1
|
Gonzalez R, Massman L, Ho S, Luna S, Cheok S, Liang B, Mrachek K, Coss D, Ioachimescu AG, Zwagerman N, Olivier-Van Stichelen S. The diverging role of O-GlcNAc transferase in corticotroph and somatotroph adenomas. Pituitary 2024; 27:577-589. [PMID: 39066842 DOI: 10.1007/s11102-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Molecular mechanisms involved in the pathogenesis and tumor progression of pituitary adenomas (PA) remain incompletely understood. Corticotroph and somatotroph PA are associated with a high clinical burden, and despite improved surgical outcomes and medical treatment options, they sometimes require multiple surgeries and radiation. Preliminary data suggested a role for O-GlcNAc Transferase (OGT), the enzyme responsible for the O-GlcNAcylation of proteins. O-GlcNAcylation and OGT have been found elevated in other types of tumors. METHODS We evaluated 60 functioning and nonfunctioning PA (NFPA) from operated patients and postmortem normal and tumoral pituitary tissue by immunohistochemistry. We performed transcriptomic analyses to explore the relevance of the O-GlcNAc Transferase (OGT) in PAs. We detected OGT in immunobiological analysis and define its level in PA tissue in patients. RESULTS OGT was strongly associated with PA hormone secretory capacity in functioning PA and with tumor growth in NFPAs. In NFPAs, OGT was positively associated with tumor size but not with cavernous sinus invasion (Knosp grading). In GH-secreting PA, OGT expression was negatively correlated with circulating Insulin-like Growth Factor 1 level. In adrenocorticotropic hormone (ACTH)-secreting PA, OGT expression was positively associated with circulating ACTH levels. OGT did not correlate with tumor size in secreting PAs. OGT levels were higher in gonadotroph PA compared to normal glands. CONCLUSION O-GlcNAcylation can be downregulated in non-cancerous tumors such as GH-secreting adenomas. Future studies are warranted to elucidate the role of OGT in the pathogenesis of PAs.
Collapse
Affiliation(s)
- Roel Gonzalez
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Logan Massman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Sophia Ho
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Sarai Luna
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Stephanie Cheok
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Brandon Liang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kelly Mrachek
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Dylan Coss
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriana G Ioachimescu
- Department of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nathan Zwagerman
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
2
|
Asaad W, Utkina M, Shcherbakova A, Popov S, Melnichenko G, Mokrysheva N. scRNA sequencing technology for PitNET studies. Front Endocrinol (Lausanne) 2024; 15:1414223. [PMID: 39114291 PMCID: PMC11303145 DOI: 10.3389/fendo.2024.1414223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are common, most likely benign tumors with complex clinical characteristics related to hormone hypersecretion and/or growing sellar tumor mass. PitNET types are classified according to their expression of specific transcriptional factors (TFs) and hormone secretion levels. Some types show aggressive, invasive, and reoccurrence behavior. Current research is being conducted to understand the molecular mechanisms regulating these high-heterogeneous neoplasms originating from adenohypophysis, and single-cell RNA sequencing (scRNA-seq) technology is now playing an essential role in these studies due to its remarkable resolution at the single-cell level. This review describes recent studies on human PitNETs performed with scRNA-seq technology, highlighting the potential of this approach in revealing these tumor pathologies, behavior, and regulatory mechanisms.
Collapse
Affiliation(s)
| | - Marina Utkina
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Moscow, Russia
| | | | | | | | | |
Collapse
|
3
|
Li Z, Wu Y, He G, Wang R, Bao X. Phenotype Transformation of PitNETs. Cancers (Basel) 2024; 16:1731. [PMID: 38730682 PMCID: PMC11083144 DOI: 10.3390/cancers16091731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Phenotype transformation in pituitary neuroendocrine tumors is a little-known and unpredictable clinical phenomenon. Previous studies have not clearly defined and systematically concluded on the causes of this rare phenomenon. Additionally, the mechanisms of phenotype transformation are not well known. We reviewed cases reported in the literature with the aim of defining phenotype transformation in pituitary neuroendocrine tumors. We present an overview of the wide spectrum of phenotype transformation and its clinical features. We also discuss findings on the potential mechanism of this rare transformation, which may be related to PC1/3, the bioactivity of secretory hormones, gene mutations and the plasticity of pituitary neuroendocrine tumors. Clinicians should be aware of this rare phenomenon and more studies on the underlying mechanisms are required.
Collapse
Affiliation(s)
| | | | | | | | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.L.); (Y.W.); (G.H.); (R.W.)
| |
Collapse
|
4
|
Yan N, Xie W, Wang D, Fang Q, Guo J, Chen Y, Li X, Gong L, Wang J, Guo W, Zhang X, Zhang Y, Gu J, Li C. Single-cell transcriptomic analysis reveals tumor cell heterogeneity and immune microenvironment features of pituitary neuroendocrine tumors. Genome Med 2024; 16:2. [PMID: 38167466 PMCID: PMC10759356 DOI: 10.1186/s13073-023-01267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pituitary neuroendocrine tumors (PitNETs) are one of the most common types of intracranial tumors. Currently, the cellular characteristics of normal pituitary and various other types of PitNETs are still not completely understood. METHODS We performed single-cell RNA sequencing (scRNA-seq) on 4 normal samples and 24 PitNET samples for comprehensive bioinformatics analysis. Findings regarding the function of PBK in the aggressive tumor cells were validated by siRNA knockdown, overexpression, and transwell experiments. RESULTS We first constructed a reference cell atlas of the human pituitary. Subsequent scRNA-seq analysis of PitNET samples, representing major tumor subtypes, shed light on the intrinsic cellular heterogeneities of the tumor cells and tumor microenvironment (TME). We found that the expression of hormone-encoding genes defined the major variations of the PIT1-lineage tumor cell transcriptomic heterogeneities. A sub-population of TPIT-lineage tumor cells highly expressing GZMK suggested a novel subtype of corticotroph tumors. In immune cells, we found two clusters of tumor-associated macrophages, which were both highly enriched in PitNETs but with distinct functional characteristics. In PitNETs, the stress response pathway was significantly activated in T cells. While a majority of these tumors are benign, our study unveils a common existence of aggressive tumor cells in the studied samples, which highly express a set of malignant signature genes. The following functional experiments confirmed the oncogenic role of selected up-regulated genes. The over-expression of PBK could promote both tumor cell proliferation and migration, and it was also significantly associated with poor prognosis in PitNET patients. CONCLUSIONS Our data and analysis manifested the basic cell types in the normal pituitary and inherent heterogeneity of PitNETs, identified several features of the tumor immune microenvironments, and found a novel epithelial cell sub-population with aggressive signatures across all the studied cases.
Collapse
Affiliation(s)
- Nan Yan
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Dongfang Wang
- Biomedical Pioneering Innovative Center, Peking University, Beijing, 100871, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Yiyuan Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xinqi Li
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Lei Gong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jialin Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, 100084, China.
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
5
|
Advances in Molecular Pathophysiology and Targeted Therapy for Cushing's Disease. Cancers (Basel) 2023; 15:cancers15020496. [PMID: 36672445 PMCID: PMC9857185 DOI: 10.3390/cancers15020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cushing's disease is caused by autonomous secretion of adrenocorticotropic hormone (ACTH) from corticotroph pituitary neuroendocrine tumors. As a result, excess cortisol production leads to the overt manifestation of the clinical features of Cushing's syndrome. Severe complications have been reported in patients with Cushing's disease, including hypertension, menstrual disorders, hyperglycemia, osteoporosis, atherosclerosis, infections, and mental disorders. Cushing's disease presents with a variety of clinical features, ranging from overt to subtle. In this review, we explain recent advances in molecular insights and targeted therapy for Cushing's disease. The pathophysiological characteristics of hormone production and pituitary tumor cells are also explained. Therapies to treat the tumor growth in the pituitary gland and the autonomous hypersecretion of ACTH are discussed. Drugs that target corticotroph pituitary neuroendocrine tumors have been effective, including cabergoline, a dopamine receptor type 2 agonist, and pasireotide, a multi-receptor-targeted somatostatin analog. Some of the drugs that target adrenal hormones have shown potential therapeutic benefits. Advances in potential novel therapies for Cushing's disease are also introduced.
Collapse
|
6
|
Kober P, Rusetska N, Mossakowska BJ, Maksymowicz M, Pękul M, Zieliński G, Styk A, Kunicki J, Działach Ł, Witek P, Bujko M. The expression of glucocorticoid and mineralocorticoid receptors in pituitary tumors causing Cushing's disease and silent corticotroph tumors. Front Endocrinol (Lausanne) 2023; 14:1124646. [PMID: 37065760 PMCID: PMC10090509 DOI: 10.3389/fendo.2023.1124646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE Pituitary neuroendocrine corticotroph tumors commonly cause Cushing's disease (CD) that results from increased adrenocorticotropic hormone (ACTH) secretion by the pituitary tumor and consequent increase of cortisol levels in blood. However, in some patients, corticotroph tumors remain clinically non-functioning. Cortisol secretion is regulated by the hypothalamic-pituitary-adrenal axis and includes a negative feedback between cortisol and ACTH secretion. Glucocorticoids reduce ACTH level both by hypothalamic regulation and acting on corticotrophs via glucocorticoid (GR) and mineralocorticoid (MR) receptors. The aim of the study was to determine the role of GR and MR expression at mRNA and protein levels in both functioning and silent corticotroph tumors. METHODS Ninety-five patients were enrolled, including 70 with CD and 25 with silent corticotroph tumors. Gene expression levels of NR3C1 and NR3C2 coding for GR and MR, respectively, were determined with qRT-PCR in the two tumor types. GR and MR protein abundance was assessed with immunohistochemistry. RESULTS Both GR and MR were expressed in corticotroph tumors. Correlation between NR3C1 and NR3C2 expression levels was observed. NR3C1 expression was higher in silent than in functioning tumors. In CD patients NR3C1 and NR3C2 levels were negatively correlated with morning plasma ACTH levels and tumor size. Higher NR3C2 was confirmed in patients with remission after surgery and in densely granulated tumors. Expression of both genes and GR protein was higher in USP8-mutated tumors. Similar relationship between USP8 mutations and expression levels were observed in analysis of silent tumors that also revealed a negative correlation between GR and tumor size and higher NR3C1 expression in densely granulated tumors. CONCLUSIONS Although the associations between gene/protein expression and patients clinical features are not strong, they consistently show an evident trend in which higher receptor expression corresponds to more favorable clinical characteristics.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Rusetska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata J. Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Monika Pękul
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Grzegorz Zieliński
- Department of Neurosurgery, Military Institute of Medicine, Warsaw, Poland
| | - Andrzej Styk
- Department of Neurosurgery, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Łukasz Działach
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- *Correspondence: Mateusz Bujko,
| |
Collapse
|
7
|
Simon J, Theodoropoulou M. Genetics of Cushing's disease. J Neuroendocrinol 2022; 34:e13148. [PMID: 35596671 DOI: 10.1111/jne.13148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Corticotroph tumours are primarily sporadic monoclonal neoplasms and only rarely found in genetic syndromes. Recurrent mutations in the ubiquitin specific protease 8 (USP8) gene are found in around half of cases. Mutations in other genes such as USP48 and NR3C1 are less frequent, found in less than ~20% of cases. TP53 and ATXR mutations are reported in up to one out of four cases, when focusing in USP8 wild type or aggressive corticotroph tumours and carcinomas. At present, USP8 mutations are the primary driver alterations in sporadic corticotroph tumours, TP53 and ATXR mutations may indicate transition to more aggressive tumour phenotype. Next generation sequencing efforts have identified additional genomic alterations, whose role and importance in corticotroph tumorigenesis remains to be elucidated.
Collapse
Affiliation(s)
- Julia Simon
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Portovedo S, Neto LV, Soares P, Carvalho DPD, Takiya CM, Miranda-Alves L. Aggressive nonfunctioning pituitary neuroendocrine tumors. Brain Tumor Pathol 2022; 39:183-199. [PMID: 35725837 DOI: 10.1007/s10014-022-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) are tumors that are not associated with clinical evidence of hormonal hypersecretion. According to the World Health Organization (WHO), there are some subtypes of PitNETs that exhibit more aggressive behavior than others. Among the types of potentially aggressive PitNETs, three are nonfunctional: silent sparsely granulated somatotropinomas, silent corticotropinomas, and poorly differentiated PIT-1 lineage tumors. Several biological markers have been investigated in NF-PitNETs. However, there is no single biomarker able to independently predict aggressive behavior in NF-PitNETs. Thus, a more complex and multidisciplinary proposal of a comprehensive definition of aggressive NF-PitNETs is necessary. Here, we suggest a combined and more complete criterion for the NF-PitNETs classification. We propose that aggressiveness is due to a multifactorial combination, and we emphasize the need to include new emerging markers that are involved in the aggressiveness of NF-PitNETs and the need to identify.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil.,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Vieira Neto
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil. .,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Regazzo D, Mondin A, Scaroni C, Occhi G, Barbot M. The Role of Glucocorticoid Receptor in the Pathophysiology of Pituitary Corticotroph Adenomas. Int J Mol Sci 2022; 23:ijms23126469. [PMID: 35742910 PMCID: PMC9224504 DOI: 10.3390/ijms23126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocorticotropic Hormone (ACTH)-secreting pituitary adenomas are rare tumors characterized by autonomous ACTH secretion with a consequent increase in circulating cortisol levels. The resulting clinical picture is called Cushing’s disease (CD), a severe condition burdened with high morbidity and mortality. Apart from increased cortisol levels, CD patients exhibit a partial resistance to the negative glucocorticoid (GC) feedback, which is of paramount clinical utility, as the lack of suppression after dexamethasone administration is one of the mainstays for the differential diagnosis of CD. Since the glucocorticoid receptor (GR) is the main regulator of negative feedback of the hypothalamic–pituitary–adrenal axis in normal conditions, its implication in the pathophysiology of ACTH-secreting pituitary tumors is highly plausible. In this paper, we review GR function and structure and the mechanisms of GC resistance in ACTH-secreting pituitary tumors and assess the effects of the available medical therapies targeting GR on tumor growth.
Collapse
Affiliation(s)
- Daniela Regazzo
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Alessandro Mondin
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Gianluca Occhi
- Department of Biology, University of Padova, 35128 Padova, Italy;
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
- Correspondence:
| |
Collapse
|
10
|
Difference in miRNA Expression in Functioning and Silent Corticotroph Pituitary Adenomas Indicates the Role of miRNA in the Regulation of Corticosteroid Receptors. Int J Mol Sci 2022; 23:ijms23052867. [PMID: 35270010 PMCID: PMC8911444 DOI: 10.3390/ijms23052867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Corticotroph pituitary adenomas commonly cause Cushing’s disease (CD), but some of them are clinically silent. The reason why they do not cause endocrinological symptoms remains unclear. We used data from small RNA sequencing in adenomas causing CD (n = 28) and silent ones (n = 20) to explore the role of miRNA in hormone secretion and clinical status of the tumors. By comparing miRNA profiles, we identified 19 miRNAs differentially expressed in clinically functioning and silent corticotroph adenomas. The analysis of their putative target genes indicates a role of miRNAs in regulation of the corticosteroid receptors expression. Adenomas causing CD have higher expression of hsa-miR-124-3p and hsa-miR-135-5p and lower expression of their target genes NR3C1 and NR3C2. The role of hsa-miR-124-3p in the regulation of NR3C1 was further validated in vitro using AtT-20/D16v-F2 cells. The cells transfected with miR-124-3p mimics showed lower levels of glucocorticoid receptor expression than control cells while the interaction between miR-124-3p and NR3C1 3′ UTR was confirmed using luciferase reporter assay. The results indicate a relatively small difference in miRNA expression between clinically functioning and silent corticotroph pituitary adenomas. High expression of hsa-miR-124-3p in adenomas causing CD plays a role in the regulation of glucocorticoid receptor level and probably in reducing the effect of negative feedback mediated by corticosteroids.
Collapse
|
11
|
Jiang S, Chen X, Wu Y, Wang R, Bao X. An Update on Silent Corticotroph Adenomas: Diagnosis, Mechanisms, Clinical Features, and Management. Cancers (Basel) 2021; 13:cancers13236134. [PMID: 34885244 PMCID: PMC8656508 DOI: 10.3390/cancers13236134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The 2017 World Health Organization classification of endocrine tumors defines pituitary adenomas based on their cell lineages. T-PIT can serve as a complimentary tool for further identification of silent corticotroph adenomas (SCAs). Unlike functioning corticotroph adenomas in patients with Cushing’s disease, SCAs present no clinical and biochemical features of Cushing’s syndrome. SCAs have been shown to exhibit a more aggressive course characterized by a higher probability of recurrence and resistance to conventional treatment due to their intrinsic histological features. The aim of our review is to offer an update on the diagnosis, mechanisms, clinical features and management of SCAs. Studies of the molecular mechanisms of SCA pathogenesis will provide new directions for the diagnosis and management of SCAs. Abstract With the introduction of 2017 World Health Organization (WHO) classification of endocrine tumors, T-PIT can serve as a complementary tool for identification of silent corticotroph adenomas (SCAs) in some cases if the tumor is not classifiable by pituitary hormone expression in pathological tissue samples. An increase of the proportion of SCAs among the non-functioning pituitary adenomas (NFPAs) has been witnessed under the new rule with the detection of T-PIT-positive ACTH-negative SCAs. Studies of molecular mechanisms related to SCA pathogenesis will provide new directions for the diagnosis and management of SCAs. A precise pathological diagnosis can help clinicians better identify SCAs. Understanding clinical features in the context of the pathophysiology of SCAs is critical for optimal management. It could provide information on appropriate follow-up time and aid in early recognition and treatment of potentially aggressive forms. Management approaches include surgical, radiation, and/or medical therapies.
Collapse
|
12
|
Torregrosa-Quesada ME, García-Martínez A, Sánchez-Barbie A, Silva-Ortega S, Cámara R, Fajardo C, Lamas C, Aranda I, Pico A. The silent variants of pituitary tumors: demographic, radiological and molecular characteristics. J Endocrinol Invest 2021; 44:1637-1648. [PMID: 33476035 DOI: 10.1007/s40618-020-01468-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Tumors of the anterior pituitary gland (PTs) are mostly benign tumors with a low prevalence, which has nevertheless increased with advances in brain radiology techniques. Nearly half of PTs are not associated with a clinical endocrine syndrome. These tumors have been indistinctly named non-functioning pituitary adenomas (NFPAs) or silent pituitary tumors (SPTs) and the mechanisms of silencing are not fully known. AIM To study the frequency and characterize the silent variant of PTs in a large local series, and to assess their pituitary adenohypophyseal gene expression. METHODS This observational, cross-sectional study was performed in a Pituitary Tumor Center of Excellence and involved 268 PTs. After identifying the different subtypes according to the immunohistochemical (IHC) expression of adenohypophyseal hormones, we studied their gene expression by RT-qPCR. RESULTS We found that silent tumors were larger and more invasive, but not more proliferative than their functional counterparts. The RT-qPCR complements the IHC typification of PTs, reducing the proportion of null-cell subtype. Finally, some silent PT subtype variants showed lower specific adenohypophyseal hormone gene expression than their functional counterparts, which may contribute to the absence of endocrine manifestations. CONCLUSIONS This paper highlights the importance of identifying the silent variant of the PTs subtypes. As expected, silent tumors were larger and more invasive than their functioning counterparts. However, there was no difference in the proliferation activity between them. Finally, the lower specific gene expression in the silent than in the functioning counterparts of some PTs subtypes gives insights into the silencing mechanisms of PTs.
Collapse
Affiliation(s)
- M E Torregrosa-Quesada
- Department of Biochemical Analysis, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - A García-Martínez
- Research Laboratory, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL). CIBER Rare Diseases, 03010, Alicante, Spain
| | - A Sánchez-Barbie
- Centro de Investigación Operacional (CIO), Miguel Hernández University, 03010, Alicante, Spain
| | - S Silva-Ortega
- Department of Pathology, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - R Cámara
- Department of Endocrinology and Nutrition, Polytechnic University Hospital La Fe, 46026, Valencia, Spain
| | - C Fajardo
- Department of Endocrinology and Nutrition, Hospital La Ribera, Alzira, 46600, Valencia, Spain
| | - C Lamas
- Department of Endocrinology and Nutrition, Albacete General University Hospital, 02006, Albacete, Spain
| | - I Aranda
- Department of Pathology, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - A Pico
- Department of Endocrinology and Nutrition, Alicante General University Hospital. Institute for Health and Biomedical Research (ISABIAL). University Miguel Hernandez. CIBER Rare Diseases, 03010, Alicante, Spain.
| |
Collapse
|
13
|
Hagiwara R, Kageyama K, Niioka K, Takayasu S, Tasso M, Daimon M. Involvement of histone deacetylase 1/2 in adrenocorticotropic hormone synthesis and proliferation of corticotroph tumor AtT-20 cells. Peptides 2021; 136:170441. [PMID: 33181265 DOI: 10.1016/j.peptides.2020.170441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Cushing's disease is mainly caused by autonomous production of adrenocorticotropic hormone (ACTH) from pituitary adenomas. In our previous study, a histone deacetylase (HDAC) inhibitor, trichostatin A, inhibited cell proliferation and ACTH production via decreased pituitary tumor-transforming gene 1 (PTTG1) in AtT-20 mouse corticotroph tumor cells. In the present study, we examined the effects of romidepsin, a potent and selective HDAC1/2 inhibitor, on cell proliferation and ACTH synthesis. To elucidate further potential mechanisms of romidepsin, we examined the effects of HDAC1/2 on proopiomelanocortin (Pomc) and Pttg1 mRNA levels and cell proliferation. Small interfering RNA-mediated knockdown was used to decrease HDAC1 or 2. Romidepsin treatment decreased Pomc and Pttg1 mRNA levels, and cell proliferation. The drug also increased Hdac1 and decreased Hdac2 mRNA levels. Hdac1 knockdown decreased basal Pttg1 mRNA levels and cell proliferation, but not Pomc mRNA levels. Romidepsin treatment decreases ACTH synthesis in corticotroph tumor cells. Romidepsin suppresses cell proliferation via PTTG1. HDAC1 is also involved in the proliferation of corticotroph cells via PTTG1.
Collapse
Affiliation(s)
- Rie Hagiwara
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Kanako Niioka
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Shinobu Takayasu
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Mizuki Tasso
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
14
|
Yamamoto M, Nakao T, Ogawa W, Fukuoka H. Aggressive Cushing's Disease: Molecular Pathology and Its Therapeutic Approach. Front Endocrinol (Lausanne) 2021; 12:650791. [PMID: 34220707 PMCID: PMC8242934 DOI: 10.3389/fendo.2021.650791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cushing's disease is a syndromic pathological condition caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (ACTHomas) mediated by hypercortisolemia. It may have a severe clinical course, including infection, psychiatric disorders, hypercoagulability, and metabolic abnormalities, despite the generally small, nonaggressive nature of the tumors. Up to 20% of ACTHomas show aggressive behavior, which is related to poor surgical outcomes, postsurgical recurrence, serious clinical course, and high mortality. Although several gene variants have been identified in both germline and somatic changes in Cushing's disease, the pathophysiology of aggressive ACTHomas is poorly understood. In this review, we focused on the aggressiveness of ACTHomas, its pathology, the current status of medical therapy, and future prospects. Crooke's cell adenoma (CCA), Nelson syndrome, and corticotroph pituitary carcinoma are representative refractory pituitary tumors that secrete superphysiological ACTH. Although clinically asymptomatic, silent corticotroph adenoma is an aggressive ACTH-producing pituitary adenoma. In this review, we summarize the current understanding of the pathophysiology of aggressive ACTHomas, including these tumors, from a molecular point of view based on genetic, pathological, and experimental evidence. The treatment of aggressive ACTHomas is clinically challenging and usually resistant to standard treatment, including surgery, radiotherapy, and established medical therapy (e.g., pasireotide and cabergoline). Temozolomide is the most prescribed pharmaceutical treatment for these tumors. Reports have shown that several treatments for patients with refractory ACTHomas include chemotherapy, such as cyclohexyl-chloroethyl-nitrosourea combined with 5-fluorouracil, or targeted therapies against several molecules including vascular endothelial growth factor receptor, cytotoxic T lymphocyte antigen 4, programmed cell death protein 1 (PD-1), and ligand for PD-1. Genetic and experimental evidence indicates that some possible therapeutic candidates are expected, such as epidermal growth factor receptor tyrosine kinase inhibitor, cyclin-dependent kinase inhibitor, and BRAF inhibitor. The development of novel treatment options for aggressive ACTHomas is an emerging task.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | | | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
- *Correspondence: Hidenori Fukuoka,
| |
Collapse
|
15
|
Genomic and transcriptomic analysis of pituitary adenomas reveals the impacts of copy number variations on gene expression and clinical prognosis among prolactin-secreting subtype. Aging (Albany NY) 2020; 13:1276-1293. [PMID: 33472173 PMCID: PMC7834992 DOI: 10.18632/aging.202304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Pituitary adenomas (PAs) are slow growing and benign primary intracranial tumors that often cause occupying effects or endocrine symptoms. PAs can be classified into various subtypes according to hormone secretion. Although widespread transcriptional alterations that cause aberrant hormone secretion have been characterized, the impact of genomic variations on transcriptional alterations is unclear due to the rare occurrence of single-nucleotide variations in PA. In this study, we performed whole-genome sequencing (WGS) on 76 PA samples across three clinical subtypes (PRL-PAs; GH-PAs, and NFPAs); transcriptome sequencing (RNA-seq) of 54 samples across these subtypes was also conducted. Nine normal pituitary tissues were used as controls. Common and subtype-specific transcriptional alterations in PAs were identified. Strikingly, widespread genomic copy number amplifications were discovered for PRL-PAs, which are causally involved in transcriptomic changes in this subtype. Moreover, we found that the high copy number variations (CNVs) in PRL-PA cause increased prolactin production, drug resistance and proliferative capacity, potentially through key genes with copy number amplification and transcriptional activation, such as BCAT1. This study provides insight into how genomic CNVs affect the transcriptome and clinical outcomes of PRL-PA and sheds light on the development of potential therapeutics for aberrantly activated targets.
Collapse
|
16
|
Yanar EA, Makazan NV, Orlova EM, Kareva MА. [Genetic basis of Cushing's disease in children and targeted therapeutic future perspectives]. ACTA ACUST UNITED AC 2020; 66:39-49. [PMID: 33481366 DOI: 10.14341/probl12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
Cushing's disease (CD) is a multisystem disorder of a cortisol excess caused by ACTH -secreting pituitary tumor (corticotropinoma). CD in children is due to somatic or germline mutations with the late onset causing multiple endocrine tumors. If not treated, hypercortisolism leads to severe decrease in quality of life and life-threating conditions. The first-line treatment for CD is pituitary surgery, which might be followed by complications and relapse with necessity of additional surgery or initiations of second-line treatment. Recent studies of molecular basis of corticotropinoma development made it possible to employ medical therapy in CD. Understanding of corticotropinoma etiology and pathogenesis is an important part of education for pediatric endocrinologists since we need to keep in mind possibility of multisystem disorder in case of CD in children and because medical therapy might gain more important role for CD treatment in future.The most actual genetic aspects of corticotroph adenomas growth and the medical treatment opportunities are present in this review.
Collapse
|
17
|
Fukuoka H, Shichi H, Yamamoto M, Takahashi Y. The Mechanisms Underlying Autonomous Adrenocorticotropic Hormone Secretion in Cushing's Disease. Int J Mol Sci 2020; 21:ijms21239132. [PMID: 33266265 PMCID: PMC7730156 DOI: 10.3390/ijms21239132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cushing’s disease caused due to adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (ACTHomas) leads to hypercortisolemia, resulting in increased morbidity and mortality. Autonomous ACTH secretion is attributed to the impaired glucocorticoid negative feedback (glucocorticoid resistance) response. Interestingly, other conditions, such as ectopic ACTH syndrome (EAS) and non-neoplastic hypercortisolemia (NNH, also known as pseudo-Cushing’s syndrome) also exhibit glucocorticoid resistance. Therefore, to differentiate between these conditions, several dynamic tests, including those with desmopressin (DDAVP), corticotrophin-releasing hormone (CRH), and Dex/CRH have been developed. In normal pituitary corticotrophs, ACTH synthesis and secretion are regulated mainly by CRH and glucocorticoids, which are the ACTH secretion-stimulating and -suppressing factors, respectively. These factors regulate ACTH synthesis and secretion through genomic and non-genomic mechanisms. Conversely, glucocorticoid negative feedback is impaired in ACTHomas, which could be due to the overexpression of 11β-HSD2, HSP90, or TR4, or loss of expression of CABLES1 or nuclear BRG1 proteins. Genetic analysis has indicated the involvement of several genes in the etiology of ACTHomas, including USP8, USP48, BRAF, and TP53. However, the association between glucocorticoid resistance and these genes remains unclear. Here, we review the clinical aspects and molecular mechanisms of ACTHomas and compare them to those of other related conditions.
Collapse
Affiliation(s)
- Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Correspondence: ; Tel.: +81-78-382-5861; Fax: +81-78-382-2080
| | - Hiroki Shichi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (H.S.); (Y.T.)
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (H.S.); (Y.T.)
- Department of Diabetes and Endocrinology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
18
|
Distinct Pattern of Endoplasmic Reticulum Protein Processing and Extracellular Matrix Proteins in Functioning and Silent Corticotroph Pituitary Adenomas. Cancers (Basel) 2020; 12:cancers12102980. [PMID: 33066652 PMCID: PMC7650558 DOI: 10.3390/cancers12102980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Corticotroph pituitary adenomas present a spectrum of functionality regarding hormonal production, ranging from functioning to silent tumors. Moreover, they show different invasiveness and recurrent behavior profiles, the silent being considered an aggressive type of adenomas. Through analyses of global transcriptome and proteome, we show that both groups expressed genes and protein related to protein synthesis and vesicular transport, and present a distinct pattern of collagen/ extracellular matrix proteins. Endoplasmic reticulum protein processing is a key factor for hormone production in functioning corticotroph adenomas. Furthermore, a distinct cell adhesion profile in silent corticotroph adenomas may explain the aggressive behavior. Together, our findings shed light on the different repertoires of activated signaling pathways in corticotroph pituitary adenomas and may reveal new potential medical targets. Abstract Functioning (FCA) and silent corticotroph (SCA) pituitary adenomas act differently from a clinical perspective, despite both subtypes showing positive TBX19 (TPIT) and/or adrenocorticotropic hormone (ACTH) staining by immunohistochemistry. They are challenging to treat, the former due to functional ACTH production and consequently hypercortisolemia, and the latter due to invasive and recurrent behavior. Moreover, the molecular mechanisms behind their distinct behavior are not clear. We investigated global transcriptome and proteome changes in order to identify signaling pathways that can explain FCA and SCA differences (e.g., hormone production vs. aggressive growth). In the transcriptomic study, cluster analyses of differentially expressed genes revealed two distinct groups in accordance with clinical and histological classification. However, in the proteomic study, a greater degree of heterogeneity within the SCA group was found. Genes and proteins related to protein synthesis and vesicular transport were expressed by both adenoma groups, although different types and a distinct pattern of collagen/extracellular matrix proteins were presented by each group. Moreover, several genes related to endoplasmic reticulum protein processing were overexpressed in the FCA group. Together, our findings shed light on the different repertoires of activated signaling pathways in corticotroph adenomas, namely, the increased protein processing capacity of FCA and a specific pattern of adhesion molecules that may play a role in the aggressiveness of SCA.
Collapse
|
19
|
García-Martínez A, Fuentes-Fayos AC, Fajardo C, Lamas C, Cámara R, López-Muñoz B, Aranda I, Luque RM, Picó A. Differential Expression of MicroRNAs in Silent and Functioning Corticotroph Tumors. J Clin Med 2020; 9:jcm9061838. [PMID: 32545591 DOI: 10.3390/jcm9061838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
The potential role of miRNAs in the silencing mechanisms of pituitary neuroendocrine tumors (PitNETs) has not been addressed. The aim of the present study was to evaluate the expression levels and the potential associated role of some miRNAs, pathways, and transcription factors in the silencing mechanisms of corticotroph tumors (CTs). Accordingly, the expression of miR-375, miR-383, miR-488, miR-200a and miR-103; of PKA, MAP3K8, MEK, MAPK3, NGFIB, NURR1, PITX1, and STAT3 were analyzed via qRT-PCR in 23 silent and 24 functioning CTs. miR-200a and miR-103 showed significantly higher expression in silent than in functioning CTs, even after eliminating the bias of tumor size, therefore enabling the differentiation between the two variants. Additionally, miR-383 correlated negatively with TBX19 in silent CTs, a transcription factor related with the processing of POMC that can participate in the silencing mechanisms of CTs. Finally, the gene expression levels of miR-488, miR-200a, and miR-103 were significantly higher in macroadenomas (functioning and silent) than in microadenomas. The evidence from this study indicates that miRNAs could be involved in the pathophysiology of CTs. The translational implications of these findings suggest that pharmacological treatments specifically targeting these miRNAs could become a promising therapeutic option for these patients.
Collapse
Affiliation(s)
- Araceli García-Martínez
- Research Laboratory, Alicante General University Hospital-Institute for Health and Biomedical Research (ISABIAL), CIBERER, 03010 Alicante, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Carmen Fajardo
- Endocrinology Department, Hospital Universitario de La Ribera, 46600 Alzira, Valencia, Spain
| | - Cristina Lamas
- Endocrinology Department, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Rosa Cámara
- Endocrinology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Beatriz López-Muñoz
- Endocrinology Department, Alicante General University Hospital-ISABIAL, 03010 Alicante, Spain
| | - Ignacio Aranda
- Pathology Department, Alicante General University Hospital-ISABIAL, 03010 Alicante, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Antonio Picó
- Endocrinology Department, Alicante General University Hospital-ISABIAL, Miguel Hernández University, CIBERER, 03010 Alicante, Spain
| |
Collapse
|
20
|
Ciato D, Albani A. Molecular Mechanisms of Glucocorticoid Resistance in Corticotropinomas: New Developments and Drug Targets. Front Endocrinol (Lausanne) 2020; 11:21. [PMID: 32117053 PMCID: PMC7025590 DOI: 10.3389/fendo.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cushing's disease is characterized by excessive adrenocorticotropin hormone (ACTH) secretion caused by a corticotroph tumor of the pituitary gland, leading to hypercortisolism and increased morbidity and mortality. The molecular causes of the disease are not completely understood, therefore more research is needed to discover novel molecular targets and more effective treatments. To date, the SSTR-analog pasireotide is the only approved drug for Cushing's Disease treatment that is directly targeting the source of the disease. Targeting directly the activity of glucocorticoid receptor or the factors modulating it might be a new valid option for the medical management of Cushing's disease. Here, we briefly review the molecular mechanisms involved in the glucocorticoid negative feedback and glucocorticoid resistance and examine novel targets and therapies that might effectively restore glucocorticoid sensitivity.
Collapse
|
21
|
Drummond J, Roncaroli F, Grossman AB, Korbonits M. Clinical and Pathological Aspects of Silent Pituitary Adenomas. J Clin Endocrinol Metab 2019; 104:2473-2489. [PMID: 30020466 PMCID: PMC6517166 DOI: 10.1210/jc.2018-00688] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
CONTEXT Silent pituitary adenomas are anterior pituitary tumors with hormone synthesis but without signs or symptoms of hormone hypersecretion. They have been increasingly recognized and represent challenging diagnostic issues. EVIDENCE ACQUISITION A comprehensive literature search was performed using MEDLINE and EMBASE databases from January 2000 to March 2018 with the following key words: (i) pituitary adenoma/tumor and nonfunctioning; or (ii) pituitary adenoma/tumor and silent. All titles and abstracts of the retrieved articles were reviewed, and recent advances in the field of silent pituitary adenomas were summarized. EVIDENCE SYNTHESIS The clinical and biochemical picture of pituitary adenomas reflects a continuum between functional and silent adenomas. Although some adenomas are truly silent, others will show some evidence of biochemical hypersecretion or could have subtle clinical signs and, therefore, can be referred to as clinically silent or "whispering" adenomas. Silent tumors seem to be more aggressive than their secreting counterparts, with a greater recurrence rate. Transcription factors for pituitary cell lineages have been introduced into the 2017 World Health Organization guidelines: steroidogenic factor 1 staining for gonadotroph lineage; PIT1 (pituitary-specific positive transcription factor 1) for growth hormone, prolactin, and TSH lineage, and TPIT for the corticotroph lineage. Prospective studies applying these criteria will establish the value of the new classification. CONCLUSIONS A concise review of the clinical and pathological aspects of silent pituitary adenomas was conducted in view of the new World Health Organization classification of pituitary adenomas. New classifications, novel prognostics markers, and emerging imaging and therapeutic approaches need to be evaluated to better serve this unique group of patients.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Chemotherapy, Adjuvant/methods
- Humans
- Magnetic Resonance Angiography
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Pituitary Gland, Anterior/diagnostic imaging
- Pituitary Gland, Anterior/pathology
- Pituitary Gland, Anterior/surgery
- Pituitary Hormones, Anterior/blood
- Pituitary Hormones, Anterior/metabolism
- Pituitary Neoplasms/blood
- Pituitary Neoplasms/diagnosis
- Pituitary Neoplasms/pathology
- Pituitary Neoplasms/therapy
- Prognosis
Collapse
Affiliation(s)
- Juliana Drummond
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Correspondenceand Reprint Requests: Márta Korbonits, MD, PhD, Department of Endocrinology, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom. E-mail:
| |
Collapse
|
22
|
Weigand I, Knobloch L, Flitsch J, Saeger W, Monoranu CM, Höfner K, Herterich S, Rotermund R, Ronchi CL, Buchfelder M, Glatzel M, Hagel C, Fassnacht M, Deutschbein T, Sbiera S. Impact of USP8 Gene Mutations on Protein Deregulation in Cushing Disease. J Clin Endocrinol Metab 2019; 104:2535-2546. [PMID: 30844069 DOI: 10.1210/jc.2018-02564] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 02/01/2023]
Abstract
CONTEXT Cushing disease (CD) is a rare disorder with severe sequels and incompletely understood pathogenesis. The underlying corticotroph adenomas harbor frequently somatic mutations in the ubiquitin-specific peptidase 8 (USP8) gene. These mutations render USP8 hyperactive and prevent client proteins from degradation. OBJECTIVE To investigate the impact of USP8 mutations on proteins deregulated in CD. DESIGN One hundred eight pituitary adenomas (75 corticotroph [58 USP8 wild type (WT) and 17 USP8 mutated], 14 somatotroph, and 19 nonfunctioning) were investigated by immunohistochemistry. All evaluated proteins [USP8, arginine vasopressin receptor 1b and 2, corticotropin-releasing hormone receptor, cAMP response element-binding protein (CREB), p27/kip1, cyclin E, heat shock protein 90 (HSP90), orphan nuclear receptor 4, epidermal growth factor receptor, histone deacetylase 2, glucocorticoid receptor, cyclin-dependent kinase 5 and Abelson murine leukemia viral oncogene homolog 1 enzyme substrate 1] were known to be deregulated in CD. Furthermore, AtT20 cells were transfected with USP8 to investigate the expression of possible downstream proteins by immunoblot. RESULTS Whereas most of the investigated proteins were not differentially expressed, the cell-cycle inhibitor p27 was significantly reduced in USP8 mutated corticotroph adenoma (H-score 2.0 ± 1.0 vs 1.1 ± 1.1 in WT adenomas; P = 0.004). In contrast, the chaperone HSP90 was expressed higher (0.5 ± 0.4 vs 0.2 ± 0.4; P = 0.29), and the phosphorylation of the transcription factor CREB was increased in USP8 mutated adenomas (1.30.5 ± 0.40.9 vs 0.70.5 ± 0.40.7; P = 0.014). Accordingly, AtT20 cells transfected with the USP8 P720R mutant had higher phosphorylated CREB (pCREB) levels than WT transfected cells (1.3 ± 0.14 vs 1 ± 0.23; P = 0.13). CONCLUSIONS We could demonstrate that USP8 mutations are associated with deregulation of p27/kip1, HSP90, and pCREB. These findings suggest that these proteins are direct or indirect clients of USP8 and could therefore be potential targets for therapeutic approaches in patients with CD.
Collapse
Affiliation(s)
- Isabel Weigand
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Lisanne Knobloch
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Höfner
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Roman Rotermund
- Department of Neurosurgery, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, United Kingdom
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- Central Laboratory, University Hospital Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Timo Deutschbein
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
23
|
Analysis of pituitary adenoma expression patterns suggests a potential role for the NeuroD1 transcription factor in neuroendocrine tumor-targeting therapies. Oncotarget 2019; 10:289-312. [PMID: 30719226 PMCID: PMC6349459 DOI: 10.18632/oncotarget.26513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
NeuroD1’s roles in the pathogenesis of pituitary adenomas and in the biology of the normal adult pituitary gland have been insufficiently researched. Much of the work investigating its expression patterns has yielded contradictory results. Objective: morphological study of NeuroD1 transcription factor expression in different types of pituitary adenomas and in normal adult human pituitary glands. Materials and methods: This study analyzed 48 pituitary adenomas and nine normal pituitary glands. In all cases, immunohistochemical study was performed with antibodies to NeuroD1, 6 hormones of adenohypophysis, Ki-67, and CK7. We used confocal laser scanning microscopy, electron microscopy and electron immunocytochemistry. Results: NeuroD1 expression was detected in all cases of plurihormonal adenomas, mammosomatotropinomas, corticotropinomas, prolactinomas, gonadotropinomas, null-cell pituitary adenomas, and in normal pituitary glands. The average numbers of NeuroD1 expressing cells in normal adenohypophysis specimens were significantly lower than in the adenomas overall (p=0.006). NeuroD1 expression was confirmed by several methods (in prolactinomas, by double stain immunohistochemistry; in mammosomatotropinomas, by double stain immunohistochemistry, confocal laser scanning microscopy, and electron immunocytochemistry; and in somatotropinomas, by electron immunocytochemistry). Conclusion: Immunohistochemistry, confocal microscopy, and double label electron immunocytochemistry confirmed NeuroD1’s key role in the pathogenesis of pituitary tumors, regardless of their hormonal state. Its expression level in pituitary adenomas is significantly higher than in the normal pituitary gland and has no reliable correlation with any studied hormones or Ki-67. These findings suggest that NeuroD1 should be investigated further as a potential molecular target in tumor-targeting therapies.
Collapse
|
24
|
Eremkina AK, Dzeranova LK, Pigarova EK, Mokrysheva NG, Dedov II. [Morphofunctional features of non-functioning pituitary adenomas]. Arkh Patol 2019; 81:71-78. [PMID: 30830109 DOI: 10.17116/patol20198101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Non-functioning pituitary adenomas (NFPAs) account for about 30% of all pituitary tumors. NFPAs are characterized by the lack of secretory potential or its weak expression insufficient for determination of the blood level of adenohypophyseal tropic hormones and for development of a specific clinical picture. Morphologically, NFPAs are a heterogeneous group of tumors, the classification of which was previously based only on immunoreactivity for pituitary tropic hormones. The WHO revised its Classification of Tumors of Endocrine Organs (4th edition) in 2017. The main changes relate to adenohypophysial-cell lineage for the designation of adenomas into subtypes. The introduction of transcription factor antibodies has become a fundamentally new approach to the classification of NFPAs, which is necessary to recognize less differentiated tumor types. This paper provides information on the new histopathological classification of pituitary adenomas, on the theories of silent adenomas, and on the proliferative and prognostic markers of NFPAs.
Collapse
Affiliation(s)
- A K Eremkina
- National Medical Research Center for Endocrinology, Ministry of Health of Russia, Moscow, Russia
| | - L K Dzeranova
- National Medical Research Center for Endocrinology, Ministry of Health of Russia, Moscow, Russia
| | - E K Pigarova
- National Medical Research Center for Endocrinology, Ministry of Health of Russia, Moscow, Russia
| | - N G Mokrysheva
- National Medical Research Center for Endocrinology, Ministry of Health of Russia, Moscow, Russia
| | - I I Dedov
- National Medical Research Center for Endocrinology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
25
|
Cassarino MF, Ambrogio AG, Cassarino A, Terreni MR, Gentilini D, Sesta A, Cavagnini F, Losa M, Pecori Giraldi F. Gene expression profiling in human corticotroph tumours reveals distinct, neuroendocrine profiles. J Neuroendocrinol 2018; 30:e12628. [PMID: 29920815 PMCID: PMC6175113 DOI: 10.1111/jne.12628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Adrenocorticotrophic hormone (ACTH)-secreting pituitary adenomas give rise to a severe endocrinological disorder, comprising Cushing's disease, with multifaceted clinical presentation and treatment outcomes. Experimental studies suggest that the disease variability is inherent to the pituitary tumour, thus indicating the need for further studies into tumour biology. The present study evaluated transcriptome expression pattern in a large series of ACTH-secreting pituitary adenoma specimens in order to identify molecular signatures of these tumours. Gene expression profiling of formalin-fixed, paraffin-embedded specimens from 40 human ACTH-secreting pituitary adenomas revealed the significant expression of genes involved in protein biosynthesis and ribosomal function, in keeping with the neuroendocrine cell profile. Unsupervised cluster analysis identified 3 distinct gene profile clusters and several genes were uniquely overexpressed in a given cluster, accounting for different molecular signatures. Of note, gene expression profiles were associated with clinical features, such as the age and size of the tumour. Altogether, the findings of the present study show that corticotroph tumours are characterised by a neuroendocrine gene expression profile and present subgroup-specific molecular features.
Collapse
Affiliation(s)
| | - Alberto G. Ambrogio
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
- Department of Clinical Sciences & Community HealthUniversity of MilanMilanItaly
| | - Andrea Cassarino
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | | | - Davide Gentilini
- Molecular Biology LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Antonella Sesta
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Francesco Cavagnini
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Marco Losa
- Department of NeurosurgeryOspedale San RaffaeleMilanItaly
| | - Francesca Pecori Giraldi
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
- Department of Clinical Sciences & Community HealthUniversity of MilanMilanItaly
| |
Collapse
|
26
|
Renner U, Ciato D, Stalla GK. Recent advances in understanding corticotroph pituitary tumor initiation and progression. F1000Res 2018; 7. [PMID: 30228864 PMCID: PMC6117851 DOI: 10.12688/f1000research.14789.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/20/2022] Open
Abstract
Cushing’s disease is the most frequent form of hypercortisolism and is caused by hypophyseal corticotroph adenomas secreting excessive amounts of adrenocorticotropic hormone. Most of the tumors develop sporadically and only a limited number of corticotroph adenomas have been found to be associated with different neuroendocrine syndromes or with familial isolated pituitary adenomas. The pathogenic mechanisms of corticotroph adenomas are largely unknown, but the discovered aberrant chaperoning activity of heat shock protein 90 on the one hand and the presence of ubiquitin-specific protease 8 mutations on the other hand partially explained the causes of their development. Corticotroph tumors arise initially as benign microadenomas but with time form invasively growing aggressive macroadenomas which can switch to corticotroph carcinomas in extremely rare cases. The mechanisms through which corticotroph tumors escape from glucocorticoid negative feedback are still poorly understood, as are the processes that trigger the progression of benign corticotroph adenomas toward aggressive and malignant phenotypes. This review summarizes recent findings regarding initiation and progression of corticotroph pituitary tumors.
Collapse
Affiliation(s)
- Ulrich Renner
- Max Planck Institute of Psychiatry, Clinical Neuroendocrinology Group, Munich, Germany
| | - Denis Ciato
- Max Planck Institute of Psychiatry, Clinical Neuroendocrinology Group, Munich, Germany
| | - Günter K Stalla
- Max Planck Institute of Psychiatry, Clinical Neuroendocrinology Group, Munich, Germany
| |
Collapse
|
27
|
Is it time to consider the expression of specific-pituitary hormone genes when typifying pituitary tumours? PLoS One 2018; 13:e0198877. [PMID: 29979686 PMCID: PMC6034784 DOI: 10.1371/journal.pone.0198877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study is to check whether we can replicate, in an independent series, previous results showing that the molecular study of pituitary-specific gene expression complements the inmunohistochemical identification of pituitary neuroendocrine tumours. We selected 112 patients (51 (46.4%) women; mean age 51.4±16 years; 102 macroadenomas (91.9%), 9 microadenomas (8.1%)) with complete clinical, radiological, immunohistochemical and molecular data from our data set of pituitary neuroendocrine tumours. Patients were different from those previously studied. We measured the expression of the pituitary-specific hormone genes and type 1 corticotrophin-releasing hormone and arginine vasopressin 1b receptors, by quantitative real-time polymerase chain reaction using TaqMan probes. Afterwards, we identified the different pituitary neuroendocrine tumour subtypes following the 2017 World Health Organization classification of pituitary tumours, calculating the concordance between their molecular and immuhistochemical identification. The concordance between molecular and immunohistochemical identification of functioning pituitary neuroendocrine tumours with the clinical diagnosis was globally similar to the previous series, where the SYBR Green technique was used instead of TaqMan probes. Our results also corroborated the poor correlation between molecular and immunohistochemical detection of the silent pituitary neuroendocrine tumour variants. This discrepancy was more remarkable in lactotroph, null-cell and plurihormonal pituitary neuroendocrine tumours. In conclusion, this study validates the results previously published by our group, highlighting a complementary role for the molecular study of the pituitary-specific hormone genes in the typification of pituitary neuroendocrine tumours subtypes.
Collapse
|
28
|
Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X, Matsuba C, Takasumi Y, Ballesteros-Merino C, Fox BA, Barkhoudarian G, Kelly DF, Hoon DSB. The Epigenomic Landscape of Pituitary Adenomas Reveals Specific Alterations and Differentiates Among Acromegaly, Cushing's Disease and Endocrine-Inactive Subtypes. Clin Cancer Res 2018; 24:4126-4136. [PMID: 30084836 DOI: 10.1158/1078-0432.ccr-17-2206] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Pituitary adenomas are one of the most common benign neoplasms of the central nervous system. Although emerging evidence suggests roles for both genetic and epigenetic factors in tumorigenesis, the degree to which these factors contribute to disease remains poorly understood.Experimental Design: A multiplatform analysis was performed to identify the genomic and epigenomic underpinnings of disease among the three major subtypes of surgically resected pituitary adenomas in 48 patients: growth hormone (GH)-secreting (n = 17), adrenocorticotropic hormone (ACTH)-secreting (n = 13, including 3 silent-ACTH adenomas), and endocrine-inactive (n = 18). Whole-exome sequencing was used to profile the somatic mutational landscape, whole-transcriptome sequencing was used to identify disease-specific patterns of gene expression, and array-based DNA methylation profiling was used to examine genome-wide patterns of DNA methylation.Results: Recurrent single-nucleotide and small indel somatic mutations were infrequent among the three adenoma subtypes. However, somatic copy-number alterations (SCNA) were identified in all three pituitary adenoma subtypes. Methylation analysis revealed adenoma subtype-specific DNA methylation profiles, with GH-secreting adenomas being dominated by hypomethylated sites. Likewise, gene-expression patterns revealed adenoma subtype-specific profiles. Integrating DNA methylation and gene-expression data revealed that hypomethylation of promoter regions are related with increased expression of GH1 and SSTR5 genes in GH-secreting adenomas and POMC gene in ACTH-secreting adenomas. Finally, multispectral IHC staining of immune-related proteins showed abundant expression of PD-L1 among all three adenoma subtypes.Conclusions: Taken together, these data stress the contribution of epigenomic alterations to disease-specific etiology among adenoma subtypes and highlight potential targets for future immunotherapy-based treatments. This article reveals novel insights into the epigenomics underlying pituitary adenomas and highlights how differences in epigenomic states are related to important transcriptome alterations that define adenoma subtypes. Clin Cancer Res; 24(17); 4126-36. ©2018 AACR.
Collapse
Affiliation(s)
- Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Xiaowen Wang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Sandy C Hsu
- Sequencing Center, John Wayne Cancer Institute at Saint John's Health Center, Providence Health and Service (PHS), Santa Monica, California
| | - Nellie Nelson
- Sequencing Center, John Wayne Cancer Institute at Saint John's Health Center, Providence Health and Service (PHS), Santa Monica, California
| | - Xin Zhang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Chikako Matsuba
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Yuki Takasumi
- Department of Pathology, Saint John's Health Center, PHS, Santa Monica, California
| | | | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, PHS, Portland, Oregon
| | - Garni Barkhoudarian
- Pacific Neuroscience Institute, PHS, Santa Monica, California.,John Wayne Cancer Institute Brain Tumor Center, Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Daniel F Kelly
- Pacific Neuroscience Institute, PHS, Santa Monica, California.,John Wayne Cancer Institute Brain Tumor Center, Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California. .,Sequencing Center, John Wayne Cancer Institute at Saint John's Health Center, Providence Health and Service (PHS), Santa Monica, California.,Pacific Neuroscience Institute, PHS, Santa Monica, California
| |
Collapse
|
29
|
Kim D, Ku CR, Park SH, Moon JH, Kim EH, Kim SH, Lee EJ. Clinical Parameters to Distinguish Silent Corticotroph Adenomas from Other Nonfunctioning Pituitary Adenomas. World Neurosurg 2018; 115:e464-e471. [PMID: 29678704 DOI: 10.1016/j.wneu.2018.04.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is difficult to distinguish silent corticotroph adenomas (SCAs) from other nonfunctioning pituitary adenomas (NFPAs) preoperatively. This study aimed to determine the preoperative clinical parameters associated with SCAs. METHODS This was a retrospective single-center study of patients who underwent surgery for NFPAs during 2011-2016 in our tertiary hospital and who had preoperative combined pituitary function test (CPFT) and immunohistochemical staining results available. After we excluded patients with increased 24-hour urinary free cortisol to preclude overt Cushing's disease, 341 patients were finally enrolled. The medical records, including the CPFT and immunohistochemistry results, of the patients were reviewed. RESULTS The age and tumor size were similar between patients with SCAs and other NFPAs. The SCA group had a greater proportion of women (89.2% vs. 57.6%, P < 0.001), cavernous sinus invasion (35.1% vs. 20.7%, P = 0.047), and intratumoral hemorrhage on preoperative sella magnetic resonance imaging (32.4% vs. 9.2%, P < 0.001) compared with the NFPA group. In the preoperative CPFT, the cortisol response was not significantly different between groups. However, the peak adrenocorticotropic hormone (ACTH) (67.80 ± 49.83 vs. 85.67 ± 78.97 pg/mL, P = 0.061) tended to be lower, and the ΔACTH (53.71 ± 50.14 vs. 72.67 ± 75.82 pg/mL, P = 0.046) was significantly lower in SCAs. After we excluded patients with preoperative hypopituitarism caused by mass effects, the peak ACTH (69.39 ± 39.45 vs. 119.75 ± 89.84 pg/mL, P = 0.001) and ΔACTH (58.58 ± 36.51 vs. 107.66 ± 86.05 pg/mL, P = 0.001) were significantly lower in SCAs than in other NFPAs. CONCLUSIONS Female sex, cavernous sinus invasion, intratumoral hemorrhage on sella magnetic resonance imaging, and decreased ACTH response in the CPFT are independent indicators of SCAs.
Collapse
Affiliation(s)
- Daham Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea.
| | - Se Hee Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Ho Kim
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea; Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Abstract
Non-functioning pituitary neuroendocrine tumors do not cause endocrine symptoms related to hypersecretion of adenohypophyseal hormones and are clinically characterized by symptoms due to growing sellar tumor mass. Histopathological classification of this tumor group has always been challenging due to their heterogeneity, limited knowledge on their biology, and diverse methodological problems. We have searched PubMed database for data related to the histopathological classification of non-functioning pituitary tumors and methods for its application. Principles of the classification and grading presented in the recently released 4th edition of the World Health Organization classification of endocrine tumors have been summarized. Based on the expression of anterior pituitary hormones and pituitary specific transcription factors, gonadotroph tumors dominate within the group of clinically non-functioning tumors, followed by corticotroph type; however, other less common types of the non-functioning tumors can be identified. Assessment of tumor cell proliferation is important to identify "high-risk adenomas." A few subtypes of non-functioning tumors belong to the category of potentially aggressive tumors, independent of the cell proliferation rate. Here, we present up to date criteria for the classification of clinically non-functioning pituitary tumors, offer a diagnostic approach for the routine clinical use, and emphasize a need for inclusion of prognostic and predictive markers in the classification.
Collapse
Affiliation(s)
| | - Britt Edén Engström
- Department of Medical Sciences, Endocrinology and Metabolism, Uppsala University Hospital, Uppsala, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
31
|
Abstract
PURPOSE Silent corticotroph adenomas (SCAs) present clinically as non-functioning adenomas (NFAs) but are immunopositive for adrenocorticotrophic hormone (ACTH) without biochemical and clinical manifestation of hypercortisolism. Pathologic examination of resected NFAs that demonstrate positive ACTH and/or TPIT expression confirms its corticotroph lineage. SCAs comprise up to 20% of NFAs and exhibit a higher rate of recurrence. Studies of molecular mechanisms have generated multiple hypotheses on SCA tumorigenesis, pathophysiology, and growth that as yet remain to be proven. An improved understanding of their pathologic and clinical characteristics is needed. METHODS A literature review was performed using PubMed to identify research reports and clinical case series on SCAs. RESULTS Up to date findings regarding epidemiology, mechanisms of pathogenesis, differentiation, progression, and growth, as well as clinical presentation, postoperative course, and treatment options for patients with SCAs are presented. Pooled results demonstrate that 25-40% of cases show cavernous sinus invasion, preoperative hypopituitarism, new-onset hypopituitarism, and recurrence. CONCLUSION This article reviews the incidence, molecular pathology, and clinical behavior of these unique non-functioning pituitary corticotroph adenomas, and highlights the need for rigorous monitoring for recurrences and hypopituitarism in patients with SCAs.
Collapse
Affiliation(s)
- Anat Ben-Shlomo
- Pituitary Center, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048, USA
| | - Odelia Cooper
- Pituitary Center, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048, USA.
| |
Collapse
|
32
|
Albani A, Theodoropoulou M, Reincke M. Genetics of Cushing's disease. Clin Endocrinol (Oxf) 2018; 88:3-12. [PMID: 28850717 DOI: 10.1111/cen.13457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
Cushing's disease (CD) is a rare disabling condition caused by Adrenocorticotropic hormone (ACTH)-secreting adenomas of the pituitary. The majority of corticotropic adenomas are monoclonal and occur sporadically. Only rarely does CD arise in the context of genetic familial syndromes. Targeted sequencing of oncogenes and tumour suppressor genes commonly mutated in other tumours did not identify recurrent mutations. In contrast, next generation sequencing allowed us recently to clarify the genetic basis of CD: we identified somatic driver mutations in the ubiquitin-specific protease 8 (USP8) gene in a significant portion of corticotropinomas. These mutations represent a novel and unique mechanism leading to ACTH excess. Inhibition of USP8 or its downstream signalling pathways could represent a new therapeutic approach for the management of CD. In this review, we will focus on this new evidence and its implication for clinical care of affected patients.
Collapse
Affiliation(s)
- Adriana Albani
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Adulthood and Childhood Human Pathology G. Barresi and Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
33
|
Benchekroun G, de Fornel-Thibaud P, Rosenberg D. Proopiomelanocortin processing and prohormone convertase 1 level in dogs with pituitary corticotroph tumors. Domest Anim Endocrinol 2018; 62:83-87. [PMID: 29145000 DOI: 10.1016/j.domaniend.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 11/30/2022]
Abstract
Preliminary data suggest that prohormone convertase 1 (PC1/3) protein expression and proopiomelanocortin (POMC) processing are altered in large corticotroph tumors. The aim of this study was to characterize the levels of ACTH precursors and PC1/3 protein in small and large corticotroph tumors of dogs with Cushing's disease. Pituitary tumors of dogs with Cushing's disease were collected postmortem 30 min to 12h after natural death or euthanasia, and classified as small or large. POMC, pro-ACTH, and PC1/3 were detected by Western blotting. Five small and 6 large corticotroph tumors were collected. POMC and pro-ACTH signals were visualized in 5/6 large tumors and in 4/5 small tumors. The strongest signal intensity was observed in 2 large tumors. The PC1/3 signal was weak to undetectable in 6/6 large tumors but strong in 5/5 small tumors. These results suggest differences in PC1/3 protein levels and patterns of POMC processing between large and small corticotroph tumors. If confirmed in larger groups of tumors, further studies will be required to characterize the mechanism involved in these differences.
Collapse
Affiliation(s)
- G Benchekroun
- Unité de Médecine Interne, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France
| | - P de Fornel-Thibaud
- Unité de Médecine Interne, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France
| | - D Rosenberg
- Unité de Médecine Interne, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| |
Collapse
|
34
|
Sanchez-Tejada L, Sanchez-Ortiga R, Lamas C, Camara R, Riesgo P, Fajardo C, Aranda FI, Pico A. Contribution of molecular analysis to the typification of the non-functioning pituitary adenomas. PLoS One 2017; 12:e0180039. [PMID: 28692683 PMCID: PMC5503173 DOI: 10.1371/journal.pone.0180039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
AIM The WHO Classification of Tumours of Endocrine Organs considers the inmunohistochemical characterization of pituitary adenomas (PA) as mandatory for patient diagnosis. Recent advances in the knowledge of the molecular patterns of these tumours could complement this classification with gene expression profiling. METHODS Within the context of the Spanish Molecular Registry of Pituitary Adenomas (REMAH), a multicentre clinical-basic research project, we analysed the molecular phenotype of 142 PAs with complete IHC and clinical information. Gene expression levels of all pituitary hormones, type 1 corticotrophin-releasing hormone receptor, dopamine receptors and arginine vasopressin receptor 1b were measured by quantitative real-time polymerase chain reaction. In addition, we used three housekeeping genes for normalization and a pool of nine healthy pituitary glands from autopsies as calibration reference standard. RESULTS Based on the clinically functioning PA (FPA: somatotroph, corticotroph, thyrotroph and lactotroph adenomas), we established the interquartile range of relative expression for all genes studied in each PA subtype. That allowed molecularly the different PA subtypes, including the clinically non-functioning PA (NFPA). Afterwards, we estimated the concordance of the molecular and immunohistochemical classification with clinical diagnosis in FPA and between them in NFPA. The kappa values were higher in molecular than in immunohistochemical classification in FPA and showed a bad concordance in all NFPA subtypes. CONCLUSIONS According to these results, the molecular characterization of the PA complements the IHC analysis, allowing a better typification of the NFPA.
Collapse
Affiliation(s)
- Laura Sanchez-Tejada
- Research Unit, Institute for Health and Biomedical Research (Isabial-Fisabio Foundation), Hospital General Universitario de Alicante, Alicante, Spain
| | - Ruth Sanchez-Ortiga
- Endocrinology Department, Hospital General Universitario de Alicante, Alicante, Spain
| | - Cristina Lamas
- Endocrinology Department, Hospital General Universitario de Albacete, Albacete, Spain
| | - Rosa Camara
- Endocrinology Department, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Pedro Riesgo
- Neurosurgery Department, Hospital de La Ribera, Alzira, Valencia, Spain
| | - Carmen Fajardo
- Endocrinology Department, Hospital de La Ribera, Alzira, Spain
| | | | - Antonio Pico
- Endocrinology Department, Hospital General Universitario de Alicante, Alicante, Spain
| |
Collapse
|
35
|
Daniel E, Newell-Price J. Recent advances in understanding Cushing disease: resistance to glucocorticoid negative feedback and somatic USP8 mutations. F1000Res 2017; 6:613. [PMID: 28529722 PMCID: PMC5414817 DOI: 10.12688/f1000research.10968.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Cushing’s disease is a rare disease with a characteristic phenotype due to significant hypercortisolism driven by over-secretion of adrenocorticotropic hormone and to high morbidity and mortality if untreated. It is caused by a corticotroph adenoma of the pituitary, but the exact mechanisms leading to tumorigenesis are not clear. Recent advances in molecular biology such as the discovery of somatic mutations of the ubiquitin-specific peptidase 8 (
USP8) gene allow new insights into the pathogenesis, which could be translated into exciting and much-needed therapeutic applications.
Collapse
Affiliation(s)
- Eleni Daniel
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - John Newell-Price
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
36
|
Righi A, Faustini-Fustini M, Morandi L, Monti V, Asioli S, Mazzatenta D, Bacci A, Foschini MP. The changing faces of corticotroph cell adenomas: the role of prohormone convertase 1/3. Endocrine 2017; 56:286-297. [PMID: 27491554 DOI: 10.1007/s12020-016-1028-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
The spectrum of corticotroph cell adenomas is very wide. Though rarely, silent corticotroph cell adenomas (SCA) may transform into corticotroph cell adenomas associated with Cushing's disease (CD). The aim of the study was to investigate the role of prohormone convertase 1/3 (PC1/3) in the transformation of SCA into CD. We reviewed the records of 1259 consecutive endoscopic endonasal procedures for pituitary adenomas from 1998 to 2013. Of these, 132 were CD and 44 were SCA. During the follow-up, three patients with SCA showed a clear transformation from SCA into CD and underwent surgery once again to remove the recurrent tumour. The PC1/3 expression was analysed by both immunohistochemistry and quantitative real time-polymerase chain reaction (qRT-PCR) in primary and recurrent tumours. The immunohistochemical PC1/3 expression was negative or weak in the three patients in the initial phase of SCA, while a strong expression was observed in the majority of neoplastic cells in tissue specimens obtained from the same three patients at the time of recurrence as CD. The immunohistochemical PC1/3 expression showed a strict correlation with the PC1/3 levels obtained by qRT-PCR. In 14 cases of SCA with no change of phenotype during the follow-up, the immunohistochemical PC1/3 expression was low and strictly associated with the level of PC1/3 obtained by qRT-PCR both in primary (14/14 cases) and in recurrent tumours (4/4 cases). Our study provides insight into the crucial role of the PC1/3 protein in the transformation of phenotype from SCA to CD.
Collapse
Affiliation(s)
- Alberto Righi
- Department of Pathology, Rizzoli Institute, Bologna, Italy
| | - Marco Faustini-Fustini
- IRCCS Institute of Neurological Sciences of Bologna (ISNB), Bellaria Hospital, Via Altura, 3, Bologna, 40139, Italy.
| | - Luca Morandi
- Department of Biomedical and Neuro-Muscular Sciences, Section of Anatomic Pathology 'M.Malpighi' at Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Valentina Monti
- Department of Biomedical and Neuro-Muscular Sciences, Section of Anatomic Pathology 'M.Malpighi' at Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuro-Muscular Sciences, Section of Anatomic Pathology 'M.Malpighi' at Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Neurosurgery, Center of Pituitary Tumors and Endoscopic Skull Base Surgery, IRCCS Institute of Neurological Sciences of Bologna (ISNB), Bellaria Hospital, Bologna, Italy
| | - Antonella Bacci
- Department of Neuroradiology, IRCCS Institute of Neurological Sciences of Bologna (ISNB), Bologna, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuro-Muscular Sciences, Section of Anatomic Pathology 'M.Malpighi' at Bellaria Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Maddila SC, Busch-Dienstfertig M, Stein C. B Lymphocytes Express Pomc mRNA, Processing Enzymes and β-Endorphin in Painful Inflammation. J Neuroimmune Pharmacol 2016; 12:180-186. [DOI: 10.1007/s11481-016-9715-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/20/2016] [Indexed: 01/31/2023]
|
38
|
Tabuchi Y, Kitamura T, Fukuhara A, Mukai K, Onodera T, Miyata Y, Hamasaki T, Oshino S, Saitoh Y, Morii E, Otsuki M, Shimomura I. Nur77 gene expression levels were involved in different ACTH-secretion autonomy between Cushing's disease and subclinical Cushing's disease. Endocr J 2016; 63:545-54. [PMID: 27025408 DOI: 10.1507/endocrj.ej15-0695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease (CD) and subclinical Cushing's disease (subCD) are both diseases caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. However, ACTH autonomy in subCD is weaker than in CD and there are no Cushingoid features in subCD. The differences of molecular mechanisms in ACTH autonomy between CD and subCD have not yet been reported. Therefore, we aimed to investigate the differences in molecular mechanisms of ACTH-secretion autonomy between CD and subCD. The study included 23 patients [7 CD, 6 subCD, and 10 non-functioning pituitary tumors (NFTs)] who underwent transsphenoidal surgery at the Osaka University Hospital between December 2009 and October 2013. Using quantitative real-time PCR, various ACTH-related gene expressions in tumor tissues from CD, subCD, and NFT were measured such as pro-opiomelanocortin (POMC), POMC transcription factor (Tpit, Pitx1, NeuroD1, and Nur77), POMC peptide processing enzymes (prohormone convertase: PC1/3 and PC2), and ACTH secretion-related factors (corticotropin-releasing hormone receptor 1: CRHR1 and glucocorticoid receptor α: GRα). Only Nur77 mRNA levels were significantly higher in CD than in subCD. Furthermore, we stained 6 CD and 6 subCD with anti-Nur77 antibody. All tumor samples from CD had Nur77 protein positive cells. On the other hand, Nur77 protein was expressed in only one tumor sample from subCD. This sample showed high expression of Nur77 mRNA. Nur77 is an important to regulate POMC transcription and negative-feedback by glucocorticoids. Nur77 gene expression levels might involve different autonomy of ACTH production between CD and subCD.
Collapse
Affiliation(s)
- Yukiko Tabuchi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chrétien M, Mbikay M. 60 YEARS OF POMC: From the prohormone theory to pro-opiomelanocortin and to proprotein convertases (PCSK1 to PCSK9). J Mol Endocrinol 2016; 56:T49-62. [PMID: 26762158 DOI: 10.1530/jme-15-0261] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Pro-opiomelanocortin (POMC), is a polyprotein expressed in the pituitary and the brain where it is proteolytically processed into peptide hormones and neuropeptides with distinct biological activities. It is the prototype of multipotent prohormones. The prohormone theory was first suggested in 1967 when Chrétien and Li discovered γ-lipotropin and observed that (i) it was part of β-lipotropin (β-LPH), a larger polypeptide characterized 2 years earlier and (ii) its C-terminus was β-melanocyte-stimulating hormone (β-MSH). This discovery led them to propose that the lipotropins might be related biosynthetically to the biologically active β-MSH in a precursor to end product relationship. The theory was widely confirmed in subsequent years. As we celebrate the 50th anniversary of the sequencing of β-LPH, we reflect over the lessons learned from the sequencing of those proteins; we explain their extension to the larger POMC precursor; we examine how the theory of precursor endoproteolysis they inspired became relevant for vast fields in biology; and how it led, after a long and arduous search, to the novel proteolytic enzymes called proprotein convertases. This family of nine enzymes plays multifaceted functions in growth, development, metabolism, endocrine, and brain functions. Their genetics has provided many insights into health and disease. Their therapeutic targeting is foreseeable in the near future. Thus, what started five decades ago as a theory based on POMC fragments, has opened up novel and productive avenues of biological and medical research, including, for our own current interest, a highly intriguing hypocholesterolemic Gln152His PCSK9 mutation in French-Canadian families.
Collapse
Affiliation(s)
- Michel Chrétien
- Laboratory of Functional EndoproteolysisClinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Majambu Mbikay
- Laboratory of Functional EndoproteolysisClinical Research Institute of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Nishioka H, Inoshita N, Mete O, Asa SL, Hayashi K, Takeshita A, Fukuhara N, Yamaguchi-Okada M, Takeuchi Y, Yamada S. The Complementary Role of Transcription Factors in the Accurate Diagnosis of Clinically Nonfunctioning Pituitary Adenomas. Endocr Pathol 2015; 26:349-55. [PMID: 26481628 DOI: 10.1007/s12022-015-9398-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clinically nonfunctioning pituitary adenomas (NFAs) may be hormonally inactive tumors of differentiated cells, mainly not only gonadotroph adenomas (GAs) but also silent corticotroph adenomas (SCAs) and other differentiated silent adenomas. Recently, the use of transcription factors has been recommended to confirm cytodiffererentiation of these neoplasms. Our objective was to assess the clinical significance of the new classification system using transcription factors. Five hundred sixteen consecutive NFAs were studied retrospectively. They were initially classified based on hormone immunohistochemistry as follows: 119 hormone-negative adenomas (23.1 %), 300 GAs (58.1 %), 51 SCAs (9.9 %), and 46 other silent adenomas. The 119 hormone-negative adenomas were further evaluated for expression of transcription factors including steroidogenic factor-1 (SF-1), estrogen receptor-α (ERα), pituitary-specific transcription factor 1 (Pit-1), and t-box transcription factor (Tpit). One hundred thirteen of 119 (95 %) hormone-negative adenomas showed mutually exclusive lineage-specific differentiation as gonadotrophs (SF-1 positive), corticotrophs (Tpit positive), or somatotrophs/mammosomatotrophs/lactotrophs/thyrotrophs (Pit-1 positive) in 79 cases (66.4 %), 32 cases (26.9 %), and 2 cases, respectively. The 32 ACTH-negative and Tpit-positive adenomas had higher pro-opiomelanocortin mRNA expression levels compared with GAs (P = 0.0001) on quantitative real-time PCR. They showed a female preponderance (P < 0.0001) and were more frequently giant adenomas (P = 0.0028) associated with marked cavernous sinus invasion (P < 0.0001) compared with GAs. These clinical features were identical to those of the 51 ACTH-positive SCAs. Our results justify the complementary role of transcription factors in the precise classification of NFAs that can more accurately characterize biological behavior. Our data suggest that more than one quarter of hormone-negative adenomas are SCAs that share distinct clinicopathological features with ACTH-expressing SCAs.
Collapse
Affiliation(s)
- Hiroshi Nishioka
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minatoku, Tokyo, 105-8470, Japan.
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| | - Naoko Inoshita
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Sylvia L Asa
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Kyohei Hayashi
- Department of Endocrinology, Toranomon Hospital, Tokyo, Japan
| | - Akira Takeshita
- Department of Endocrinology, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Noriaki Fukuhara
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minatoku, Tokyo, 105-8470, Japan
| | - Mitsuo Yamaguchi-Okada
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minatoku, Tokyo, 105-8470, Japan
| | - Yasuhiro Takeuchi
- Department of Endocrinology, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Shozo Yamada
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minatoku, Tokyo, 105-8470, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
41
|
Sbiera S, Deutschbein T, Weigand I, Reincke M, Fassnacht M, Allolio B. The New Molecular Landscape of Cushing's Disease. Trends Endocrinol Metab 2015; 26:573-583. [PMID: 26412158 DOI: 10.1016/j.tem.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 11/21/2022]
Abstract
Cushing's disease (CD) is caused by corticotropin-secreting pituitary adenomas and results in substantial morbidity and mortality. Its molecular basis has remained poorly understood until the past few years, when several proteins and genes [such as testicular orphan nuclear receptor 4 (TR4) and heat shock protein 90 (HSP90)] were found to play key roles in the disease. Most recently, mutations in the gene of ubiquitin-specific peptidase 8 (USP8) increasing its deubiquination activity were discovered in a high percentage of corticotroph adenomas. Here, we will discuss emerging insights in the molecular alterations that finally result in CD. The therapeutic potential of these findings needs to be carefully evaluated in the near future, hopefully resulting in new treatment options for this devastating disorder.
Collapse
Affiliation(s)
- Silviu Sbiera
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Isabel Weigand
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Martin Reincke
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| | - Bruno Allolio
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Seltzer J, Ashton CE, Scotton TC, Pangal D, Carmichael JD, Zada G. Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature. Neurosurg Focus 2015; 38:E17. [PMID: 25639319 DOI: 10.3171/2014.10.focus14683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECT Functional corticotroph pituitary adenomas (PAs) secrete adrenocorticotropic hormone (ACTH) and are the cause of Cushing's disease, which accounts for 70% of all cases of Cushing's syndrome. Current classification systems for PAs rely primarily on laboratory hormone findings, tumor size and morphology, invasiveness, and immunohistochemical findings. Likewise, drug development for functional ACTH-secreting PAs (ACTH-PAs) is limited and has focused largely on blocking the production or downstream effects of excess cortisol. The authors aimed to summarize the findings from previous studies that explored gene and protein expression of ACTH-PAs to prioritize potential genetic and protein targets for improved molecular diagnosis and treatment of Cushing's disease. METHODS A systematic literature review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A PubMed search of select medical subject heading (MeSH) terms was performed to identify all studies that reported gene- and protein-expression findings in ACTH-PAs from January 1, 1990, to August 24, 2014, the day the search was performed. The inclusion criteria were studies on functional ACTH-PAs compared with normal pituitary glands, on human PA tissue only, with any method of analysis, and published in the English language. Studies using anything other than resected PA tissue, those that compared other adenoma types, those without baseline expression data, or those in which any pretreatment was delivered before analysis were excluded. RESULTS The primary search returned 1371 abstracts, of which 307 were found to be relevant. Of those, 178 were selected for secondary full-text analysis. Of these, 64 articles met the inclusion criteria and an additional 4 studies were identified from outside the search for a total of 68 included studies. Compared with the normal pituitary gland, significant gene overexpression in 43 genes and 22 proteins was reported, and gene underexpression in 58 genes and 15 proteins was reported. Immunohistochemistry was used in 39 of the studies, and reverse transcriptase polymerase chain reaction was used in 26 of the studies, primarily, and as validation for 4 others. Thirteen studies used both immunohistochemistry and reverse transcriptase polymerase chain reaction. Other methods used included microarray, in situ hybridization, Northern blot analysis, and Western blot analysis. Expression of prioritized genes emphasized in multiple studies were often validated on both the gene and protein levels. Genes/proteins found to be overexpressed in ACTH-PAs relative to the normal pituitary gland included hPTTG1/securin, NEUROD1/NeuroD1 (Beta2), HSD11B2/11β-hydroxysteroid dehydrogenase 2, AKT/Akt, protein kinase B, and CCND1/cyclin D1. Candidate genes/proteins found to be underexpressed in ACTH-PAs relative to the normal pituitary gland included CDKN1B/p27(Kip1), CDKN2A/p16, KISS1/kisspeptin, ACTHR/ACTH-R, and miR-493. CONCLUSIONS On the basis of the authors' systematic review, many significant gene and protein targets that may contribute to tumorigenesis, invasion, and hormone production/secretion of ACTH have been identified and validated in ACTH-PAs. Many of these potential targets have not been fully analyzed for their therapeutic and diagnostic potential but may represent candidate molecular targets for biomarker development and drug targeting. This review may help catalyze additional research efforts using modern profiling and sequencing techniques and alteration of gene expression.
Collapse
|
43
|
Raverot G, Assié G, Cotton F, Cogne M, Boulin A, Dherbomez M, Bonneville JF, Massart C. Biological and radiological exploration and management of non-functioning pituitary adenoma. ANNALES D'ENDOCRINOLOGIE 2015; 76:201-9. [DOI: 10.1016/j.ando.2015.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
|
44
|
Abstract
PURPOSE Silent corticotroph adenomas (SCAs) comprise 20% of all corticotroph adenomas and 3-19% of nonfunctioning adenomas (NFAs). As they do not manifest clinical or biochemical hypercortisolism, they are diagnosed after pathologic examination of resected tumor tissue demonstrates positive ACTH expression. While preoperative features are similar to those of NFAs, SCAs may have more cavernous sinus invasion. Further, patients with SCAs tend to have more frequent and earlier recurrences than those with NFAs, often necessitating multiple surgeries and other modalities of treatment. This article reviews the incidence, pathogenesis, and clinical behavior of SCAs. METHODS A systematic literature review was performed using PubMed for information regarding SCAs. RESULTS Up to date findings regarding epidemiology, pathogenesis, pathology, clinical presentation, postoperative course, and management of patients with SCAs are presented. CONCLUSION This review highlights the necessity of rigorous monitoring for recurrences and hypopituitarism in patients with SCAs.
Collapse
Affiliation(s)
- Odelia Cooper
- Pituitary Center, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A6600, Los Angeles, CA, 90048, USA,
| |
Collapse
|
45
|
Nakada Y, Kageyama K, Sugiyama A, Desaki R, Takayasu S, Niioka K, Murasawa S, Ishigame N, Asari Y, Iwasaki Y, Daimon M. Inhibitory effects of trichostatin A on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT-20 cells. Endocr J 2015; 62:1083-90. [PMID: 26497760 DOI: 10.1507/endocrj.ej15-0369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease is primarily caused by adrenocorticotropic hormone (ACTH)-producing pituitary adenomas. Pituitary tumor-transforming gene 1 (PTTG1) expression, a hallmark of pituitary tumors, stimulates pituitary cell proliferation. Histone deacetylases (HDACs) play an important role in regulating gene transcription and HDAC inhibitors induce cellular differentiation and suppress tumor cell proliferation. HDAC inhibitors also repress PTTG1 mRNA levels. Trichostatin A (TSA) is a potent cell-permeable HDAC inhibitor that blocks cell cycle progression. In the present study, we determined the effect of TSA on ACTH production and cellular proliferation in mouse AtT-20 corticotroph tumor cells. TSA decreased proopiomelanocortin (POMC) mRNA levels in AtT-20 cells and reduced ACTH levels in the culture medium of these cells. The TSA-induced decreases in POMC mRNA levels were not modulated when TSA and dexamethasone were simultaneously administered. Drug treatment also decreased AtT-20 cell proliferation, induced apoptosis, and increased the percentage of cells in G0/G1 phase using flow cytometry. TSA decreased PTTG1 mRNA levels. Furthermore, PTTG1 knockdown inhibited cellular proliferation. Its knockdown also inhibited POMC mRNA and ACTH levels. TSA inhibits ACTH production and corticotroph tumor cell proliferation. TSA may inhibit cellular proliferation, and ACTH synthesis and secretion by decreasing PTTG1 expression.
Collapse
Affiliation(s)
- Yuki Nakada
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kageyama K, Oki Y, Nigawara T, Suda T, Daimon M. Pathophysiology and treatment of subclinical Cushing's disease and pituitary silent corticotroph adenomas [Review]. Endocr J 2014; 61:941-8. [PMID: 24974880 DOI: 10.1507/endocrj.ej14-0120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pituitary adrenocorticotropic hormone (ACTH)-secreting tumor presents with a variety of clinical features. We outlined the features of ACTH release and characteristics of corticotroph adenoma cells. We especially focused on the corticotroph adenomas in patients with no clinical features of Cushing's disease. Subclinical Cushing's disease is defined by ACTH-induced mild hypercortisolism without typical features of Cushing's disease. Silent corticotroph adenomas (SCAs) are defined by normal cortisol secretion and ACTH-immunopositive staining without autonomous ACTH secretion. Clinicians who are not well-informed about the disease may sometimes confuse SCAs (because of their clinically silent nature) with "subclinical Cushing's disease". The recent criteria for diagnosing subclinical Cushing's disease in Japan are presented. Cortisol measurement was recently standardized in Japan, so plasma cortisol cutoff level should be reconsidered for the diagnosis. In patients with uncontrolled diabetes and hypertension despite appropriate treatment, subclinical Cushing's disease may be efficiently detected. Subclinical Cushing's disease may be associated with metabolic change. In subclinical Cushing's disease, mild hypercortisolism due to autonomous secretion of ACTH contributes to metabolic change and treatment of subclinical hypercortisolism can reverse this change.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | |
Collapse
|
47
|
Uruno A, Saito-Hakoda A, Yokoyama A, Kogure N, Matsuda K, Parvin R, Shimizu K, Sato I, Kudo M, Yoshikawa T, Kagechika H, Iwasaki Y, Ito S, Sugawara A. Retinoic acid receptor-α up-regulates proopiomelanocortin gene expression in AtT20 corticotroph cells. Endocr J 2014; 61:1105-14. [PMID: 25132258 DOI: 10.1507/endocrj.ej14-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cushing's disease is a disorder caused by excessive ACTH secretion from a corticotroph tumor of the pituitary gland. Although its standard therapy is a transsphenoidal surgery, innovation of novel medical treatments for the disease is urgently necessary. Retinoic acid (RA) has been reported to suppress adrenocorticotropic hormone (ACTH) secretion in Cushing's disease. However, the role of RA receptor (RAR) in proopiomelanocortin (Pomc) gene expression remains uncertain. We here examined the involvement of RARα in Pomc regulation using AtT20 corticotroph cells. Surprisingly, a synthetic RARα agonist Am80 increased Pomc mRNA expression, CRH-induced ACTH secretion, and Pomc promoter activity. Small interfering RNA-mediated RARα-knockdown suppressed both basal and Am80-induced Pomc promoter activity. RARα-overexpression dose-dependently increased Pomc promoter activity. Pomc promoter mutation analysis revealed that both Tpit and NeuroD1 binding elements were responsible for the Am80-mediated effect. Am80 increased Tpit expression while RAR antagonist LE540 suppressed the increase. Tpit-overexpression increased Pomc promoter activity. Mammalian two-hybrid assay revealed that Am80 induced NeuroD1-RARα interaction. NeuroD1-overexpression enhanced the Am80-induced Pomc promoter activity, which was suppressed by NeuroD1 truncated mutant-overexpression. RARα thus positively regulates ACTH secretion/Pomc gene expression through interaction with NeuroD1 and Tpit expression increase. The present observation will be useful for the future development of the RA/retinoid-derived therapeutics of the disease.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pituitary Tumor With Gigantism, Acromegaly and Preclinical Cushing’s Disease Diagnosed from the 10th Row. Am J Med Sci 2013; 346:169-71. [DOI: 10.1097/maj.0b013e3182831919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Araujo RV, Chang CV, Cescato VAS, Fragoso MCBV, Bronstein MD, Mendonca BB, Arnhold IJP, Carvalho LRS. PROP1 overexpression in corticotrophinomas: evidence for the role of PROP1 in the maintenance of cells committed to corticotrophic differentiation. Clinics (Sao Paulo) 2013; 68:887-91. [PMID: 23778486 PMCID: PMC3674306 DOI: 10.6061/clinics/2013(06)26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/11/2013] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The expression of transcription factors involved in early pituitary development, such as PROP1 and POU1F1, has been detected in pituitary adenoma tissues. In this study, we sought to characterize the transcriptional profiles of PROP1, POU1F1, and TBX19 in functioning and nonfunctioning pituitary adenomas in an attempt to identify their roles in tumorigenesis and hormone hypersecretion. METHODS RT-qPCR analyses were performed to assess the transcriptional pattern of PROP1, POU1F1, TBX19, and hormone-producing genes in tissue samples of corticotrophinomas (n=10), somatotrophinomas (n=8), and nonfunctioning adenomas (n=6). RESULTS Compared with normal pituitary tissue, POU1F1 was overexpressed in somatotrophinomas by 3-fold. PROP1 expression was 18-fold higher in corticotrophinomas, 10-fold higher in somatotrophinomas, and 3-fold higher in nonfunctioning adenomas. TBX19 expression was 27-fold higher in corticotrophinomas. Additionally, the level of TBX19 mRNA positively correlated with that of pro-opiomelanocortin (r=0.49, p=0.014). CONCLUSIONS Our data demonstrate that PROP1 is overexpressed in pituitary adenomas, mainly in corticotrophinomas. Together with previously published data showing that patients who harbor PROP1 loss-of-function mutations present a progressive decline in corticotrope function, our results support a role for PROP1 in pituitary tumor development and in the maintenance of cell lineages committed to corticotrophic differentiation.
Collapse
Affiliation(s)
- Ricardo V Araujo
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Hormônios e Genética Molecular - LIM/42, Divisão de Endocrinologia, São Paulo/SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Pituitary adenomas are classified by function as defined by clinical symptoms and signs of hormone hypersecretion with subsequent confirmation on immunohistochemical staining. However, positive immunostaining for pituitary cell types has been shown for clinically nonfunctioning adenomas, and this entity is classified as silent functioning adenoma. Most common in these subtypes include silent gonadotroph adenomas, silent corticotroph adenomas and silent somatotroph adenomas. Less commonly, silent prolactinomas and thyrotrophinomas are encountered. Appropriate classification of these adenomas may affect follow-up care after surgical resection. Some silent adenomas such as silent corticotroph adenomas follow a more aggressive course, necessitating closer surveillance. Furthermore, knowledge of the immunostaining characteristics of silent adenomas may determine postoperative medical therapy. This article reviews the incidence, clinical behavior, and pathologic features of clinically silent pituitary adenomas.
Collapse
Affiliation(s)
- Odelia Cooper
- Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shlomo Melmed
- Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|