliation(s)
- Heba A S Bazid
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University
| | - Hanaa G Sakr
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University
| | | | | | - Ahmed Ragheb
- Internal Medicine, Faculty of Medicine, Menoufia University, Cairo, Egypt
| | - Iman Seleit
- Department of Dermatology, Andrology and STDS, Faculty of Medicine, Menoufia University
| |
Collapse
|
4
|
Zhang H, Chen Y, Zhu W, Niu T, Song B, Wang H, Wang W, Zhang H. The mediating role of HbA1c in the association between elevated low-density lipoprotein cholesterol levels and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. Lipids Health Dis 2023; 22:102. [PMID: 37443036 DOI: 10.1186/s12944-023-01865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Increased levels of low-density lipoprotein cholesterol (LDL-C) have been identified as one potential risk factor for diabetic peripheral neuropathy (DPN) in patients. The current study seeks to clarify the link between LDL-C, hyperglycemia, and DPN in patients with type 2 diabetes mellitus (T2DM). METHODS Here, a total of 120 T2DM individuals were recruited. These volunteers with T2DM were divided into 2 groups, based on the presence or absence of peripheral neuropathy. Additionally, their baseline characteristics were compared. Association among LDL-C and glycosylated hemoglobin (HbA1c) levels and DPN, particularly with respect to specific nerve conduction velocity were analyzed. To identify factors influencing DPN, regression was performed. Furthermore, mediation analysis was employed to evaluate the indirect, direct and total effects of LDL-C on specific nerve conduction velocity, with HbA1c serving as a mediator. RESULTS Compared to 55 patients without DPN, 65 patients with DPN demonstrated elevated levels of LDL-C and HbA1c. Both LDL-C and HbA1c have been found to be associated with reduced the motor fiber conduction velocities of Ulnar (or the Common peroneal) nerve in diabetic patients. HbA1c is one of the known risk factors for DPN in individuals with T2DM. Further mediation analysis revealed that the effect of LDL-C on the Ulnar (or the Common peroneal) nerve motor fiber conduction velocities are fully mediated by HbA1c in patients with T2DM. CONCLUSIONS The impact of elevated LDL-C levels upon the Ulnar (or the Common peroneal) nerve motor fiber conduction velocities in patients with T2DM was found to be entirely mediated by increased HbA1c levels.
Collapse
Affiliation(s)
- Hui Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan of Science and Technology, Luoyang, China
| | - Yang Chen
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Bing Song
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongxiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Haoqiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Wang M, Hou Z, Li X, Liu X, Kong Y, Cui Y, Bao L, DongNaRiSu. Relationship of serum lncRNA XIST and miR-30d-5p levels with diabetic peripheral neuropathy in type 2 diabetes. Am J Transl Res 2022; 14:9001-9006. [PMID: 36628211 PMCID: PMC9827320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the relationship between serum long non-coding RNA (lncRNA) X inactive specific transcript (XIST) and microRNA-30d-5p (miR-30d-5p) expression levels in type 2 diabetic peripheral neuropathy (DPN). METHODS Clinical data of patients with only type 2 diabetes mellitus (pure T2DM group), DPN patients (DPN group) and healthy patients (control group) admitted to Inner Mongolia Forestry General Hospital from August 2019 to April 2022 were retrospectively analyzed, with 76 cases in each group. The serum lncRNA XIST and miR-30d-5p expression levels of each group were compared. The correlation between serum lncRNA XIST and miR-30d-5p in DPN patients was analyzed. The influencing factors of DPN occurrence were analyzed. Also, the diagnostic value of serum lncRNA XIST and miR-30d-5p for DPN was analyzed. RESULTS There were significant differences in the lncRNA XIST and miR-30d-5p expression levels among the pure T2DM group, DPN group, and control group. LncRNA XIST expression level was negatively correlated with miR-30d-5p in DPN patients (P<0.05). Triglycerides, hemoglobin A1c, miR-30d-5p were risk factors for the occurrence of DPN, and lncRNA XIST was a protective factor (P<0.05). The areas under the curve (AUC) of serum lncRNA XIST and miR-30d-5p for the diagnosis of DPN were 0.851 and 0.845, respectively, and the AUC of lncRNA XIST and miR-30d-5p combined was 0.932, with a sensitivity of 92.1%, and a specificity of 85.5%. CONCLUSION Both lncRNA XIST and miR-30d-5p may be involved in the development of type 2 DPN. Therefore, detecting serum levels of both may be helpful for clinical diagnosis and treatment of type 2 DPN.
Collapse
|
6
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|