1
|
Ji RL, Jiang SS, Kleinau G, Scheerer P, Tao YX. Are Melanocortin Receptors Present in Extant Protochordates? Biomolecules 2024; 14:1120. [PMID: 39334886 PMCID: PMC11430673 DOI: 10.3390/biom14091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Functional melanocortin receptor (MCR) genes have been identified in the genomes of early chordates, e.g., the cyclostomata. Whether they appear in the most ancient chordates such as cephalochordate and urochordata, however, remains unclear due to missing genetic data. Herein, we studied five putative (from NCBI database), sequence-based predicted MCR-like receptors from urochordata and cephalochordate, including Styela clava, Ciona intestinalis, Branchiostoma floridae, and Branchiostoma belcheri. The BLAST and phylogenetic analyses suggested a relationship between these specific receptors and vertebrate MCRs. However, several essential residues for MCR functions in vertebrates were missing in these putative chordata MCRs. To test receptor functionality, several experimental studies were conducted. Binding assays and functional analyses showed no specific binding and no ligand-induced cAMP or ERK1/2 signaling (with either endogenous α-MSH or synthetic ligands for MC4R), despite successfully expressing four receptors in HEK 293T cells. These four receptors showed high basal cAMP signaling, likely mediated by ligand-independent Gs coupling. In summary, our results suggest that the five predicted MCR-like receptors are, indeed, class A G protein-coupled receptors (GPCRs), which in four cases show high constitutive activity in the Gs-cAMP signaling pathway but are not MCR-like receptors in terms of ligand recognition of known MCR ligands. These receptors might be ancient G protein-coupled receptors with so far unidentified ligands.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Shan-Shan Jiang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Gunnar Kleinau
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, D-10117 Berlin, Germany
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Huang L, Deng X, Yang X, Tang Z, Fan S, Zhou Z, Tao M, Liu S. Cloning, distribution, and effects of growth regulation of MC3R and MC4R in red crucian carp ( Carassius auratus red var.). Front Endocrinol (Lausanne) 2024; 14:1310000. [PMID: 38322156 PMCID: PMC10846643 DOI: 10.3389/fendo.2023.1310000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Background Melanocortin-3 and -4 receptors (MC3R and MC4R), G protein-coupled receptors, play vital roles in the regulation of energy homeostasis. To understand the functions of mc3r and mc4r in the energy homeostasis of red crucian carp (Carassius auratus red var., RCC), we cloned mc3r and mc4r, analyzed the tissue expression and localization of the genes, and investigated the effects of knockout of mc3r (mc3r +/-) and mc4r (mc4r +/-) in RCC. Results The full-length cDNAs of RCC mc3r and mc4r were 1459 base pairs (bp) and 1894 bp, respectively. qRT-PCR indicated that mc3r and mc4r were profusely expressed in the brain, but lower expressed in the periphery tissues. ISH revealed that mc3r and mc4r were located in NPP, NPO, NAPv, NSC, NAT, NRL, NLTl, and NLTp of the brain, suggesting that mc3r and mc4r might regulate many physiological and behavioral aspects in RCC. To further verify the roles of mc3r and mc4r in energy homeostasis, the mc3r+/- and mc4r+/- fish were obtained by the CRISPR/Cas9 system. The average body weights, total lengths, body depths, and food intake of mc4r+/- fish were significantly higher than those of mc3r+/- and the normal wild-type (WT) fish, but there was no difference between the mc3r+/- and WT fish, indicating that the RCC phenotype and food intake were mainly influenced by mc4r but not mc3r. Interestingly, mc4r+/- fish displayed more visceral fat mass than mc3r+/- and WT fish, and mc3r+/- fish also exhibited slightly more visceral fat mass compared to WT. RNA-seq of the liver and muscle revealed that a large number of differentially expressed genes (DEGs) differed in WT vs. mc3r+/-, WT vs. mc4r+/-, and mc3r+/- vs. mc4r+/-, mainly related to lipid, glucose, and energy metabolism. The KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways such as steroid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, glycolysis/gluconeogenesis, wnt signaling pathway, PPAR signaling pathway, and MAPK signaling pathway, thereby affecting lipid accumulation and growth. Conclusion In conclusion, these results will assist in the further investigation of the molecular mechanisms in which MC3R and MC4R were involved in the regulation of energy homeostasis in fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ji RL, Liu T, Hou ZS, Wen HS, Tao YX. Divergent Pharmacology and Biased Signaling of the Four Melanocortin-4 Receptor Isoforms in Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2023; 13:1248. [PMID: 37627313 PMCID: PMC10452266 DOI: 10.3390/biom13081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is essential for the modulation of energy balance and reproduction in both fish and mammals. Rainbow trout (Oncorhynchus mykiss) has been extensively studied in various fields and provides a unique opportunity to investigate divergent physiological roles of paralogues. Herein we identified four trout mc4r (mc4ra1, mc4ra2, mc4rb1, and mc4rb2) genes. Four trout Mc4rs (omMc4rs) were homologous to those of teleost and mammalian MC4Rs. Multiple sequence alignments, a phylogenetic tree, chromosomal synteny analyses, and pharmacological studies showed that trout mc4r genes may have undergone different evolutionary processes. All four trout Mc4rs bound to two peptide agonists and elevated intracellular cAMP levels dose-dependently. High basal cAMP levels were observed at two omMc4rs, which were decreased by Agouti-related peptide. Only omMc4rb2 was constitutively active in the ERK1/2 signaling pathway. Ipsen 5i, ML00253764, and MCL0020 were biased allosteric modulators of omMc4rb1 with selective activation upon ERK1/2 signaling. ML00253764 behaved as an allosteric agonist in Gs-cAMP signaling of omMc4rb2. This study will lay the foundation for future physiological studies of various mc4r paralogs and reveal the evolution of MC4R in vertebrates.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Hai-Shen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| |
Collapse
|
4
|
Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX. Pharmacology of orange-spotted grouper (Epinephelus coioides) melanocortin-5 receptor and its modulation by Mrap2. Gen Comp Endocrinol 2023; 332:114180. [PMID: 36455644 DOI: 10.1016/j.ygcen.2022.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The mammalian melanocortin-5 receptors (MC5Rs) are involved in various functions, including exocrine gland secretion, glucose uptake, adipocyte lipolysis, and immunity. However, the physiological role of fish Mc5r is rarely studied. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates pharmacological properties of melanocortin receptors. Herein, to lay the foundation for future physiological studies, we cloned the orange-spotted grouper (Epinephelus coioides) mc5r, with a 1008 bp open reading frame and a predicted protein of 334 amino acids. Grouper mc5r had abundant expression in the brain, skin, and kidney. Four ligands could bind to grouper Mc5r and dose-dependently increase intracellular cAMP levels. Grouper Mrap2 did not affect binding affinity or potency of Mc5r; however, grouper Mrap2 decreased cell surface expression and maximal binding of Mc5r. Mrap2 also significantly decreased the maximal response to a superpotent agonist but not the endogenous agonist. This study provided new data on fish Mc5r pharmacology and its regulation by Mrap2.
Collapse
Affiliation(s)
- Li-Qin Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ying-Zhu Rao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Southern Laboratory of Ocean Science and Engineering (Zhuhai, Guangdong), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Zhuhai 51900, China
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
5
|
Mo H, Yu H, Li Y, Ezeorba TPC, Zhang Z, Yao M, Yu J, Xiong D, Liu H, Wang L. Molecular cloning and functional characterization of melanocortin-3 receptor in grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:155-167. [PMID: 36547499 DOI: 10.1007/s10695-022-01164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The melanocortin-3-receptor (MC3R) plays an important role in mammals' food intake and energy homeostasis. However, its physiological role in bony fishes, such as grass carp, has not been well understood. This study reports the molecular cloning, tissue distribution, and pharmacological characterization of grass carp melanocortin-3-receptor (ciMC3R). Phylogenetic and chromosomal synteny analyses indicated that ciMC3R was closest to cyprinid fishes in evolution. Quantitative PCR experiments revealed that the mRNA of ciMC3R was highly expressed in the brain of grass carp. The cytological function of ciMC3R was investigated by the co-transfection of pcDNA3.1-ciMC3R and the signal-pathway-specific luciferase into the HEK293T cells. Results revealed that the four agonists, α-MSH, β-MSH, ACTH, and NDP-MSH, potentiate the activation of ciMC3R and further increase the production of cAMP and upregulate the MAPK/ERK signaling, respectively. Our study will provide basic data for exploring the physiological functions of grass carp MC3R, especially in energy homeostasis and food intake.
Collapse
Affiliation(s)
- Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Timothy P C Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Ihe Nsukka, Nsukka, 41001, Nigeria
| | - Zhihao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Mingxin Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Ji RL, Jiang SS, Tao YX. Modulation of Canine Melanocortin-3 and -4 Receptors by Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules 2022; 12:biom12111608. [PMID: 36358958 PMCID: PMC9687446 DOI: 10.3390/biom12111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.
Collapse
|
7
|
Role of the Melanocortin System in Gonadal Steroidogenesis of Zebrafish. Animals (Basel) 2022; 12:ani12202737. [PMID: 36290123 PMCID: PMC9597712 DOI: 10.3390/ani12202737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In teleost, as in other vertebrates, stress affects reproduction. A key component of the stress response is the pituitary secretion of the adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. In zebrafish, Mc2r was identified in male and female gonads, while ACTH has been shown to have a physiological role in modulating reproductive activity. In this study, the hypothesis that other melanocortins may also affect how the zebrafish gonadal function is explored, specifically steroid biosynthesis, given the presence of members of the melanocortin signaling system in zebrafish gonads. Using cell culture, expression analysis, and cellular localization of gene expression, our new observations demonstrated that melanocortin receptors, accessory proteins, antagonists, and agonists are expressed in both the ovary and testis of zebrafish (n = 4 each sex). Moreover, melanocortin peptides modulate both basal and gonadotropin-stimulated steroid release from zebrafish gonads (n = 15 for males and n = 50 for females). In situ hybridization in ovaries (n = 3) of zebrafish showed mc1r and mc4r in follicular cells and adjacent to cortical alveoli in the ooplasm of previtellogenic and vitellogenic oocytes. In zebrafish testes (n = 3), mc4r and mc1r were detected exclusively in germ cells, specifically in spermatogonia and spermatocytes. Our results suggest that melanocortins are, directly or indirectly, involved in the endocrine control of vitellogenesis in females, through modulation of estradiol synthesis via autocrine or paracrine actions in zebrafish ovaries. Adult zebrafish testes were sensitive to low doses of ACTH, eliciting testosterone production, which indicates a potential role of this peptide as a paracrine regulator of testicular function.
Collapse
|
8
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
9
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
10
|
Wang X, Xue S, Lei X, Song W, Li L, Li X, Fu Y, Zhang C, Zhang H, Luo Y, Wang M, Lin G, Zhang C, Guo J. Pharmacological Evaluation of Melanocortin 2 Receptor Accessory Protein 2 on Axolotl Neural Melanocortin Signaling. Front Endocrinol (Lausanne) 2022; 13:820896. [PMID: 35250878 PMCID: PMC8891371 DOI: 10.3389/fendo.2022.820896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
The Melanocortin-3 receptor (MC3R) and Melanocortin-4 receptor (MC4R), two members of the key hypothalamic neuropeptide signaling, function as complex mediators to control the central appetitive and energy homeostasis. The melanocortin 2 receptor accessory protein 2 (MRAP2) is well-known for its modulation on the trafficking and signaling of MC3R and MC4R in mammals. In this study, we cloned and elucidated the pharmacological profiles of MRAP2 on the regulation of central melanocortin signaling in a relatively primitive poikilotherm amphibian species, the Mexican axolotl (Ambystoma mexicanum). Our results showed the higher conservation of axolotl mc3r and mc4r across species than mrap2, especially the transmembrane regions in these proteins. Phylogenetic analysis indicated that the axolotl MC3R/MC4R clustered closer to their counterparts in the clawed frog, whereas MRAP2 fell in between the reptile and amphibian clade. We also identified a clear co-expression of mc3r, mc4r, and mrap2 along with pomc and agrp in the axolotl brain tissue. In the presence of MRAP2, the pharmacological stimulation of MC3R by α-MSH or ACTH significantly decreased. MRAP2 significantly decreased the cell surface expression of MC4R in a dose dependent manner. The co-localization and formation of the functional complex of axolotl MC3R/MC4R and MRAP2 on the plasma membrane were further confirmed in vitro. Dramatic changes of the expression levels of mc3r, mrap2, pomc, and agrp in the fasting axolotl hypothalamus indicated their critical roles in the metabolic regulation of feeding behavior and energy homeostasis in the poikilotherm aquatic amphibian.
Collapse
Affiliation(s)
- Xiaozhu Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Song Xue
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaowei Lei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqi Song
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanbin Fu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hailin Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Luo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gufa Lin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Guo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Ji RL, Tao YX. Regulation of Melanocortin-3 and -4 Receptors by Isoforms of Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules 2022; 12:biom12020244. [PMID: 35204745 PMCID: PMC8961526 DOI: 10.3390/biom12020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play essential non-redundant roles in the regulation of energy homeostasis. Interaction of neural MCRs and melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) is suggested to play pivotal roles in MC3R and MC4R signaling. In the present study, we identified two new human (h) MRAP2 splice variants, MRAP2b (465 bp open reading frame) and MRAP2c (381 bp open reading frame). Human MRAP2s are different in C-termini. We investigated the effects of five isoforms of MRAPs, hMRAP1a, hMRAP1b, hMRAP2a, hMRAP2b, and hMRAP2c, on MC3R and MC4R pharmacology. At the hMC3R, hMRAP1a and hMRAP2c increased and hMRAP1b decreased the cell surface expression. hMRAP1a increased affinity to ACTH. Four MRAPs (hMRAP1a, hMRAP1b, hMRAP2a, and hMRAP2c) decreased the maximal responses in response to α-MSH and ACTH. For hMC4R, hMRAP1a, hMRAP2a, and hMRAP2c increased the cell surface expression of hMC4R. Human MRAP1b significantly increased affinity to ACTH while MRAP2a decreased affinity to ACTH. Human MRAP1a increased ACTH potency. MRAPs also affected hMC4R basal activities, with hMRAP1s increasing and hMRAP2s decreasing the basal activities. In summary, the newly identified splicing variants, hMRAP2b and hMRAP2c, could regulate MC3R and MC4R pharmacology. The two MRAP1s and three MRAP2s had differential effects on MC3R and MC4R trafficking, binding, and signaling. These findings led to a better understanding of the regulation of neural MCRs by MRAP1s and MRAP2s.
Collapse
|
12
|
Wu L, Yu H, Mo H, Lan X, Pan C, Wang L, Zhao H, Zhou J, Li Y. Functional Characterization of Melanocortin-3 Receptor in a Hibernating Cavefish Onychostoma macrolepis. Animals (Basel) 2021; 12:ani12010038. [PMID: 35011144 PMCID: PMC8749556 DOI: 10.3390/ani12010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In this study we isolated and characterized a gene called omMc3r from a hibernating cavefish Onychostoma macrolepis. This gene was confirmed by our study to be involved in the regulation of signal pathways related to energy balance and food efficiency. These results can provide clues for exploring the adaptive mechanisms of fish, especially cavefish, with respect to nutrient-poor conditions. Abstract Melanocortin-3 receptor (MC3R) plays an important role in the energy homeostasis of animals under different nutritional conditions. Onychostoma macrolepis is a hibernating cavefish found in the northern part of the Yangtze River, and its adaptation to a nutrient-poor environment has attracted growing interest. In this study, we characterized the protein structure of Onychostoma macrolepis Mc3r (omMc3r), examined its tissue distribution, and investigated its function in mediating cellular signaling. We showed that the CDS of omMc3r is 978 bp, encoding a putative protein of 325 amino acids. Homology and phylogenetic analyses indicated that omMc3r is evolutionary close to cyprinids. Real-time quantitative PCR (RT-qPCR) revealed that omMc3r was highly expressed in the liver and brain. The functions of omMc3r to mediate ligands activating downstream signaling have also been confirmed by using signal pathway-specific reporters. The four agonists α-MSH, β-MSH, NDP-MSH, and ACTH (1–24) can all activate the cAMP and MAPK/ERK signaling pathway, albeit with different potency orders. The “primitive” ligand ACTH (1–24) had the highest potency on the cAMP signaling pathway, while the synthetic ligand NDP-MSH had the highest activation effect on the MAPK/ERK signaling pathway. This research will lay the foundation for studying the energy regulation mechanism of cavefish in an oligotrophic environment.
Collapse
Affiliation(s)
- Lian Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
- Correspondence: (C.P.); (Y.L.)
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
| | - Haiyu Zhao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jishu Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.Y.); (H.M.); (X.L.); (L.W.); (J.Z.)
- Correspondence: (C.P.); (Y.L.)
| |
Collapse
|