2
|
Deng T, Zhang W, Zhang Y, Zhang M, Huan Z, Yu C, Zhang X, Wang Y, Xu J. Thyroid-stimulating hormone decreases the risk of osteoporosis by regulating osteoblast proliferation and differentiation. BMC Endocr Disord 2021; 21:49. [PMID: 33726721 PMCID: PMC7968288 DOI: 10.1186/s12902-021-00715-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND As the incidence of secretory osteoporosis has increased, bone loss, osteoporosis and their relationships with thyroid-stimulating hormone (TSH) have received increased attention. In this study, the role of TSH in bone metabolism and its possible underlying mechanisms were investigated. METHODS We analyzed the serum levels of free triiodothyronine (FT3), free thyroxine (FT4), and TSH and the bone mineral density (BMD) levels of 114 men with normal thyroid function. In addition, osteoblasts from rat calvarial samples were treated with different doses of TSH for different lengths of time. The related gene and protein expression levels were investigated. RESULTS A comparison of the BMD between the high-level and low-level serum TSH groups showed that the TSH serum concentration was positively correlated with BMD. TSH at concentrations of 10 mU/mL and 100 mU/mL significantly increased the mRNA levels of ALP, COI1 and Runx2 compared with those of the control (P < 0.05, P < 0.01). Bone morphogenetic protein (BMP)2 activity was enhanced with both increased TSH concentration and increased time. The protein levels of Runx2 and osterix were increased in a dose-dependent manner. CONCLUSIONS The circulating concentrations of TSH and BMD were positively correlated with normal thyroid function in males. TSH promoted osteoblast proliferation and differentiation in rat primary osteoblasts.
Collapse
Affiliation(s)
- Tuo Deng
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Wenwen Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Yanling Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
3
|
Kang YE, Kang YM, Park B, Shong M, Yi HS. Type 2 deiodinase Thr92Ala polymorphism is associated with a reduction in bone mineral density: A community-based korean genome and epidemiology study. Clin Endocrinol (Oxf) 2020; 93:238-247. [PMID: 32324283 DOI: 10.1111/cen.14206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Type 2 deiodinase (DIO2)-mediated thyroid hormone synthesis stimulates osteoblast activity and increases the expression of osteoblast differentiation markers, but there are no large cohort studies to identify the role of the DIO2 polymorphism in bone mineral density in humans. METHODS To investigate the hypothesis that individuals with the DIO2 gene polymorphism are susceptible to osteoporosis, we assessed the polymorphism of the DIO2 gene in 7,524 Koreans drawn from the large-scale Ansan-Anseong cohort of the Korean Genome and Epidemiology Study. All of the participants underwent genotyping of the DIO2 Thr92Ala polymorphism (rs225014). RESULTS A total of 6,022 participants were recruited; 1991 (33.0%) were homozygous for the Thr allele, 2,967 (49.3%) were heterozygous (Thr/Ala), and 1064 (17.7%) were homozygous for the Ala allele. The effects of the DIO2 Thr92Ala polymorphism on axial speed of sound (SOS) and the T-score in the tibia and radius were assessed, with age, gender, oestrogen status, body mass index (BMI), serum calcium, 25-hydroxyvitamin D, and parathyroid hormone (PTH) included as covariables. Female subjects carrying the DIO2 Thr92Ala polymorphism had significantly lower SOS and T-scores than control participants. Cox regression analysis revealed a significant relationship between the DIO2 polymorphism and diagnosis of osteoporosis in female participants. CONCLUSION DIO2 Thr92Ala polymorphism is associated with decreased SOS and T-scores in the tibia of female subjects independent of other clinical parameters, where this indicates a potential functional role of DIO2 in the maintenance of bone mineral density.
Collapse
Affiliation(s)
- Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Mi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Boyoung Park
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
6
|
Bassett JHD, van der Spek A, Logan JG, Gogakos A, Bagchi-Chakraborty J, Williams AJ, Murphy E, van Zeijl C, Down J, Croucher PI, Boyde A, Boelen A, Williams GR. Thyrostimulin Regulates Osteoblastic Bone Formation During Early Skeletal Development. Endocrinology 2015; 156:3098-113. [PMID: 26018249 PMCID: PMC4541616 DOI: 10.1210/en.2014-1943] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ancestral glycoprotein hormone thyrostimulin is a heterodimer of unique glycoprotein hormone subunit alpha (GPA)2 and glycoprotein hormone subunit beta (GPB)5 subunits with high affinity for the TSH receptor. Transgenic overexpression of GPB5 in mice results in cranial abnormalities, but the role of thyrostimulin in bone remains unknown. We hypothesized that thyrostimulin exerts paracrine actions in bone and determined: 1) GPA2 and GPB5 expression in osteoblasts and osteoclasts, 2) the skeletal consequences of thyrostimulin deficiency in GPB5 knockout (KO) mice, and 3) osteoblast and osteoclast responses to thyrostimulin treatment. Gpa2 and Gpb5 expression was identified in the newborn skeleton but declined rapidly thereafter. GPA2 and GPB5 mRNAs were also expressed in primary osteoblasts and osteoclasts at varying concentrations. Juvenile thyrostimulin-deficient mice had increased bone volume and mineralization as a result of increased osteoblastic bone formation. However, thyrostimulin failed to induce a canonical cAMP response or activate the noncanonical Akt, ERK, or mitogen-activated protein kinase (P38) signaling pathways in primary calvarial or bone marrow stromal cell-derived osteoblasts. Furthermore, thyrostimulin did not directly inhibit osteoblast proliferation, differentiation or mineralization in vitro. These studies identify thyrostimulin as a negative but indirect regulator of osteoblastic bone formation during skeletal development.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Anne van der Spek
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - John G Logan
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Apostolos Gogakos
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Jayashree Bagchi-Chakraborty
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | | | - Elaine Murphy
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Clementine van Zeijl
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Jenny Down
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Peter I Croucher
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Alan Boyde
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Anita Boelen
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| |
Collapse
|