1
|
Corsello A, Paragliola RM, Salvatori R. Diagnosing and treating the elderly individual with hypopituitarism. Rev Endocr Metab Disord 2024; 25:575-597. [PMID: 38150092 DOI: 10.1007/s11154-023-09870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Hypopituitarism in the elderly is an underestimated condition mainly due to the non-specific presentation that can be attributed to the effects of aging and the presence of comorbidities. Diagnosis and treatment of hypopituitarism often represent a challenging task and this is even more significant in the elderly. Diagnosis can be insidious due to the physiological changes occurring with aging that complicate the interpretation of hormonal investigations, and the need to avoid some provocative tests that carry higher risks of side effects in this population. Treatment of hypopituitarism has generally the goal to replace the hormonal deficiencies to restore a physiological balance as close as possible to that of healthy individuals but in the elderly this must be balanced with the risks of over-replacement and worsening of comorbidities. Moreover, the benefit of some hormonal replacement therapies in the elderly, including sex hormones and growth hormone, remains controversial.
Collapse
Affiliation(s)
- Andrea Corsello
- Unità di Chirurgia Endocrina, Ospedale Isola Tiberina - Gemelli Isola, 00186, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Rosa Maria Paragliola
- Unicamillus-Saint Camillus International University of Health Sciences, 00131, Rome, Italy
| | - Roberto Salvatori
- Division of Endocrinology, Department of Medicine, and Pituitary Center, Johns Hopkins University, Baltimore, MD, 2187, USA.
| |
Collapse
|
2
|
Hjortebjerg R, Kristiansen MR, Brandslund I, Aa Olsen D, Stidsen JV, Nielsen JS, Frystyk J. Associations between insulin-like growth factor binding protein-2 and insulin sensitivity, metformin, and mortality in persons with T2D. Diabetes Res Clin Pract 2023; 205:110977. [PMID: 37890435 DOI: 10.1016/j.diabres.2023.110977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
AIMS Serum insulin-like growth factor binding protein-2 (IGFBP-2) is low in persons with type 2 diabetes mellitus (T2D) and possibly regulated by metformin. Counter-intuitively, high IGFBP-2 associates with mortality. We investigated the association between IGFBP-2, metformin-treatment, and indices of insulin sensitivity, and assessed IGFBP-2 in relation to prior comorbidity and mortality during five-year follow-up. METHODS The study included 859 treatment-naive and 558 metformin-treated persons enrolled in the Danish Centre for Strategic Research in T2D and followed for 4.9 (3.9-5.9) years through national health registries. All proteins were determined in serum collected at enrollment. RESULTS Following adjustment for age, metformin-treated and treatment-naive persons has similar IGFBP-2 levels. Low IGFBP-2 level was associated with increased BMI, fasting glucose, and C-peptide. IGFBP-2 was higher in the 437 persons who had comorbidities at enrollment than in those with T2D only (343 (213;528) vs. 242 (169;378) ng/mL). During follow-up, 87 persons died, and IGFBP-2 predicted mortality with an unadjusted HR (95% CI) per doubling in IGFBP-2 concentration of 2.62 (2.04;3.37) and a HR of 2.21 (1.61;3.01) following full adjustment. CONCLUSIONS In T2D, high IGFBP-2 associates with low glucose and insulin secretion, is unaffected by metformin treatment, and associates with risk of prior comorbidity and mortality.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Endocrine Research Unit, Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Denmark.
| | - Maja R Kristiansen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense, Denmark
| | - Ivan Brandslund
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Dorte Aa Olsen
- Department of Biochemistry and Immunology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Jacob V Stidsen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Endocrine Research Unit, Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Denmark
| | - Jens S Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense, Denmark
| | - Jan Frystyk
- Department of Clinical Research, University of Southern Denmark, Denmark; Endocrine Research Unit, Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Denmark
| |
Collapse
|
3
|
Wang W, Sun Y, Mo DG, Li T, Yao HC. Circulating IGF-1 and IGFBP-2 may be biomarkers for risk stratification in patients with acute coronary syndrome: A prospective cohort study. Nutr Metab Cardiovasc Dis 2023; 33:1740-1747. [PMID: 37414657 DOI: 10.1016/j.numecd.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND AND AIM The involvement of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-2 (IGFBP-2) following acute coronary syndrome (ACS) is rarely studied in clinical practice. Therefore, we sought to evaluate the relationship between IGF-1 and IGFBP-2 concentrations at admission and risk stratification based on the Thrombolysis in Myocardial Infarction (TIMI) risk score in patients with ACS. METHODS AND RESULTS In all, 304 patients diagnosed with ACS were included in this study. Plasma IGF-1 and IGFBP-2 were measured using commercially available ELISA kits. The TIMI risk score was calculated and the study population was stratified into high (n = 65), medium (n = 138), and low (n = 101) risk groups. Levels of IGF-1 and IGFBP-2 were analyzed for their predictive ability of risk stratification based on the TIMI risk scores. Correlation analysis showed that IGF-1 levels were negatively correlated with TIMI risk levels (r = -0.144, p = 0.012), while IGFBP-2 levels were significantly and positively correlated with TIMI risk levels (r = 0.309, p < 0.001). In multivariate logistic regression analysis, IGF-1 (odds ratio [OR]: 0.995; 95% confidence interval [CI]: 0.990-1.000; p = 0.043) and IGFBP-2 (OR: 1.002; 95%CI: 1.001-1.003; p < 0.001) were independent predictors of high TIMI risk levels. In receiver operating characteristic curves, the area under the curve values for IGF-1 and IGFBP-2 in the prediction of high TIMI risk levels were 0.605 and 0.723, respectively. CONCLUSIONS IGF-1 and IGFBP-2 levels are excellent biomarkers for risk stratification in patients with ACS, which provides further guidance for clinicians to identify patients at high risk and to lower their risk.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong, 250012, PR China; Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, PR China
| | - Ying Sun
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, PR China
| | - De-Gang Mo
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, PR China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng, 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong, 250012, PR China; Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, PR China.
| |
Collapse
|
4
|
Wang W, Yu K, Zhao SY, Mo DG, Liu JH, Han LJ, Li T, Yao HC. The impact of circulating IGF-1 and IGFBP-2 on cardiovascular prognosis in patients with acute coronary syndrome. Front Cardiovasc Med 2023; 10:1126093. [PMID: 36970368 PMCID: PMC10036580 DOI: 10.3389/fcvm.2023.1126093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundWhile insulin-like growth factor 1 (IGF-1) exerts a cardioprotective effect in the setting of atherosclerosis, insulin-like growth factor binding protein 2 (IGFBP-2) is involved in metabolic syndrome. Although IGF-1 and IGFBP-2 are known to be predictors for mortality in patients with heart failure, their use in clinic as prognostic biomarkers for acute coronary syndrome (ACS) requires investigation. We evaluated the relationship between IGF-1 and IGFBP-2 levels at admission and the risk of major adverse cardiovascular events (MACEs) in patients with ACS.MethodsA total of 277 ACS patients and 42 healthy controls were included in this prospective cohort study. Plasma samples were obtained and analyzed at admission. Patients were followed for MACEs after hospitalization.ResultsAmong patients who suffered acute myocardial infarction, plasma levels of IGF-1 and IGFBP-2 were lower and higher, respectively, as compared to healthy controls (both p < 0.05). The mean follow-up period was 5.22 (1.0–6.0) months and MACEs incidence was 22.4% (62 of 277 patients). Kaplan–Meier survival analysis revealed that patients with low IGFBP-2 levels had a greater event-free survival rate than patients with high IGFBP-2 levels (p < 0.001). Multivariate Cox proportional hazards analysis revealed IGFBP-2, but not IGF-1, to be a positive predictor of MACEs (hazard ratio 2.412, 95% CI 1.360–4.277; p = 0.003).ConclusionOur findings suggest that high IGFBP-2 levels are associated with the development of MACEs following ACS. Moreover, IGFBP-2 is likely an independent predictive marker of clinical outcomes in ACS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, China
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Kang Yu
- Department of Laboratory Medicine, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Shou-Yong Zhao
- Department of Laboratory Medicine, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - De-Gang Mo
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jia-Hui Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Li-Jinn Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, China
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
- Correspondence: Heng-Chen Yao
| |
Collapse
|
5
|
Osawa Y, Tanaka T, Semba RD, Fantoni G, Moaddel R, Candia J, Simonsick EM, Bandinelli S, Ferrucci L. Proteins in the pathway from high red blood cell width distribution to all-cause mortality. EBioMedicine 2022; 76:103816. [PMID: 35065420 PMCID: PMC8784626 DOI: 10.1016/j.ebiom.2022.103816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023] Open
Abstract
Background The pathophysiological mechanisms underlying the association between red blood cell distribution width (RDW) and all-cause mortality are unknown. We conducted a data-driven discovery investigation to identify plasma proteins that mediate the association between RDW and time to death in community-dwelling adults. Methods At baseline, 962 adults (women, 54·4%; age range, 21–98 years) participated in the InCHIANTI, “Aging in the Chianti Area” study, and proteomics data were generated from their plasma specimens. Of these, 623 participants had proteomics data available at the 9-year follow-up. For each visit, a total of 1301 plasma proteins were measured using SOMAscan technology. Complete data on vital status were available up to the 15-year follow-up period. Protein-specific exponential distribution accelerated failure time, and linear regression analyses adjusted for possible covariates were used for mortality and mediation analyses, respectively (survival data analysis). Findings Baseline values of EGFR, GHR, NTRK3, SOD2, KLRF1, THBS2, TIMP1, IGFBP2, C9, APOB, and LRP1B mediated the association between baseline RDW and all-cause mortality. Changes in IGFBP2 and C7 over 9 years mediated the association between changes in RDW and 6-year all-cause mortality. Interpretation Cellular senescence may contribute to the association between RDW and mortality. Funding This study was funded by grants from the National Institutes of Health (NIH) and the National Institute on Aging (NIA) contract and was supported by the Intramural Research Program of the NIA, NIH. The InCHIANTI study was supported as a ‘targeted project’ by the Italian Ministry of Health and in part by the U.S. NIA.
Collapse
Affiliation(s)
- Yusuke Osawa
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA; Graduate School of Health Management, Keio University, Kanagawa, Japan; Sports Medicine Research Center, Keio University, Kanagawa, Japan.
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giovanna Fantoni
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eleanor M Simonsick
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital 5th floor, 3001 S. Hanover Street, Baltimore, MD 21225 USA.
| |
Collapse
|
6
|
Schüler R, Markova M, Osterhoff MA, Arafat A, Pivovarova O, Machann J, Hierholzer J, Hornemann S, Rohn S, Pfeiffer AFH. Similar dietary regulation of IGF-1- and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr 2021; 60:3499-3504. [PMID: 33686453 PMCID: PMC8354897 DOI: 10.1007/s00394-021-02518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Increased animal but not plant protein intake has been associated with increased mortality in epidemiological studies in humans and with reduced lifespan in animal species. Protein intake increases the activity of the IGF-1 system which may provide a link to reduced lifespan. We, therefore, compared the effects of animal versus plant protein intake on circulating levels of IGF-1 and the IGF-binding proteins (IGFBP)-1 and IGFBP-2 over a 6-week period. Thirty seven participants with type 2 diabetes consumed isocaloric diets composed of either 30% energy (EN) animal or plant protein, 30% EN fat and 40% EN carbohydrates for 6 weeks. The participants were clinically phenotyped before and at the end of the study. Both diets induced similar and significant increases of IGF-1 which was unaffected by the different amino acid compositions of plant and animal protein. Despite improvements of insulin sensitivity and major reductions of liver fat, IGFBP2 decreased with both diets while IGFBP-1 was not altered. We conclude that animal and plant protein similarly increase IGF-1 bioavailability while improving metabolic parameters and may be regarded as equivalent in this regard.
Collapse
Affiliation(s)
- Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Ayman Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Section of Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Johannes Hierholzer
- Diagnostic and Interventional Radiology, Klinikum Ernst von Bergmann, Academic Teaching Hospital, Charité-Universitätsmedizin Berlin, Potsdam, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Andreas F H Pfeiffer
- Department Endocrinology and Metabolism, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
7
|
Nolin MA, Demers MF, Rauzier C, Bouchard RH, Cadrin C, Després JP, Roy MA, Alméras N, Picard F. Circulating IGFBP-2 levels reveal atherogenic metabolic risk in schizophrenic patients using atypical antipsychotics. World J Biol Psychiatry 2021; 22:175-182. [PMID: 32552257 DOI: 10.1080/15622975.2020.1770858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Second generation antipsychotics (SGAs) induce weight gain and dyslipidemia, albeit with important intervariability. Insulin-like growth factor binding protein (IGFBP)-2 is proposed as a circulating biomarker negatively associated with waist circumference and hypertriglyceridemia. Thus, we tested whether metabolic alterations developed upon the use of SGAs are associated with plasma IGFBP-2 levels. METHODS A cross-sectional study was performed in 87 men newly diagnosed with schizophrenia and administered for approximately 20 months with olanzapine or risperidone as their first antipsychotic treatment. Plasma IGFBP-2 concentration, anthropometric data, as well as glucose and lipid profiles were determined at the end of the treatments. RESULTS IGFBP-2 levels were similar between patients using olanzapine or risperidone and were negatively correlated with waist circumference, insulin sensitivity, and plasma triglycerides (TG). A higher proportion of men with a hypertriglyceridemic (hyperTG) waist phenotype was found in patients with IGFBP-2 levels lower than 220 ng/mL (43% for olanzapine and 13% for risperidone) compared to those with IGFBP-2 above this threshold (10% and 0%, respectively). CONCLUSIONS IGFBP-2 may have a role in altering metabolic risk in schizophrenic patients using SGAs. Longitudinal studies are required to evaluate whether IGFBP-2 can predict the development of a hyperTG waist phenotype in this population.
Collapse
Affiliation(s)
- Marc-André Nolin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Marie-France Demers
- Faculty of Pharmacy, Université Laval, Québec, Canada.,Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada
| | - Chloé Rauzier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Roch-Hugo Bouchard
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, Canada
| | - Camille Cadrin
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Centre de recherche sur les soins et les services de première ligne - Université Laval, Québec, Canada
| | - Marc-André Roy
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, Canada
| | - Natalie Alméras
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Frédéric Picard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Fahlbusch P, Knebel B, Hörbelt T, Barbosa DM, Nikolic A, Jacob S, Al-Hasani H, Van de Velde F, Van Nieuwenhove Y, Müller-Wieland D, Lapauw B, Ouwens DM, Kotzka J. Physiological Disturbance in Fatty Liver Energy Metabolism Converges on IGFBP2 Abundance and Regulation in Mice and Men. Int J Mol Sci 2020; 21:ijms21114144. [PMID: 32532003 PMCID: PMC7312731 DOI: 10.3390/ijms21114144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty liver occurs from simple steatosis with accumulated hepatic lipids and hepatic insulin resistance to severe steatohepatitis, with aggravated lipid accumulation and systemic insulin resistance, but this progression is still poorly understood. Analyses of hepatic gene expression patterns from alb-SREBP-1c mice with moderate, or aP2-SREBP-1c mice with aggravated, hepatic lipid accumulation revealed IGFBP2 as key nodal molecule differing between moderate and aggravated fatty liver. Reduced IGFBP2 expression in aggravated fatty liver was paralleled with promoter hypermethylation, reduced hepatic IGFBP2 secretion and IGFBP2 circulating in plasma. Physiologically, the decrease of IGFBP2 was accompanied with reduced fatty acid oxidation and increased de novo lipogenesis potentially mediated by IGF1 in primary hepatocytes. Furthermore, methyltransferase and sirtuin activities were enhanced. In humans, IGFBP2 serum concentration was lower in obese men with non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) compared to non-obese controls, and liver fat reduction by weight-loss intervention correlated with an increase of IGFBP2 serum levels. In conclusion, hepatic IGFBP2 abundance correlates to its circulating level and is related to hepatic energy metabolism and de novo lipogenesis. This designates IGFBP2 as non-invasive biomarker for fatty liver disease progression and might further provide an additional variable for risk prediction for pathogenesis of fatty liver in diabetes subtype clusters.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Tina Hörbelt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - David Monteiro Barbosa
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Frederique Van de Velde
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium; (F.V.d.V.); (B.L.)
| | - Yves Van Nieuwenhove
- Department of Gastrointestinal Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Bruno Lapauw
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium; (F.V.d.V.); (B.L.)
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium; (F.V.d.V.); (B.L.)
| | - Jorg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany; (P.F.); (B.K.); (T.H.); (D.M.B.); (A.N.); (S.J.); (H.A.-H.); (D.M.O.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Correspondence: ; Tel.: +49-211-3382-537
| |
Collapse
|
9
|
Prognostic Value of C-Reactive Protein to Albumin Ratio in Glioblastoma Multiforme Patients Treated with Concurrent Radiotherapy and Temozolomide. Int J Inflam 2020; 2020:6947382. [PMID: 32566124 PMCID: PMC7298277 DOI: 10.1155/2020/6947382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Objective We investigated the prognostic impact of C-reactive protein to albumin ratio (CRP/Alb) on the survival outcomes of newly diagnosed glioblastoma multiforme (GBM) patients treated with radiotherapy (RT) and concurrent plus adjuvant temozolomide (TMZ). Methods The pretreatment CRP and Alb records of GBM patients who underwent RT and concurrent plus adjuvant TMZ were retrospectively analyzed. The CRP/Alb was calculated by dividing serum CRP level by serum Alb level obtained prior to RT. The availability of significant cutoff value for CRP/Alb that interacts with survival was assessed with the receiver-operating characteristic (ROC) curve analysis. The primary endpoint was the association between the CRP/Alb and the overall survival (OS). Results A total of 153 patients were analyzed. At a median follow-up of 14.7 months, median and 5-year OS rates were 16.2 months (95% CI: 12.5–19.7) and 9.5%, respectively, for the entire cohort. The ROC curve analysis identified a significant cutoff value at 0.75 point (area under the curve: 74.9%; sensitivity: 70.9%; specificity: 67.7%; P < 0.001) for CRP/Alb that interacts with OS and grouped the patients into two: CRP/Alb <0.75 (n = 61) and ≥0.75 (n = 92), respectively. Survival comparisons revealed that the CRP/Alb <0.75 was associated with a significantly superior median (22.5 versus 15.7 months; P < 0.001) and 5-year (20% versus 0%) rates than the CRP/Alb ≥0.75, which retained its independent significance in multivariate analysis (P < 0.001). Conclusion Present results suggested the pretreatment CRP/Alb as a significant and independent inflammation-based index which can be utilized for further prognostic lamination of GBM patients.
Collapse
|
10
|
Huth C, Bauer A, Zierer A, Sudduth-Klinger J, Meisinger C, Roden M, Peters A, Koenig W, Herder C, Thorand B. Biomarker-defined pathways for incident type 2 diabetes and coronary heart disease-a comparison in the MONICA/KORA study. Cardiovasc Diabetol 2020; 19:32. [PMID: 32164753 PMCID: PMC7066738 DOI: 10.1186/s12933-020-01003-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Background Biomarkers may contribute to our understanding of the pathophysiology of various diseases. Type 2 diabetes (T2D) and coronary heart disease (CHD) share many clinical and lifestyle risk factors and several biomarkers are associated with both diseases. The current analysis aims to assess the relevance of biomarkers combined to pathway groups for the development of T2D and CHD in the same cohort. Methods Forty-seven serum biomarkers were measured in the MONICA/KORA case-cohort study using clinical chemistry assays and ultrasensitive molecular counting technology. The T2D (CHD) analyses included 689 (568) incident cases and 1850 (2004) non-cases from three population-based surveys. At baseline, the study participants were 35–74 years old. The median follow-up was 14 years. We computed Cox regression models for each biomarker, adjusted for age, sex, and survey. Additionally, we assigned the biomarkers to 19 etiological pathways based on information from literature. One age-, sex-, and survey-controlled average variable was built for each pathway. We used the R2PM coefficient of determination to assess the explained disease risk. Results The associations of many biomarkers, such as several cytokines or the iron marker soluble transferrin receptor (sTfR), were similar in strength for T2D and CHD, but we also observed important differences. Lipoprotein (a) (Lp(a)) and N-terminal pro B-type natriuretic peptide (NT-proBNP) even demonstrated opposite effect directions. All pathway variables together explained 49% of the T2D risk and 21% of the CHD risk. The insulin-like growth factor binding protein 2 (IGFBP-2, IGF/IGFBP system pathway) best explained the T2D risk (about 9% explained risk, independent of all other pathway variables). For CHD, the myocardial-injury- and lipid-related-pathways were most important and both explained about 4% of the CHD risk. Conclusions The biomarker-derived pathway variables explained a higher proportion of the T2D risk compared to CHD. The ranking of the pathways differed between the two diseases, with the IGF/IGFBP-system-pathway being most strongly associated with T2D and the myocardial-injury- and lipid-related-pathways with CHD. Our results help to better understand the pathophysiology of the two diseases, with the ultimate goal of pointing out targets for lifestyle intervention and drug development to ideally prevent both T2D and CHD development.
Collapse
Affiliation(s)
- Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Alina Bauer
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Astrid Zierer
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Christa Meisinger
- Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany.,Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
11
|
Dong J, Zeng Y, Zhang P, Li C, Chen Y, Li Y, Wang K. Serum IGFBP2 Level Is a New Candidate Biomarker of Severe Malnutrition in Advanced Lung Cancer. Nutr Cancer 2019; 72:858-863. [PMID: 32286106 DOI: 10.1080/01635581.2019.1656755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: This study aimed to analyze and evaluate serum insulin-like growth factor-binding protein 2 (IGFBP2) levels as a new biomarker of severe malnutrition in patients with advanced lung cancer.Design and methods: This prospective study involved 59 patients with advanced lung cancer. We detected serum IGFBP2 level by using enzyme-linked immunosorbent assay and analyzed its relationship to clinical characteristics, nutritional status, Glasgow prognostic score (GPS), and survival. Serum albumin and C-reactive protein (CRP) levels were measured, and nutritional status was assessed using Patient-Generated Subjective Global Assessment (PG-SGA). The best cutoff point value for serum IGFBP2 level was established using receiver operating characteristic analysis. Kaplan-Meier method was utilized to analyze the survival curves.Results: Serum IGFBP2 levels were elevated in patients with advanced lung cancer and severe malnutrition. The best cutoff value for serum IGFBP2 level was determined at 363 ng/ml, which could diagnose severe malnutrition with 73.3% sensitivity and 70.5% specificity and was found to be related to albumin, CRP, and GPS. Patients whose serum IGFBP2 levels were higher than 363 ng/ml had poor survival outcome.Conclusion: This study demonstrates the remarkably association between higher serum level of IGFBP2 and severe malnutrition, albumin, CRP, GPS, and survival. Hence, serum IGFBP2 level can be used as a potential biomarker for diagnosis of severe malnutrition in patients with advanced lung cancer.
Collapse
Affiliation(s)
- Jie Dong
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yaqi Zeng
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Zhang
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunlei Li
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yajun Chen
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yueying Li
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kun Wang
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
12
|
Zhang X, Gu HF, Frystyk J, Efendic S, Brismar K, Thorell A. Analyses of IGFBP2 DNA methylation and mRNA expression in visceral and subcutaneous adipose tissues of obese subjects. Growth Horm IGF Res 2019; 45:31-36. [PMID: 30921666 DOI: 10.1016/j.ghir.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor binding-protein 2 (IGFBP-2) is secreted by differentiating white adipocytes. Clinical studies demonstrate that circulating IGFBP-2 levels associated inversely with body mass index (BMI) and insulin resistance. To explore possible epigenetic changes of the IGFBP2 gene in obesity, we analyzed DNA methylation and mRNA expression in adipocytes from different depots. Healthy lean controls (BMI = 24.5 ± 0.3 kg/m2, n = 19) and obese subjects (BMI > 35 kg/m2, n = 24) were recruited. All subjects were Swedish Caucasian. Visceral abdominal adipose tissue (VAT) and subcutaneous adipose tissue (SAT) fragments were homogenized. Genomic DNA and total RNAs were extracted. Four CpG sites in the IGFBP2 gene promoter region were analyzed with bisulfite pyrosequencing. IGFBP2 gene expression at mRNA levels was determined with TaqMan real time RT-PCR. Serum samples were used for measurement of circulating IGFBP-2 and leptin levels. IGFBP2 DNA methylation levels in VAT were increased in obese subjects compared with controls (P < .05). By contrast, IGFBP2 mRNA expression levels in VAT were lower in obesity subjects than in controls (P < .05). In SAT, IGFBP2 DNA methylation and RNA expression levels were lower than in VAT, irrespective of obesity. Obese subjects demonstrated increased serum leptin levels (P < .001) and reduced serum IGFBP-2 levels compared to controls (P < .05). In conclusion, the current study demonstrates that IGFBP2 DNA methylation levels are increased in VAT from obese subjects. This suggests that IGFBP-2 is epigenetically regulated in abdominal obesity.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Guangdong 518000, China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5000, Denmark; Department of Clinical Medicine Health, Aarhus University, Aarhus C DK-8000, Denmark.
| | - Suad Efendic
- Rolf Luft Center for Diabetes Research and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden.
| | - Kerstin Brismar
- Rolf Luft Center for Diabetes Research and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17176, Sweden; Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet, Danderyd, Stockholm 18288, Sweden; Department of Surgery, Ersta Hospital, Karolinska Institutet, Stockholm 11691, Sweden.
| |
Collapse
|
13
|
van den Beld AW, Carlson OD, Doyle ME, Rizopoulos D, Ferrucci L, van der Lely AJ, Egan JM. IGFBP-2 and aging: a 20-year longitudinal study on IGFBP-2, IGF-I, BMI, insulin sensitivity and mortality in an aging population. Eur J Endocrinol 2019; 180:109-116. [PMID: 30475224 PMCID: PMC6445262 DOI: 10.1530/eje-18-0422] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/22/2018] [Indexed: 01/08/2023]
Abstract
Objective Insulin-like growth factor-binding protein-2 (IGFBP-2) concentrations are low in subjects with metabolic syndrome and type 2 diabetes. Intriguingly, recent studies have demonstrated an association between high IGFBP-2 concentrations and increased mortality not only in populations with certain types of cancer, but also in relatively healthy populations. We evaluated the role of IGFBP-2 in relation to BMI and mortality. Design and Participants BMI, insulin sensitivity, insulin-like growth factor 1 (IGF-I) and IGFBP-2 were assessed repeatedly in 539 participants of the Baltimore Longitudinal Study of Aging around the ages of 55, 65 and 75 years. Results IGFBP-2 concentrations positively correlated with insulin sensitivity and inversely with BMI, both at baseline and follow-up. Independent of IGF-I, sex, BMI and insulin sensitivity, circulating IGFBP-2 levels positively correlated with age (P < 0.001). Changes over time in BMI were associated with an inverse correlation in IGFBP-2 concentrations. Furthermore, we found indications of a relationship between low baseline IGFBP-2 levels and mortality. Remarkably, after adjustment for insulin sensitivity, the opposite association was found, as a unit increase of log(IGFBP2) was associated with an increase in the log hazard by 1.43 (95% CI: 0.3-2.6). This accounted for both baseline (P = 0.02) as well as serial (P < 0.001) measurements of IGFBP2. Finally, in this longitudinal study, we found that IGF-I concentrations increased with age (0.82 ± 0.2 (µg/L)/year, P < 0.001). Conclusion This is the first study investigating the relationship between IGFBP-2 levels and age in a longitudinal setting. Serum IGFBP-2 levels increase with age after the age of 50 years and evolve in parallel with insulin sensitivity. IGFBP-2 may therefore be a potential marker for insulin sensitivity. We further show that IGFBP-2 levels can predict mortality in this aging population. However, its predictive value for mortality can only be interpreted in relation to insulin sensitivity. After adjustment for insulin sensitivity, high IGFBP-2 levels are predictive of increased mortality.
Collapse
Affiliation(s)
- Annewieke W van den Beld
- Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Olga D Carlson
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Maire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luigi Ferrucci
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | | | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Hoeflich A, David R, Hjortebjerg R. Current IGFBP-Related Biomarker Research in Cardiovascular Disease-We Need More Structural and Functional Information in Clinical Studies. Front Endocrinol (Lausanne) 2018; 9:388. [PMID: 30061864 PMCID: PMC6054974 DOI: 10.3389/fendo.2018.00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death around the world and the insulin-like growth factor (IGF)-system has multiple functions for the pathological conditions of atherosclerosis. IGF binding proteins (IGFBPs) are widely investigated as biomarkers for pathological disorders, including those of the heart. At the tissue level, IGFBP-1 to -6 decrease bioactivity of IGF-I and -II due to their high affinity IGF-binding sites. By contrast, in the circulation, the IGFBPs increase biological half-life of the IGFs and may therefore be regarded as positive regulators of IGF-effects. The IGFBPs may also exert IGF-independent functions inside or outside the cell. Importantly, the circulating IGFBP-concentrations are regulated by trophic, metabolic, and reproductive hormones. In a multitude of studies of healthy subjects and patients with coronary heart diseases, various significant associations between circulating IGFBP-levels and defined parameters have been reported. However, the complex hormonal and conditional control of IGFBPs may explain the lack of clear associations between IGFBPs and parameters of cardiac failure in broader studies including larger populations. Furthermore, the IGFBPs are subject to posttranslational modifications and proteolytic degradation by proteases, upon which the IGFs are released. In this review, we emphasize that, with the exception of IGFBP-4 and in sharp contrast to the preclinical studies, virtually all clinical studies do not have structural or functional information on their biomarker. The use of analytical systems with no discriminatory potential toward intact vs. fragmented IGFBPs represents a major issue in IGFBP-related biomarker research and an important focus point for the future. Overall, measurements of selected IGFBPs or more complex IGFBP-signatures of the family of IGFBPs have potential to identify pathophysiological alterations in the heart or patients with high cardiovascular risk, particularly if defined cohorts are to be assessed. However, a more thorough understanding of the dynamic IGF-IGFBP system as well as its proteases and protease inhibitors in both normal physiology and in cardiovascular diseases is necessary.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Department of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
- Andreas Hoeflich
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, Rostock University, Rostock, Germany
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- The Danish Diabetes Academy, Odense, Denmark
- *Correspondence: Rikke Hjortebjerg
| |
Collapse
|
16
|
Interference of stress with the somatotropic axis in pigs - lights on new biomarkers. Sci Rep 2017; 7:12055. [PMID: 28935925 PMCID: PMC5608691 DOI: 10.1038/s41598-017-11521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
The acceptance of animal products is increasingly associated with standardized animal welfare, which relates to appropriate animal husbandry from birth to slaughter. In particular, shipment to the slaughterhouse is considered as a critical process exposing the animals to a number of, in part severe, stressors. New biomarkers may be useful for the assessment of animal welfare. The IGF-system has been assessed in a commercial pig transport in conjunction with established markers of stress response. Furthermore, the effect of repeated restraint as an experimental model for repeated acute stress was investigated. During shipment from farm to slaughterhouse, plasma concentrations of IGFBP-3 and IGFBP-2 were significantly reduced (p < 0.01). After shipment, the plasma concentrations of IGFBP-5, glucocorticoids and IL-2 increased but decreased after lairage (p < 0.05) whereas IGF-1 decreased after shipment (p < 0.01). Repeated acute stress increased concentrations of IGFBP-3 and IGF-1 in exsanguination blood (p < 0.05). Differential IGF- signatures can indicate altered endocrine or metabolic control and thus contain complex animal-related information. The somatotropic axis may be of particular interest when established biomarkers such as cortisol, glucose, or lactate cannot be used for the assessment of animal stress or welfare.
Collapse
|
17
|
Zhou XW, Dong H, Yang Y, Luo JW, Wang X, Liu YH, Mao Q. Significance of the prognostic nutritional index in patients with glioblastoma: A retrospective study. Clin Neurol Neurosurg 2016; 151:86-91. [DOI: 10.1016/j.clineuro.2016.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/12/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
|
18
|
Wirthgen E, Höflich C, Spitschak M, Helmer C, Brand B, Langbein J, Metzger F, Hoeflich A. Quantitative Western ligand blotting reveals common patterns and differential features of IGFBP-fingerprints in domestic ruminant breeds and species. Growth Horm IGF Res 2016; 26:42-49. [PMID: 26597140 DOI: 10.1016/j.ghir.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factor binding proteins (IGFBPs) are determinants of local IGF-effects and thus have an impact on growth and metabolism in vertebrate species. In farm animals, IGFBPs are associated with traits such as growth rate, body composition, milk production, or fertility. It may be assumed, that selective breeding and characteristic phenotypes of breeds are related to differential expression of IGFBPs. Therefore, the aim of the present study was to investigate the effects of selective breeding on blood IGFBP concentrations of farm animals. Breeds of the sheep, goat, and cattle species were investigated. IGFBP-3, -2, and -4 were analyzed with quantitative Western ligand blotting (qWLB), enabling comprehensive monitoring of intact IGFBPs with IGF-binding capacity. We show that in sera of all species and breeds investigated, IGFBP-3, -2, and -4 were simultaneously detectable by qWLB analysis. IGFBP-3 and the total amount of IGFBPs were significantly increased (P<0.05) in Cameroon sheep, if compared to 3 of 4 other sheep breeds, as well as in Dwarf goats versus Toggenburg and Boer goats (P<0.01). IGFBP-2 was elevated in Cameroon sheep and Boer goats, if compared to other breeds of these species (P<0.01), respectively. Holstein Friesian dairy cows had higher levels of IGFBP-4 (P<0.05), if compared to conventional crossbreeds of beef cattle. In Dwarf goats the ratio of IGFBP-3/IGFBP-2 was about 3-fold higher than in other goat breeds (P<0.001). The total IGFBP amount of Toggenburg goats was reduced (P<0.05), compared to the other goat breeds. In conclusion, our data indicate that common and specific features of IGFBP fingerprints are found in different ruminant species and breeds. Our findings may introduce quantitative Western ligand blotting as an attractive tool for biomarker development and molecular phenotyping in farm animal breeds.
Collapse
Affiliation(s)
- Elisa Wirthgen
- Ligandis GbR, Gülzow, Germany; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Marion Spitschak
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Carina Helmer
- Clinic for Swine and Small Ruminants, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bodo Brand
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; Institute for Farm Animal Research and Technology, University of Rostock, Rostock, Germany
| | - Jan Langbein
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Friedrich Metzger
- Hoffmann-La Roche Ltd., Pharma Research & Early Development Neuroscience (pRED), Basel, Switzerland
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| |
Collapse
|
19
|
Hoffman ML, Peck KN, Forella ME, Fox AR, Govoni KE, Zinn SA. The effects of poor maternal nutrition during gestation on postnatal growth and development of lambs12. J Anim Sci 2016; 94:789-99. [DOI: 10.2527/jas.2015-9933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Han S, Huang Y, Li Z, Hou H, Wu A. The prognostic role of preoperative serum albumin levels in glioblastoma patients. BMC Cancer 2015; 15:108. [PMID: 25880463 PMCID: PMC4355370 DOI: 10.1186/s12885-015-1125-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/24/2015] [Indexed: 01/20/2023] Open
Abstract
Background Serum albumin level is a reliable and convenient marker of the nutritional status of patients, and has been identified as a prognostic marker in glioblastoma. However, because of the recent wide application of standard radio-chemotherapy for the treatment of glioblastoma patients, the prognostic effect of preoperative serum albumin levels needs to be re-evaluated and the related mechanism should be further explored. Methods A total of 214 patients with histologically proven glioblastoma who underwent treatment at our institution between 2009 and 2012 were retrospectively analyzed. Clinical information was obtained from electronic medical records. Kaplan–Meier analysis and Cox proportional hazards models were used to examine the survival function of preoperative serum albumin levels in these glioblastoma patients. Results Serum albumin levels were significantly correlated with overall survival in glioblastoma patients (multivariate HR = 0.966; 95% CI, 0.938-0.995; P = 0.023). Serum albumin level was high in patients receiving standard therapy, which may affect its prognostic significance. Despite the correlation between serum albumin levels and other nutritional indicators such as prealbumin, total protein and total lymphocyte counts, only serum albumin level was an independent predictor of patient survival. Conclusions Serum albumin level is associated with prognosis in glioblastoma patients, although the underlying mechanism is complex because of the role of serum albumin as a nutritional indicator and its involvement in inflammatory responses.
Collapse
Affiliation(s)
- Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| | - Yanming Huang
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| | - Zhonghua Li
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| | - Haipei Hou
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, China.
| |
Collapse
|
21
|
Pickard A, McCance DJ. IGF-Binding Protein 2 - Oncogene or Tumor Suppressor? Front Endocrinol (Lausanne) 2015; 6:25. [PMID: 25774149 PMCID: PMC4343188 DOI: 10.3389/fendo.2015.00025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.
Collapse
Affiliation(s)
- Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK
- *Correspondence: Adam Pickard, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT7 9BL, UK e-mail:
| | - Dennis J. McCance
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK
| |
Collapse
|