1
|
Zhang H, Tsuchikawa T, Takeuchi S, Hirata K, Tanaka K, Matsui A, Nakanishi Y, Asano T, Noji T, Nakamura T, Takeuchi S, Wada M, Hirano S. Initial validation of the clinical significance of the NETest in Japanese gastroenteropancreatic neuroendocrine tumor patients. Endocr J 2024; 71:873-880. [PMID: 39069495 DOI: 10.1507/endocrj.ej24-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
As novel biomarkers for gastroenteropancreatic neuroendocrine tumors (GEPNET) are in demand, we aimed to validate the clinical value of the NETest in Japanese patients. Between 2021 and 2023, blood and clinical data were collected from patients with GEPNET. Among 35 patients (median age: 59 [49-66] years), 27 cases originated from the pancreas and eight from the gastrointestinal tract. Of 69 samples sent to the laboratory, 56 (81.2%) underwent NETest. The diagnostic sensitivity was 97.1%. Among three patients who underwent R0 resection and four treated with peptide receptor radionuclide therapy, the changes in NETest scores closely correlated with disease progression. The NETest demonstrated high diagnostic efficacy and accurate therapeutic monitoring capabilities in a Japanese population.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Takeuchi
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kimitaka Tanaka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Aya Matsui
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Yoshitsugu Nakanishi
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Toshimichi Asano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Takehiro Noji
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Shintaro Takeuchi
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Masataka Wada
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
2
|
Franchina M, Cavalcoli F, Falco O, La Milia M, Elvevi A, Massironi S. Biochemical Markers for Neuroendocrine Tumors: Traditional Circulating Markers and Recent Development-A Comprehensive Review. Diagnostics (Basel) 2024; 14:1289. [PMID: 38928704 PMCID: PMC11203125 DOI: 10.3390/diagnostics14121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms presenting unique challenges in diagnosis and management. Traditional markers such as chromogranin A (CgA), pancreatic polypeptide (PP), and neuron-specific enolase (NSE) have limitations in terms of specificity and sensitivity. Specific circulating markers such as serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and various gastrointestinal hormones such as gastrin, glucagon, somatostatin, and vasoactive intestinal peptide (VIP) have a role in identifying functional NENs. Recent advances in molecular and biochemical markers, also accounting for novel genomic and proteomic markers, have significantly improved the landscape for the diagnosis and monitoring of NENs. This review discusses these developments, focusing on both traditional markers such as CgA and NSE, as well as specific hormones like gastrin, insulin, somatostatin, glucagon, and VIP. Additionally, it covers emerging genomic and proteomic markers that are shaping current research. The clinical applicability of these markers is highlighted, and their role in improving diagnostic accuracy, predicting surgical outcomes, and monitoring response to treatment is demonstrated. The review also highlights the need for further research, including validation of these markers in larger studies, development of standardized assays, and integration with imaging techniques. The evolving field of biochemical markers holds promise for improving patient outcomes in the treatment of NENs, although challenges in standardization and validation remain.
Collapse
Affiliation(s)
- Marianna Franchina
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Federica Cavalcoli
- Gastroenterology and Digestive Endoscopy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Olga Falco
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marta La Milia
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
3
|
Gabiache G, Zadro C, Rozenblum L, Vezzosi D, Mouly C, Thoulouzan M, Guimbaud R, Otal P, Dierickx L, Rousseau H, Trepanier C, Dercle L, Mokrane FZ. Image-Guided Precision Medicine in the Diagnosis and Treatment of Pheochromocytomas and Paragangliomas. Cancers (Basel) 2023; 15:4666. [PMID: 37760633 PMCID: PMC10526298 DOI: 10.3390/cancers15184666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In this comprehensive review, we aimed to discuss the current state-of-the-art medical imaging for pheochromocytomas and paragangliomas (PPGLs) diagnosis and treatment. Despite major medical improvements, PPGLs, as with other neuroendocrine tumors (NETs), leave clinicians facing several challenges; their inherent particularities and their diagnosis and treatment pose several challenges for clinicians due to their inherent complexity, and they require management by multidisciplinary teams. The conventional concepts of medical imaging are currently undergoing a paradigm shift, thanks to developments in radiomic and metabolic imaging. However, despite active research, clinical relevance of these new parameters remains unclear, and further multicentric studies are needed in order to validate and increase widespread use and integration in clinical routine. Use of AI in PPGLs may detect changes in tumor phenotype that precede classical medical imaging biomarkers, such as shape, texture, and size. Since PPGLs are rare, slow-growing, and heterogeneous, multicentric collaboration will be necessary to have enough data in order to develop new PPGL biomarkers. In this nonsystematic review, our aim is to present an exhaustive pedagogical tool based on real-world cases, dedicated to physicians dealing with PPGLs, augmented by perspectives of artificial intelligence and big data.
Collapse
Affiliation(s)
- Gildas Gabiache
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Charline Zadro
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Laura Rozenblum
- Department of Nuclear Medicine, Sorbonne Université, AP-HP, Hôpital La Pitié-Salpêtrière, 75013 Paris, France
| | - Delphine Vezzosi
- Department of Endocrinology, Rangueil University Hospital, 31400 Toulouse, France
| | - Céline Mouly
- Department of Endocrinology, Rangueil University Hospital, 31400 Toulouse, France
| | | | - Rosine Guimbaud
- Department of Oncology, Rangueil University Hospital, 31400 Toulouse, France
| | - Philippe Otal
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Lawrence Dierickx
- Department of Nuclear Medicine, IUCT-Oncopole, 31059 Toulouse, France;
| | - Hervé Rousseau
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| | - Christopher Trepanier
- New York-Presbyterian Hospital/Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- New York-Presbyterian Hospital/Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fatima-Zohra Mokrane
- Department of Radiology, Rangueil University Hospital, 31400 Toulouse, France (F.-Z.M.)
| |
Collapse
|
4
|
Eisenhofer G, Pamporaki C, Lenders JWM. Biochemical Assessment of Pheochromocytoma and Paraganglioma. Endocr Rev 2023; 44:862-909. [PMID: 36996131 DOI: 10.1210/endrev/bnad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/24/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023]
Abstract
Pheochromocytoma and paraganglioma (PPGL) require prompt consideration and efficient diagnosis and treatment to minimize associated morbidity and mortality. Once considered, appropriate biochemical testing is key to diagnosis. Advances in understanding catecholamine metabolism have clarified why measurements of the O-methylated catecholamine metabolites rather than the catecholamines themselves are important for effective diagnosis. These metabolites, normetanephrine and metanephrine, produced respectively from norepinephrine and epinephrine, can be measured in plasma or urine, with choice according to available methods or presentation of patients. For patients with signs and symptoms of catecholamine excess, either test will invariably establish the diagnosis, whereas the plasma test provides higher sensitivity than urinary metanephrines for patients screened due to an incidentaloma or genetic predisposition, particularly for small tumors or in patients with an asymptomatic presentation. Additional measurements of plasma methoxytyramine can be important for some tumors, such as paragangliomas, and for surveillance of patients at risk of metastatic disease. Avoidance of false-positive test results is best achieved by plasma measurements with appropriate reference intervals and preanalytical precautions, including sampling blood in the fully supine position. Follow-up of positive results, including optimization of preanalytics for repeat tests or whether to proceed directly to anatomic imaging or confirmatory clonidine tests, depends on the test results, which can also suggest likely size, adrenal vs extra-adrenal location, underlying biology, or even metastatic involvement of a suspected tumor. Modern biochemical testing now makes diagnosis of PPGL relatively simple. Integration of artificial intelligence into the process should make it possible to fine-tune these advances.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jacques W M Lenders
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Internal Medicine, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
5
|
Eid M, Foukal J, Sochorová D, Tuček Š, Starý K, Kala Z, Mayer J, Němeček R, Trna J, Kunovský L. Management of pheochromocytomas and paragangliomas: Review of current diagnosis and treatment options. Cancer Med 2023. [PMID: 37145019 DOI: 10.1002/cam4.6010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors derived from the chromaffin cells of the adrenal medulla. When these tumors have an extra-adrenal location, they are called paragangliomas (PGLs) and arise from sympathetic and parasympathetic ganglia, particularly of the para-aortic location. Up to 25% of PCCs/PGLs are associated with inherited genetic disorders. The majority of PCCs/PGLs exhibit indolent behavior. However, according to their affiliation to molecular clusters based on underlying genetic aberrations, their tumorigenesis, location, clinical symptomatology, and potential to metastasize are heterogenous. Thus, PCCs/PGLs are often associated with diagnostic difficulties. In recent years, extensive research revealed a broad genetic background and multiple signaling pathways leading to tumor development. Along with this, the diagnostic and therapeutic options were also expanded. In this review, we focus on the current knowledge and recent advancements in the diagnosis and treatment of PCCs/PGLs with respect to the underlying gene alterations while also discussing future perspectives in this field.
Collapse
Affiliation(s)
- Michal Eid
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Foukal
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Sochorová
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Štěpán Tuček
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Starý
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Kala
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Mayer
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Němeček
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Trna
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lumír Kunovský
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
6
|
Malczewska A, Oberg K, Kos-Kudla B. NETest is superior to chromogranin A in neuroendocrine neoplasia: a prospective ENETS CoE analysis. Endocr Connect 2021; 10:110-123. [PMID: 33289691 PMCID: PMC7923057 DOI: 10.1530/ec-20-0417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The absence of a reliable, universal biomarker is a significant limitation in neuroendocrine neoplasia (NEN) management. We prospectively evaluated two CgA assays, (NEOLISA, EuroDiagnostica) and (CgA ELISA, Demeditec Diagnostics (DD)) and compared the results to the NETest. METHODS NEN cohort (n = 258): pancreatic, n = 67; small intestine, n = 40; appendiceal, n = 10; rectal, n = 45; duodenal, n = 9; gastric, n = 44; lung, n = 43. Image-positive disease (IPD) (n = 123), image & histology- negative (IND) (n = 106), and image-negative and histology positive (n = 29). CgA metrics: NEOLISA, ULN: 108 ng/mL, DD: ULN: 99 ng/mL. Data mean ± s.e.m. NETest: qRT-PCR - multianalyte analyses, ULN: 20. All samples de-identified and assessed blinded. Statistics: Mann-Whitney U-test, Pearson correlation and McNemar-test. RESULTS CgA positive in 53/258 (NEOLISA), 32 (DD) and NETest-positive in 157/258. In image- positive disease (IPD, n = 123), NEOLISA-positive: 33% and DD: 19%. NETest-positive: 122/123 (99%; McNemar's Chi2= 79-97, P < 0.0001). NEOLISA was more accurate than DD (P = 0.0003). In image- negative disease (IND), CgA was NEOLISA-positive (11%), DD (8%), P = NS, and NETest (33%). CgA assays could not distinguish progressive (PD) from stable disease (SD) or localized from metastatic disease (MD). NETest was significantly higher in PD (47 ± 5) than SD (29 ± 1, P = 0.0009). NETest levels in MD (35 ± 2) were elevated vs localized disease (24 ± 1.3, P = 0.008). CONCLUSIONS NETest, a multigenomic mRNA biomarker, was ~99% accurate in the identification of NEN disease. The CgA assays detected NEN disease in 19-33%. Multigenomic blood analysis using NETest is more accurate than CgA and should be considered the biomarker standard of care.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Beata Kos-Kudla
- Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
Malczewska A, Witkowska M, Wójcik-Giertuga M, Kuśnierz K, Bocian A, Walter A, Rydel M, Robek A, Pierzchała S, Malczewska M, Leś-Zielińska I, Czyżewski D, Ziora D, Pilch-Kowalczyk J, Zajęcki W, Kos-Kudła B. Prospective Evaluation of the NETest as a Liquid Biopsy for Gastroenteropancreatic and Bronchopulmonary Neuroendocrine Tumors: An ENETS Center of Excellence Experience. Neuroendocrinology 2021; 111:304-319. [PMID: 32335553 DOI: 10.1159/000508106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is a substantial unmet clinical need for an accurate and effective blood biomarker for neuroendocrine neoplasms (NEN). We therefore evaluated, under real-world conditions in an ENETS Center of Excellence (CoE), the clinical utility of the NETest as a liquid biopsy and compared its utility with chromogranin A (CgA) measurement. METHODS The cohorts were: gastroenteropancreatic NEN (GEP-NEN; n = 253), bronchopulmonary NEN (BPNEN; n = 64), thymic NEN (n = 1), colon cancer (n = 37), non-small-cell lung cancer (NSCLC; n = 63), benign lung disease (n = 59), and controls (n = 86). In the GEPNEN group, 164 (65%) had image-positive disease (IPD, n = 135) or were image-negative but resection-margin/biopsy-positive (n = 29), and were graded as G1 (n = 106), G2 (n = 49), G3 (n = 7), or no data (n = 2). The remainder (n = 71) had no evidence of disease (NED). In the BPNEN group, 43/64 (67%) had IPD. Histology revealed typical carcinoids (TC, n = 14), atypical carcinoids (AC, n = 14), small-cell lung cancer (SCLC, n = 11), and large-cell neuroendocrine carcinoma (LCNEC, n = 4). Disease status (stable or progressive) was evaluated according to RECIST v1.1. Blood sampling involved NETest (n = 563) and NETest/CgA analysis matched samples (n = 178). NETest was performed by PCR (on a scale of 0-100), with a score ≥20 reflecting a disease-positive status and >40 reflecting progressive disease. CgA positivity was determined by ELISA. Samples were deidentified and measurements blinded. The Kruskal-Wallis, Mann-Whitney U, and McNemar tests, and the area under the curve (AUC) of the receiver-operating characteristics (ROC) were used in the statistical analysis. RESULTS In the GEPNEN group, NETest was significantly higher (34.4 ± 1.8, p < 0.0001) in disease-positive patients than in patients with NED (10.5 ± 1, p < 0.0001), colon cancer patients (18 ± 4, p < 0.0004), and controls (7 ± 0.5, p < 0.0001). Sensitivity for detecting disease compared to controls was 89% and specificity was 94%. NETest levels were increased in G2 vs. G1 (39 ± 3 vs. 32 ± 2, p = 0.02) and correlated with stage (localized: 26 ± 2 vs. regional/distant: 40 ± 3, p = 0.0002) and progression (55 ± 5 vs. 34 ± 2 in stable disease, p = 0.0005). In the BPNEN group, diagnostic sensitivity was 100% and levels were significantly higher in patients with bronchopulmonary carcinoids (BPC; 30 ± 1.3) who had IPD than in controls (7 ± 0.5, p < 0.0001), patients with NED (24.1 ± 1.3, p < 0.005), and NSCLC patients (17 ± 3, p = 0.0001). NETest levels were higher in patients with poorly differentiated BPNEN (LCNEC + SCLC; 59 ± 7) than in those with BPC (30 ± 1.3, p = 0.0005) or progressive disease (57.8 ± 7), compared to those with stable disease (29.4 ± 1, p < 0.0001). The AUC for differentiating disease from controls was 0.87 in the GEPNEN group and 0.99 in BPC patients (p < 0.0001). Matched CgA analysis was performed in 178 patients. In the GEPNEN group (n = 135), NETest was significantly more accurate for detecting disease (99%) than CgA positivity (53%; McNemar test χ2 = 87, p < 0.0001). In the BPNEN group (n = 43), NETest was significantly more accurate for disease detection (100%) than CgA positivity (26%; McNemar's test χ2 = 30, p < 0.0001). CONCLUSIONS The NETest is an accurate diagnostic for GEPNEN and BPNEN. It exhibits tumor biology correlation with grading, staging, and progression. CgA as a biomarker is significantly less accurate than NETest. The NETest has substantial clinical utility that can facilitate patient management.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland,
| | - Magdalena Witkowska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Monika Wójcik-Giertuga
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Kuśnierz
- Department of Gastrointestinal Surgery, Medical University of Silesia, Katowice, Poland
| | - Agnes Bocian
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Agata Walter
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mateusz Rydel
- Department of Thoracic Surgery, Medical University of Silesia, Zabrze, Poland
| | - Amanda Robek
- Department of Oncology, Medical University of Silesia, Katowice, Poland
| | - Sylwia Pierzchała
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Magdalena Malczewska
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | | | - Damian Czyżewski
- Department of Thoracic Surgery, Medical University of Silesia, Zabrze, Poland
| | - Dariusz Ziora
- Department of Pulmonology, Medical University of Silesia, Zabrze, Poland
| | - Joanna Pilch-Kowalczyk
- Department of Radiology and Nuclear Medicine, Medical University of Silesia, Katowice, Poland
| | - Wojciech Zajęcki
- Department of Pathology, Medical University of Silesia, Zabrze, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
8
|
Kidd M, Kitz A, Drozdov I, Modlin I. Neuroendocrine Tumor Omic Gene Cluster Analysis Amplifies the Prognostic Accuracy of the NETest. Neuroendocrinology 2021; 111:490-504. [PMID: 32392558 DOI: 10.1159/000508573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The NETest is a multigene assay comprising 51 circulating neuroendocrine tumor (NET)-specific transcripts. The quotient of the 51-gene assay is based upon an ensemble of machine learning algorithms. Eight cancer hallmarks or "omes" (apoptome, epigenome, growth factor signalome, metabolome, proliferome, plurome, secretome, SSTRome) represent 29 genes. The NETest is an accurate diagnostic (>90%) test, but its prognostic utility has not been assessed. In this study, we describe the expansion of the NETest omic cluster components and demonstrate that integration amplifies NETest prognostic accuracy. METHODS Group 1: n = 222; including stable disease (SD, n = 146), progressive disease (PD, n = 76), and controls (n = 139). Group 2: NET Registry NCT02270567; n = 88; prospective samples (SD, n = 54; PD, n = 34) with up to 24 months follow-up. We used PubMed literature review, interactomic analysis, nonparametric testing, Kaplan-Meier survival curves, and χ2 analyses to inform and define the prognostic significance of NET genomic "hallmarks." RESULTS 2020 analyses: In-depth analyses of 47 -NETest genes identified a further six omes: fibrosome, inflammasome, metastasome, NEDome, neurome, and TFome. Group 1 analysis: Twelve omes, excluding the inflammasome and apoptome, were significantly (p < 0.05, 2.1- to 8.2-fold) elevated compared to controls. In the PD group, seven omes (proliferome, NEDome, epigenome, SSTRome, neurome, metastasome, and fibrosome) were elevated (both expression levels and fold change >2) versus SD. Group 2 analysis: All these seven omes were upregulated. In PD, they were significantly more elevated (p < 0.02) than in SD. The septet omic expression exhibited a 69% prognostic accuracy. The NETest alone was 70.5% accurate. A low NETest (≤40) integrated with epigenome/metastasome levels was an accurate prognostic for PD (90%). A high NETest (>40) including the fibrosome/NEDome predicted PD development within 3 months (100%). Using decision tree analysis to integrate the four omes (epigenome, metastasome, fibrosome, and NEDome) with the NETest score generated an overall prognostic accuracy of 93%. CONCLUSIONS Examination of NETest omic gene cluster analysis identified five additional clinically relevant cancer hallmarks. Identification of seven omic clusters (septet) provides a molecular pathological signature of disease progression. The integration of the quartet (epigenome, fibrosome, metastasome, NEDome) and the NETest score yielded a 93% accuracy in the prediction of future disease status.
Collapse
Affiliation(s)
- Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | | | | | - Irvin Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
9
|
Job S, Georges A, Burnichon N, Buffet A, Amar L, Bertherat J, Bouatia-Naji N, de Reyniès A, Drui D, Lussey-Lepoutre C, Favier J, Gimenez-Roqueplo AP, Castro-Vega LJ. Transcriptome Analysis of lncRNAs in Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab 2020; 105:5611198. [PMID: 31678991 DOI: 10.1210/clinem/dgz168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) are neuroendocrine tumors explained by germline or somatic mutations in about 70% of cases. Patients with SDHB mutations are at high risk of developing metastatic disease, yet no reliable tumor biomarkers are available to predict tumor aggressiveness. OBJECTIVE We aimed at identifying long noncoding RNAs (lncRNAs) specific for PPGL molecular groups and metastatic progression. DESIGN AND METHODS To analyze the expression of lncRNAs, we used a mining approach of transcriptome data from a well-characterized series of 187 tumor tissues. Clustering consensus analysis was performed to determine a lncRNA-based classification, and informative transcripts were validated in an independent series of 51 PPGLs. The expression of metastasis-related lncRNAs was confirmed by RT-qPCR. Receiver operating characteristic (ROC) curve analysis was used to estimate the predictive accuracy of potential markers. MAIN OUTCOME MEASURE Univariate/multivariate and metastasis-free survival (MFS) analyses were carried out for the assessment of risk factors and clinical outcomes. RESULTS Four lncRNA-based subtypes strongly correlated with mRNA expression clusters (chi-square P-values from 1.38 × 10-32 to 1.07 × 10-67). We identified one putative lncRNA (GenBank: BC063866) that accurately discriminates metastatic from benign tumors in patients with SDHx mutations (area under the curve 0.95; P = 4.59 × 10-05). Moreover, this transcript appeared as an independent risk factor associated with poor clinical outcome of SDHx carriers (log-rank test P = 2.29 × 10-05). CONCLUSION Our findings extend the spectrum of transcriptional dysregulations in PPGL to lncRNAs and provide a novel biomarker that could be useful to identify potentially metastatic tumors in patients carrying SDHx mutations.
Collapse
Affiliation(s)
- Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Adrien Georges
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Nelly Burnichon
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Genetics department, AP-HP, Hôpital européen Georges Pompidou, Paris France
| | - Alexandre Buffet
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Laurence Amar
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Hypertension unit, Paris, France
| | - Jérôme Bertherat
- INSERM, U1016, Institut Cochin, Paris, France. 10 CNRS UMR8104, Paris, France
- Rare Adrenal Cancer Network COMETE, Paris, France
| | - Nabila Bouatia-Naji
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Delphine Drui
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, L'institut du Thorax, Centre Hospitalier Universitaire de Nantes, Hôpital Nord Laënnec, Nantes, France
| | - Charlotte Lussey-Lepoutre
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Sorbonne Université, Pitié-Salpêtrière Hospital, Department of nuclear medicine, Paris, France
| | - Judith Favier
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Genetics department, AP-HP, Hôpital européen Georges Pompidou, Paris France
- Rare Adrenal Cancer Network COMETE, Paris, France
| | - Luis Jaime Castro-Vega
- Paris University, PARCC, INSERM, Equipe labellisée par la Ligue contre le cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
10
|
Malczewska A, Kos-Kudła B, Kidd M, Drozdov I, Bodei L, Matar S, Oberg K, Modlin IM. The clinical applications of a multigene liquid biopsy (NETest) in neuroendocrine tumors. Adv Med Sci 2020; 65:18-29. [PMID: 31841822 PMCID: PMC7453408 DOI: 10.1016/j.advms.2019.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE There are few effective biomarkers for neuroendocrine tumors. Precision oncology strategies have provided liquid biopsies for real-time and tailored decision-making. This has led to the development of the first neuroendocrine tumor liquid biopsy (the NETest). The NETest represents a transcriptomic signature of neuroendocrine tumor (NETs) that captures tumor biology and disease activity. The data have direct clinical application in terms of identifying residual disease, disease progress and the efficacy of treatment. In this overview we assess the available published information on the metrics and clinical efficacy of the NETest. MATERIAL AND METHODS Published data on the NETest have been collated and analyzed to understand the clinical application of this multianalyte biomarker in NETs. RESULTS NETest assay has been validated as a standardized and reproducible clinical laboratory measurement. It is not affected by demographic characteristics, or acid suppressive medication. Clinical utility of the NETest has been documented in gastroenteropancreatic, bronchopulmonary NETs, in paragangliomas and pheochromocytomas. The test facilitates accurate diagnosis of a NET disease, and real-time monitoring of the disease status (stable/progressive disease). It predicts aggressive tumor behavior, identifies operative tumor resection, and efficacy of the medical treatment (e.g. somatostatin analogues), or peptide receptor radionuclide therapy (PRRT). NETest metrics and clinical applications out-perform standard biomarkers like chromogranin A. CONCLUSIONS The NETest exhibits clinically competent metrics as an effective biomarker for neuroendocrine tumors. Measurement of NET transcripts in blood is a significant advance in neuroendocrine tumor management and demonstrates that blood provides a viable source to identify and monitor tumor status.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland.
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, CT, USA
| | | | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Irvin M Modlin
- Gastroenterological Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Malczewska A, Kidd M, Matar S, Kos-Kudła B, Bodei L, Oberg K, Modlin IM. An Assessment of Circulating Chromogranin A as a Biomarker of Bronchopulmonary Neuroendocrine Neoplasia: A Systematic Review and Meta-Analysis. Neuroendocrinology 2020; 110:198-216. [PMID: 31266019 DOI: 10.1159/000500525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Management of bronchopulmonary neuroendocrine neoplasia (NEN; pulmonary carcinoids [PCs], small-cell lung cancer [SCLC], and large cell neuroendocrine carcinoma) is hampered by the paucity of biomarkers. Chromogranin A (CgA), the default neuroendocrine tumor biomarker, has undergone wide assessment in gastroenteropancreatic neuroendocrine tumors. OBJECTIVES To evaluate CgA in lung NEN, define its clinical utility as a biomarker, assess its diagnostic, prognostic, and predictive efficacy, as well as its accuracy in the identification of disease recurrence. METHODS A systematic review of PubMed was undertaken using the preferred reporting items for systematic reviews and meta-analyses guidelines. No language restrictions were applied. Overall, 33 original scientific papers and 3 case reports, which met inclusion criteria, were included in qualitative analysis, and meta-analysis thereafter. All studies, except 2, were retrospective. Meta-analysis statistical assessment by generic inverse variance methodology. RESULTS Ten different CgA assay types were reported, without consistency in the upper limit of normal (ULN). For PCs (n = 16 studies; median patient inclusion 21 [range 1-200, total: 591 patients]), the CgA diagnostic sensitivity was 34.5 ± 2.7% with a specificity of 93.8 ± 4.7. CgA metrics were not available separately for typical or atypical carcinoids. CgA >100 ng/mL (2.7 × ULN) and >600 ng/mL (ULN unspecified) were anecdotally prognostic for overall survival (n = 2 retrospective studies). No evidence was presented for predicting treatment response or identifying post-surgery residual disease. For SCLC (n = 19 studies; median patient inclusion 23 [range 5-251, total: 1,241 patients]), the mean diagnostic sensitivity was 59.9 ± 6.8% and specificity 79.4 ± 3.1. Extensive disease typically exhibited higher CgA levels (diagnostic accuracy: 61 ± 2.5%). An elevated CgA was prognostic for overall survival (n = 4 retrospective studies). No prospective studies evaluating predictive benefit or prognostic utility were identified. CONCLUSION The available data are scarce. An assessment of all published data showed that CgA exhibits major limitations as an effective and accurate biomarker for either PC or SCLC. Its utility especially for localized PC/limited SCLC (when surgery is potentially curative), is limited. The clinical value of CgA remains to be determined. This requires validated, well-constructed, multicenter, prospective, randomized studies. An assessment of all published data indicates that CgA does not exhibit the minimum required metrics to function as a clinically useful biomarker for lung NENs.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Somer Matar
- Wren Laboratories, Branford, Connecticut, USA
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden
| | - Irvin M Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
12
|
Genetic and epigenetic differences of benign and malignant pheochromocytomas and paragangliomas (PPGLs). Endocr Regul 2019; 52:41-54. [PMID: 29453919 DOI: 10.2478/enr-2018-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia, respectively. According to Th e Cancer Genome Atlas (TCGA), approximately 40% of PPGLs are due to germ line mutations in one of 16 susceptibility genes, and a further 30% are due to somatic alterations in at least seven main genes (VHL, EPAS1, CSDE1, MAX, HRAS, NF1, RET, and possibly KIF1B). Th e diagnosis of malignant PPGL was straight forward in most cases as it was defined as presence of PPGL in non-chromaffin tissues. Accordingly, there is an extreme need for new diagnostic marker(s) to identify tumors with malignant prospective. Th e aim of this study was to review all suggested genetic and epigenetic alterations that are remarkably different between benign and malignant PPGLs. It seems that more than two genetic mutation clusters in PPGLs and other genetic and methylation biomarkers could be targeted for malignancy discrimination in different studies.
Collapse
|
13
|
Goncalves J, Lussey-Lepoutre C, Favier J, Gimenez-Roqueplo AP, Castro-Vega LJ. Emerging molecular markers of metastatic pheochromocytomas and paragangliomas. ANNALES D'ENDOCRINOLOGIE 2019; 80:159-162. [PMID: 31053249 DOI: 10.1016/j.ando.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic pheochromocytoma/paraganglioma (PPGL) represents a major clinical challenge due to limitations in accurate diagnostic tools and effective treatments. Currently, patients classified at high-risk by means of clinical, biochemical and genetic criteria, require a lifelong monitoring, while it remains difficult to determine the metastatic potential of PPGL only on the basis of histopathological features. Thus, tumor molecular markers that improve the risk stratification of these patients are needed. In the past few years, we have witnessed an unprecedented molecular characterization of PPGL, which led to the emergence of promising candidate biomarkers predictive of metastatic behavior. Here, we briefly discuss these breakthroughs and provide some insights for the prospective implementation of molecular markers of metastatic PPGL in the clinical setting in years to come.
Collapse
Affiliation(s)
- Judith Goncalves
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France
| | - Charlotte Lussey-Lepoutre
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
| | - Judith Favier
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France; Genetics Department, hôpital européen Georges-Pompidou, AP-HP, 75015, Paris, France
| | - Luis Jaime Castro-Vega
- Inserm, UMR970, équipe labellisée Ligue Contre le Cancer, Paris-Cardiovascular Research Center, 75015 Paris, France; Faculté de médecine, PRES Sorbonne Paris-Cité, Paris-Descartes University, 75006 Paris, France.
| |
Collapse
|
14
|
Modlin IM, Kidd M, Malczewska A, Drozdov I, Bodei L, Matar S, Chung KM. The NETest: The Clinical Utility of Multigene Blood Analysis in the Diagnosis and Management of Neuroendocrine Tumors. Endocrinol Metab Clin North Am 2018; 47:485-504. [PMID: 30098712 PMCID: PMC6716518 DOI: 10.1016/j.ecl.2018.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neuroendocrine neoplasms test (NETest) is a multianalyte liquid biopsy that measures neuroendocrine tumor gene expression in blood. This unique signature precisely defines the biological activity of an individual tumor in real time. The assay meets the 3 critical requirements of an optimal biomarker: diagnostic accuracy, prognostic value, and predictive therapeutic assessment. NETest performance metrics are sensitivity and specificity and in head-to-head comparison are 4-fold to 10-fold more accurate than chromogranin A. NETest accurately identifies completeness of surgery and response to somatostatin analogs. Clinical registry data demonstrate significant clinical utility in watch/wait programs.
Collapse
Affiliation(s)
- Irvin M Modlin
- Gastroenterological and Endoscopic Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8062, USA.
| | - Mark Kidd
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| | - Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, ul. Ceglana 35, Katowice 40-514, Poland
| | - Ignat Drozdov
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY 10065, USA
| | - Somer Matar
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| | - Kyung-Min Chung
- Wren Laboratories, 35 NE Industrial Road, Branford, CT 06405, USA
| |
Collapse
|
15
|
Abstract
Neuroendocrine tumours (NETs) are a heterogenous group of tumours arising from neuroendocrine cells in several sites around the body. They include tumours of the gastroenteropancreatic system, phaeochromocytoma and paraganglioma and medullary thyroid cancer. In recent years, it has become increasingly apparent that a number of these tumours arise as a result of germline genetic mutations and are inherited in an autosomal dominant pattern. The number of genes implicated is increasing rapidly. Identifying which patients are likely to have a germline mutation enables clinicians to counsel patients adequately about their future disease risk, and allows for earlier detection of at-risk patients through family screening. The institution of screening and surveillance programmes may in turn lead to a major shift in presentation patterns for some of these tumours. In this review, we examine the features which may lead a clinician to suspect that a patient may have an inherited cause of a NET and we outline which underlying conditions should be suspected. We also discuss what type of screening may be appropriate in a variety of situations.
Collapse
Affiliation(s)
- Triona O'Shea
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Maralyn Druce
- Centre of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|