1
|
Fiet J, Bachelot G, Sow C, Farabos D, Helin N, Eguether T, Dufourg MN, Bellanne-Chantelot C, Ribaut B, Bachelot A, Young J, Houang M, Lamazière A. Plasma 21-deoxycortisone: a sensitive additive tool in 21-hydroxylase deficiency in newborns. Eur J Endocrinol 2024; 191:204-210. [PMID: 39137138 DOI: 10.1093/ejendo/lvae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE, DESIGN, AND METHODS Although 17-hydroxyprogesterone (17OHP) has historically been the steroid assayed in the diagnosis of congenital adrenal 21-hydroxylase deficiency (CAH-21D), its C11-hydroxylated metabolite, 21-deoxycortisol (21DF), which is strictly of adrenal origin, is assayed in parallel in this pathology. This steroid (21DF) is oxidized by 11beta-hydroxysteroid dehydrogenase type 2 into 21-deoxycortisone (21DE). In the context of CAH-21D confirmation testing, confounding factors (such as intensive care unit admission, stress, prematurity, early sampling, and variations of sex development) can interfere with the interpretation of the gold-standard biomarkers (17OHP and 21DF). Since its tissue concentrations are especially high in the placenta, we hypothesized that 21DE quantification in the neonatal periods could be an interesting biomarker in addition to 17OHP and 21DF. To verify this hypothesis, we developed a new mass spectrometry-based assay for 21DE in serum and applied it to newborns screened for CAH-21D. RESULTS In newborns with CAH-21D, the mean serum levels of 21DE reached 17.56 ng/mL (ranging from 8.58 ng/mL to 23.20 ng/mL), and the mean 21DE:21DF ratio was 4.99. In contrast, in newborns without CAH-21D, the 21DE serum levels were low and not statistically different from the analytical 21DE limit of quantification (0.01 ng/mL). CONCLUSION Basal serum 21DE appears to be a novel sensitive and specific biomarker of CAH-21D in newborns.
Collapse
Affiliation(s)
- Jean Fiet
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Guillaume Bachelot
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, 75020 Paris, France
| | - Coumba Sow
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Dominique Farabos
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Nicolas Helin
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Thibaut Eguether
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
| | - Marie-Noelle Dufourg
- Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, 26 Av Dr Netter, Paris 75012, France
| | | | - Bettina Ribaut
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
| | - Anne Bachelot
- Sorbonne Université, Service d'endocrinologie et médecine de la reproduction, IE3M, Hôpital Pitié-Salpêtrière, AP-HP, F-75013 Paris, France
| | - Jacques Young
- University Paris-Saclay, Paris-Sud Medical School, F-91405 Orsay, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, F-94275 Le Kremlin-Bicêtre, France
- INSERM UMR-S 1185, Paris-Saclay University, Le Kremlin Bicêtre F-94276, France
| | - Muriel Houang
- Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, 26 Av Dr Netter, Paris 75012, France
| | - Antonin Lamazière
- Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, 27 Rue Chaligny, 75012 Paris, France
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, 75012 Paris, France
| |
Collapse
|
2
|
Fuqua JS, Eugster EA. Presentation and Care for Children with Peripheral Precocious Puberty. Endocrinol Metab Clin North Am 2024; 53:251-265. [PMID: 38677868 DOI: 10.1016/j.ecl.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Peripheral precocious puberty (PPP) refers to the early onset of sexual maturation that is independent of central nervous system control. The extensive differential diagnosis includes congenital and acquired causes. Presenting features depend on which class of sex steroids is involved, and diagnosis rests on hormonal and, if indicated, imaging and/or genetic studies. Effective treatment exists for nearly all causes of PPP. Ongoing research will advance our therapeutic armamentarium and understanding of the pathophysiologic basis of these conditions.
Collapse
Affiliation(s)
- John S Fuqua
- Division of Pediatric Endocrinology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA.
| | - Erica A Eugster
- Division of Pediatric Endocrinology, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Ng JL, Lim EM, Zhang R, Beilby JP, Watts GF, Brown SJ, Stuckey BGA. Serum 21-Deoxycortisol for Diagnosis of Nonclassic Congenital Adrenal Hyperplasia in Women With Androgen Excess. J Clin Endocrinol Metab 2023; 108:e1560-e1570. [PMID: 37358001 PMCID: PMC10655544 DOI: 10.1210/clinem/dgad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
CONTEXT Nonclassic congenital adrenal hyperplasia (NCCAH) requires exclusion before diagnosing polycystic ovary syndrome (PCOS). Increasing use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) necessitates revision of immunoassay-based criteria for NCCAH. Measurement of 21-deoxycortisol (21DF) may simplify the diagnosis of heterozygosity (HTZ), the presence of 1 affected CYP21A2 allele, which currently relies on complex molecular studies. OBJECTIVE We aimed to determine LC-MS/MS-specific criteria for NCCAH and HTZ and compare the diagnostic accuracy of 21DF and 17-hydroxyprogesterone (17OHP). METHODS A cross-sectional study involving 99 hyperandrogenic females was performed. We identified females who had undergone both a synacthen stimulation test (SST) and CYP21A2 genotyping from 2010 to 2017, and prospectively recruited females referred for an SST to investigate hyperandrogenic symptoms from 2017 to 2021. Steroids were compared between genetically confirmed NCCAH, HTZ, and PCOS. Optimal 17OHP and 21DF thresholds for HTZ and NCCAH were determined by receiver operating characteristic analysis. RESULTS Basal 17OHP, stimulated 17OHP, and 21DF were measured in 99, 85, and 42 participants, respectively. Optimal thresholds for NCCAH were 3.0 nmol/L and 20.7 nmol/L for basal and stimulated 17OHP, respectively. Basal and stimulated 21DF thresholds of 0.31 nmol/L and 13.3 nmol/L provided 100% sensitivity with specificities of 96.8% and 100% for NCCAH, respectively. Diagnostic thresholds for HTZ of 8.0 nmol/L, 1.0 nmol/L, and 13.6 for stimulated 17OHP, 21DF, and the ratio (21DF + 17OHP)/cortisol each provided 100% sensitivity with specificities of 80.4%, 90.5%, and 85.0%, respectively. CONCLUSION LC-MS/MS-specific 17OHP thresholds for NCCAH are lower than those based on immunoassay. LC-MS/MS-quantified 17OHP and 21DF accurately discriminate HTZ and NCCAH from PCOS.
Collapse
Affiliation(s)
- Jennifer L Ng
- Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
| | - Ee Mun Lim
- PathWest Laboratory Medicine, Department of Chemical Pathology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, , Nedlands, Western Australia 6009, Australia
| | - Rui Zhang
- PathWest Laboratory Medicine, Department of Chemical Pathology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - John P Beilby
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Gerald F Watts
- Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia 6000, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, , Nedlands, Western Australia 6009, Australia
| | - Bronwyn G A Stuckey
- Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, Nedlands, Western Australia 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, , Nedlands, Western Australia 6009, Australia
- Medical School, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
4
|
de Hora M, Heather N, Webster D, Albert B, Hofman P. The use of liquid chromatography-tandem mass spectrometry in newborn screening for congenital adrenal hyperplasia: improvements and future perspectives. Front Endocrinol (Lausanne) 2023; 14:1226284. [PMID: 37850096 PMCID: PMC10578435 DOI: 10.3389/fendo.2023.1226284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Newborn screening for congenital adrenal hyperplasia using 17-hydroxyprogesterone by immunoassay remains controversial despite screening been available for almost 40 years. Screening is confounded by poor immunoassay specificity, fetal adrenal physiology, stress, and illness which can result in a large number of false positive screening tests. Screening programmes apply higher screening thresholds based on co-variates such as birthweight or gestational age but the false positive rate using immunoassay remains high. Mass spectrometry was first applied to newborn screening for congenital adrenal hyperplasia over 15 years ago. Elevated 17-hydroxprogesterone by immunoassay can be retested with a specific liquid chromatography tandem mass spectrometry assay that may include additional steroid markers. Laboratories register with quality assurance programme providers to ensure accurate steroid measurements. This has led to improvements in screening but there are additional costs and added laboratory workload. The search for novel steroid markers may inform further improvements to screening. Studies have shown that 11-oxygenated androgens are elevated in untreated patients and that the adrenal steroidogenesis backdoor pathway is more active in babies with congenital adrenal hyperplasia. There is continual interest in 21-deoxycortisol, a specific marker of 21-hydroxylase deficiency. The measurement of androgenic steroids and their precursors by liquid chromatography tandem mass spectrometry in bloodspots may inform improvements for screening, diagnosis, and treatment monitoring. In this review, we describe how liquid chromatography tandem mass spectrometry has improved newborn screening for congenital adrenal hyperplasia and explore how future developments may inform further improvements to screening and diagnosis.
Collapse
Affiliation(s)
- Mark de Hora
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Natasha Heather
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Dianne Webster
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Benjamin Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Paul Hofman
- Clinical Research Unit, Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Sarafoglou K, Merke DP, Reisch N, Claahsen-van der Grinten H, Falhammar H, Auchus RJ. Interpretation of Steroid Biomarkers in 21-Hydroxylase Deficiency and Their Use in Disease Management. J Clin Endocrinol Metab 2023; 108:2154-2175. [PMID: 36950738 PMCID: PMC10438890 DOI: 10.1210/clinem/dgad134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The most common form of congenital adrenal hyperplasia is 21-hydroxylase deficiency (21OHD), which in the classic (severe) form occurs in roughly 1:16 000 newborns worldwide. Lifelong treatment consists of replacing cortisol and aldosterone deficiencies, and supraphysiological dosing schedules are typically employed to simultaneously attenuate production of adrenal-derived androgens. Glucocorticoid titration in 21OHD is challenging as it must balance the consequences of androgen excess vs those from chronic high glucocorticoid exposure, which are further complicated by interindividual variability in cortisol kinetics and glucocorticoid sensitivity. Clinical assessment and biochemical parameters are both used to guide therapy, but the specific purpose and goals of each biomarker vary with age and clinical context. Here we review the approach to medication titration for children and adults with classic 21OHD, with an emphasis on how to interpret adrenal biomarker values in guiding this process. In parallel, we illustrate how an understanding of the pathophysiologic and pharmacologic principles can be used to avoid and to correct complications of this disease and consequences of its management using existing treatment options.
Collapse
Affiliation(s)
- Kyriakie Sarafoglou
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55454, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Deborah P Merke
- Department of Pediatrics, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Nicole Reisch
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Hedi Claahsen-van der Grinten
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Dreves B, Reznik Y, Tabarin A. Congenital adrenal hyperplasia: New biomarkers and adult treatments. ANNALES D'ENDOCRINOLOGIE 2023:S0003-4266(23)00034-3. [PMID: 36842612 DOI: 10.1016/j.ando.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 02/28/2023]
Abstract
Congenital adrenal hyperplasia (CAH) is a genetic disease caused by an enzyme deficiency interrupting adrenal steroidogenesis. It most frequently involves 21-hydroxylase, which induces adrenal insufficiency with hyperandrogenism. Restoring hormonal balance is difficult with glucocorticoids, which are the gold-standard treatment. Strict normalization of conventional biomarkers (17-hydroxyprogesterone and delta-4 androstenedione) is often obtained at the cost of iatrogenic hypercortisolism. Optimizing the management of these patients first involves using more specific biomarkers of adrenal steroidogenesis in difficult situations, and secondly using therapeutics targeting the induced hypothalamic-pituitary-adrenal axis disorder. 11-oxygenated androgens are candidates for biochemical monitoring of Congenital adrenal hyperplasia (CAH), in particular 11-ketotestosterone. Numerous new therapeutic agents are currently being explored, the prime goal being to reduce glucocorticoid exposure, as no strategy can fully replace it at present. They can be divided into 3 categories. The first includes "more physiological" hydrocortisone administration (modified-release hydrocortisone and continuous subcutaneous infusion of hydrocortisone hemisuccinate); the second includes corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) receptor antagonists and anti-ACTH antibodies; and the third includes steroidogenesis inhibitors. Finally, experiments on gene and cell therapies suggest the possibility of lasting remission or even cure in the future.
Collapse
Affiliation(s)
- Bleuenn Dreves
- Endocrinology, Diabetology Department, Caen University Hospital, Caen, France.
| | - Yves Reznik
- Endocrinology, Diabetology Department, Caen University Hospital, Caen, France
| | - Antoine Tabarin
- Endocrinology Department, Bordeaux University Hospital, Pessac, France
| |
Collapse
|
7
|
Bachelot G, Bachelot A, Bonnier M, Salem JE, Farabos D, Trabado S, Dupont C, Kamenicky P, Houang M, Fiet J, Le Bouc Y, Young J, Lamazière A. Combining metabolomics and machine learning models as a tool to distinguish non-classic 21-hydroxylase deficiency from polycystic ovary syndrome without adrenocorticotropic hormone testing. Hum Reprod 2023; 38:266-276. [PMID: 36427016 DOI: 10.1093/humrep/deac254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
STUDY QUESTION Can a combination of metabolomic signature and machine learning (ML) models distinguish nonclassic 21-hydroxylase deficiency (NC21OHD) from polycystic ovary syndrome (PCOS) without adrenocorticotrophic hormone (ACTH) testing? SUMMARY ANSWER A single sampling methodology may be an alternative to the dynamic ACTH test in order to exclude the diagnosis of NC21OHD in the presence of a clinical hyperandrogenic presentation at any time of the menstrual cycle. WHAT IS KNOWN ALREADY The clinical presentation of patients with NC21OHD is similar with that for other disorders of androgen excess. Currently, cosyntropin stimulation remains the gold standard diagnosis of NC21OHD. STUDY DESIGN, SIZE, DURATION The study was designed using a bicentric recruitment: an internal training set included 19 women with NC21OHD and 19 controls used for developing the model; a test set included 17 NC21OHD, 72 controls and 266 PCOS patients used to evaluate the performance of the diagnostic strategy thanks to an ML approach. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifteen steroid species were measured in serum by liquid chromatography-mass spectrometry (LC-MS/MS). This set of 15 steroids (defined as 'steroidome') used to map the steroid biosynthesis pathway was the input for our models. MAIN RESULTS AND THE ROLE OF CHANCE From a single sample, modeling involving metabolic pathway mapping by profiling 15 circulating steroids allowed us to identify perfectly NC21OHD from a confounding PCOS population. The constructed model using baseline LC-MS/MS-acquired steroid fingerprinting successfully excluded all 17 NC21OHDs (sensitivity and specificity of 100%) from 266 PCOS from an external testing cohort of originally 549 women, without the use of ACTH testing. Blood sampling timing during the menstrual cycle phase did not impact the efficiency of our model. LIMITATIONS, REASONS FOR CAUTION The main limitations were the use of a restricted and fully prospective cohort as well as an analytical issue, as not all laboratories are equipped with mass spectrometers able to routinely measure this panel of 15 steroids. Moreover, the robustness of our model needs to be established with a larger prospective study for definitive validation in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS This tool makes it possible to propose a new semiology for the management of hyperandrogenism. The model presents better diagnostic performances compared to the current reference strategy. The management of patients may be facilitated by limiting the use of ACTH tests. Finally, the modeling process allows a classification of steroid contributions to rationalize the biomarker approach and highlight some underlying pathophysiological mechanisms. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Agence Française de Lutte contre le dopage' and DIM Région Ile de France. This study was supported by the French institutional PHRC 2010-AOR10032 funding source and APHP. All authors declare no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Guillaume Bachelot
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, Paris, France.,Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, Paris, France
| | - Anne Bachelot
- Service d'Endocrinologie et Médecine de La Reproduction, Centre de Référence Des Maladies Endocriniennes Rares de La Croissance et du Développement, Centre Des Pathologies Gynécologiques Rares, Hôpital Pitié Salpêtrière (APHP), Sorbonne Université, Paris, France
| | - Marion Bonnier
- Service d'Endocrinologie et Médecine de La Reproduction, Centre de Référence Des Maladies Endocriniennes Rares de La Croissance et du Développement, Centre Des Pathologies Gynécologiques Rares, Hôpital Pitié Salpêtrière (APHP), Sorbonne Université, Paris, France
| | - Joe-Elie Salem
- CIC-1901 and Department of Pharmacology, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Inserm, Paris, France
| | - Dominique Farabos
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France
| | - Severine Trabado
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,INSERM UMR-U1185, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Charlotte Dupont
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, Paris, France.,Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France
| | - Peter Kamenicky
- INSERM UMR-U1185, Paris-Saclay University, Le Kremlin-Bicêtre, France.,University Paris-Saclay, Orsay, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Muriel Houang
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Jean Fiet
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, Paris, France
| | - Yves Le Bouc
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Jacques Young
- INSERM UMR-U1185, Paris-Saclay University, Le Kremlin-Bicêtre, France.,University Paris-Saclay, Orsay, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antonin Lamazière
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Fanelli F, Bruce S, Cantù M, Temchenko A, Mezzullo M, Lindner JM, Peitzsch M, Binz PA, Ackermans MT, Heijboer AC, Van den Ouweland J, Koeppl D, Nardi E, Rauh M, Vogeser M, Eisenhofer G, Pagotto U. Report from the HarmoSter study: inter-laboratory comparison of LC-MS/MS measurements of corticosterone, 11-deoxycortisol and cortisone. Clin Chem Lab Med 2023; 61:67-77. [PMID: 36288389 DOI: 10.1515/cclm-2022-0242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Liquid chromatography-tandem mass spectrometry (LC-MS/MS) panels that include glucocorticoid-related steroids are increasingly used to characterize and diagnose adrenal cortical diseases. Limited information is currently available about reproducibility of these measurements among laboratories. The aim of the study was to compare LC-MS/MS measurements of corticosterone, 11-deoxycortisol and cortisone at eight European centers and assess the performance after unification of calibration. METHODS Seventy-eight patient samples and commercial calibrators were measured twice by laboratory-specific procedures. Results were obtained according to in-house and external calibration. We evaluated intra-laboratory and inter-laboratory imprecision, regression and agreement against performance specifications derived from 11-deoxycortisol biological variation. RESULTS Intra-laboratory CVs ranged between 3.3 and 7.7%, 3.3 and 11.8% and 2.7 and 12.8% for corticosterone, 11-deoxycortisol and cortisone, with 1, 4 and 3 laboratories often exceeding the maximum allowable imprecision (MAI), respectively. Median inter-laboratory CVs were 10.0, 10.7 and 6.2%, with 38.5, 50.7 and 2.6% cases exceeding the MAI for corticosterone, 11-deoxycortisol and cortisone, respectively. Median laboratory bias vs. all laboratory-medians ranged from -5.6 to 12.3% for corticosterone, -14.6 to 12.4% for 11-deoxycortisol and -4.0 to 6.5% for cortisone, with few cases exceeding the total allowable error. Modest deviations were found in regression equations among most laboratories. External calibration did not improve 11-deoxycortisol and worsened corticosterone and cortisone inter-laboratory comparability. CONCLUSIONS Method imprecision was variable. Inter-laboratory performance was reasonably good. However, cases with imprecision and total error above the acceptable limits were apparent for corticosterone and 11-deoxycortisol. Variability did not depend on calibration but apparently on imprecision, accuracy and specificity of individual methods. Tools for improving selectivity and accuracy are required to improve harmonization.
Collapse
Affiliation(s)
- Flaminia Fanelli
- Department of Medical and Surgical Sciences, Endocrinology Research Group, Center for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Stephen Bruce
- Clinical Chemistry Laboratory, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Marco Cantù
- Laboratory of Clinical Biochemistry and Pharmacology, Institute of Laboratory Medicine EOLAB, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anastasia Temchenko
- Department of Medical and Surgical Sciences, Endocrinology Research Group, Center for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Marco Mezzullo
- Department of Medical and Surgical Sciences, Endocrinology Research Group, Center for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Johanna M Lindner
- Institute of Laboratory Medicine, Hospital of the University of Munich (LMU), Munich, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pierre-Alain Binz
- Clinical Chemistry Laboratory, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Mariette T Ackermans
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, Amsterdam, Netherlands.,University of Amsterdam, Amsterdam, Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, Amsterdam, Netherlands.,University of Amsterdam, Amsterdam, Netherlands.,Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jody Van den Ouweland
- Department of Clinical Chemistry, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands
| | - Daniel Koeppl
- Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Elena Nardi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital, Erlangen, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, Hospital of the University of Munich (LMU), Munich, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences, Endocrinology Research Group, Center for Applied Biomedical Research, University of Bologna, Bologna, Italy.,Endocrinology and Prevention and Care of Diabetes Unit, IRCCS Azienda Ospedaliero-Universitaria Policlinico S.Orsola di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Ye L, Zhao Z, Ren H, Wang W, Zhou W, Zheng S, Han R, Zhang J, Li H, Wan Z, Tang C, Sun S, Wang W, Ning G. A Multiclassifier System to Identify and Subtype Congenital Adrenal Hyperplasia Based on Circulating Steroid Hormones. J Clin Endocrinol Metab 2022; 107:e3304-e3312. [PMID: 35512387 PMCID: PMC9282246 DOI: 10.1210/clinem/dgac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/04/2022]
Abstract
CONTEXT Measurement of plasma steroids is necessary for diagnosis of congenital adrenal hyperplasia (CAH). We sought to establish an efficient strategy for detection and subtyping of CAH with a machine-learning algorithm. METHODS Clinical phenotype and genetic testing were used to provide CAH diagnosis and subtype. We profiled 13 major steroid hormones by liquid chromatography-tandem mass spectrometry. A multiclassifier system was established to distinguish 11β-hydroxylase deficiency (11βOHD), 17α-hydroxylase/17,20-lyase deficiency (17OHD), and 21α-hydroxylase deficiency (21OHD) in a discovery cohort (n = 226). It was then validated in an independent cohort (n = 111) and finally applied in a perspective cohort of 256 patients. The diagnostic performance on the basis of area under receiver operating characteristic curves (AUCs) was evaluated. RESULTS A cascade logistic regression model, we named the "Steroidogenesis Score", was able to discriminate the 3 most common CAH subtypes: 11βOHD, 17OHD, and 21OHD. In the perspective application cohort, the steroidogenesis score had a high diagnostic accuracy for all 3 subtypes, 11βOHD (AUC, 0.994; 95% CI, 0.983-1.000), 17OHD (AUC, 0.993; 95% CI, 0.985-1.000), and 21OHD (AUC, 0.979; 95% CI, 0.964-0.994). For nonclassic 21OHD patients, the tool presented with significantly higher sensitivity compared with measurement of basal 17α-hydroxyprogesterone (17OHP) (0.973 vs 0.840, P = 0.005) and was not inferior to measurement of basal vs stimulated 17OHP (0.973 vs 0.947, P = 0.681). CONCLUSIONS The steroidogenesis score was biochemically interpretable and showed high accuracy in identifying CAH patients, especially for nonclassic 21OHD patients, thus offering a standardized approach to diagnose and subtype CAH.
Collapse
Affiliation(s)
| | | | | | | | | | - Sichang Zheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Rulai Han
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Jie Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Haorong Li
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhihan Wan
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chao Tang
- Center for quantitative biology, Peking University, Beijing, China
| | - Shouyue Sun
- Correspondence: Shouyue Sun, MD, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, P.R. China.
| | - Weiqing Wang
- Weiqing Wang, MD, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, P.R. China.
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumors, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
10
|
Houang M, Nguyen-Khoa T, Eguether T, Ribault B, Brabant S, Polak M, Netchine I, Lamazière A. Analysis of a pitfall in congenital adrenal hyperplasia newborn screening: evidence of maternal use of corticoids detected on dried blood spot. Endocr Connect 2022; 11:EC-22-0101. [PMID: 35521805 PMCID: PMC9254290 DOI: 10.1530/ec-22-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Neonatal screening for congenital adrenal hyperplasia (CAH) faces many specific challenges. It must be done using a performant analytical approach that combines sensitivity and specificity to capture the potential causes of mortality during the first week of life, such as salt wasting and glucocorticoid deficiency. Here, we confirm that maternal inhaled corticosteroid intake during pregnancy is a possible cause of missed CAH diagnosis. Thanks to liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis, we were able to quantify endogenous steroid metabolites and also detect the presence of exogenous steroids in the dried blood spot of a newborn. Adding LC-MS/MS analysis as second-tier test, especially one that includes both 17-hydroxyprogesterone and 21-deoxycortisol measurements, would probably improve CAH diagnosis. In familial neonatal screening one could also look for maternal corticosteroid therapies that are hidden to prevent false-negative tests.
Collapse
Affiliation(s)
- Muriel Houang
- Laboratoire des Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
| | - Thao Nguyen-Khoa
- Centre Régional de Dépistage Néonatal-Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
| | - Thibaut Eguether
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Bettina Ribault
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
| | - Séverine Brabant
- Laboratoire d’Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
| | - Michel Polak
- Centre Régional de Dépistage Néonatal-Ile de France, Hôpital Necker-Enfants Malades, AP-HP Centre Université de Paris, Paris, France
- Université de Paris, INSERM, Institut IMAGINE, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Irène Netchine
- Laboratoire des Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
| | - Antonin Lamazière
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
- Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
- Correspondence should be addressed to A Lamazière:
| |
Collapse
|
11
|
He X, Banker M, Puttabyatappa M, Padmanabhan V, Auchus RJ. Maternal 11-Ketoandrostenedione Rises Through Normal Pregnancy and Is the Dominant 11-Oxygenated Androgen in Cord Blood. J Clin Endocrinol Metab 2022; 107:660-667. [PMID: 34718643 PMCID: PMC8851933 DOI: 10.1210/clinem/dgab793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adrenal-derived 11-oxygenated androgens (11oAs) are known important contributors to human physiology and disease but have not been studied in pregnancy. OBJECTIVE We characterize 11oAs in normal human pregnancy and neonatal period and assess the ratios between 11oAs and compare with ratios of other steroids that undergo placental metabolism. DESIGN Prospective cohort study, 2010-2018. SETTING Academic institution. PATIENTS Pairs of pregnant women and newborns (n = 120) were studied. Inclusion criteria were maternal age between 18 and 42 years old, spontaneous singleton pregnancies, and intention to deliver at University of Michigan. INTERVENTION Maternal venous blood was collected during first trimester and at term. Neonatal cord blood was collected following delivery. Steroids were measured via liquid chromatography-tandem mass spectrometry. MAIN OUTCOME MEASURES Levels of 11β-hydroxyandrostenedione (11OHA4), 11-ketoandrostenedione (11KA4), 11β-hydroxytestosterone, and 11-ketotestoterone (11KT) in maternal first trimester, maternal term, and neonatal cord blood were compared. 11OHA4-to-11KA4 ratios were correlated with cortisol-to-cortisone ratios. RESULTS Dominant 11oAs in pregnancy and the cord blood are 11OHA4 and 11KA4, compared to 11OHA4 and 11KT in adult men and nonpregnant women. We found a rise in 11oA concentrations, particularly 11KA4, from first to third trimester. In cord blood, the concentration of 11KA4 exceeded those of both 11OHA4 and 11KT, reflecting placental 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) and 17β-hydroxysteroid dehydrogenase (17βHSD2) activities, respectively. 11OHA4-to-11KA4 ratios are concordant with cortisol-to-cortisone ratios across all maternal and fetal compartments, reflecting placental 11βHSD2 activity. CONCLUSIONS Placental 17βHSD2 activity defends the fetus against the androgen 11KT. Our normative values may be used in future studies of 11oAs in complicated pregnancies.
Collapse
Affiliation(s)
- Xin He
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Margaret Banker
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J Auchus
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- LTC Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, MI, USA
- Correspondence: Richard J. Auchus, MD, PhD, 1150 West Medical Center Dr, Room 5560A MSRB II, Ann Arbor MI 48109, USA. E-mail:
| |
Collapse
|
12
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
13
|
Schröder MAM, Turcu AF, O’Day P, van Herwaarden AE, Span PN, Auchus RJ, Sweep FCGJ, Claahsen-van der Grinten HL. Production of 11-Oxygenated Androgens by Testicular Adrenal Rest Tumors. J Clin Endocrinol Metab 2022; 107:e272-e280. [PMID: 34390337 PMCID: PMC8684463 DOI: 10.1210/clinem/dgab598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 11/28/2022]
Abstract
CONTEXT Testicular adrenal rest tumors (TART) are a common complication in males with classic 21-hydroxylase deficiency (21OHD). TART are likely to contribute to the androgen excess in 21OHD patients, but a direct quantification of steroidogenesis from these tumors has not been yet done. OBJECTIVE We aimed to define the production of 11-oxygenated 19-carbon (11oxC19) steroids by TART. METHODS Using liquid chromatography-tandem mass spectrometry, steroids were measured in left (n = 7) and right (n = 4) spermatic vein and simultaneously drawn peripheral blood (n = 7) samples from 7 men with 21OHD and TART. For comparison, we also measured the peripheral steroid concentrations in 5 adrenalectomized patients and 12 age- and BMI-matched controls. Additionally, steroids were quantified in TART cell- and adrenal cell-conditioned medium, with and without adrenocorticotropic hormone (ACTH) stimulation. RESULTS Compared with peripheral blood from 21OHD patients with TART, the spermatic vein samples displayed the highest gradient for 11β-hydroxytestosterone (11OHT; 96-fold) of the 11oxC19 steroids, followed by 11-ketotestosterone (47-fold) and 11β-hydroxyandrostenedione (11OHA4; 29-fold), suggesting production of these steroids in TART. TART cells produced higher levels of testosterone and lower levels of A4 and 11OHA4 after ACTH stimulation compared with adrenal cells, indicating ACTH-induced production of testosterone in TART. CONCLUSION In patients with 21OHD, TART produce 11oxC19 steroids, but in different proportions than the adrenals. The very high ratio of 11OHT in spermatic vs peripheral vein blood suggests the 11-hydroxylation of testosterone by TART, and the in vitro results indicate that this metabolism is ACTH-sensitive.
Collapse
Affiliation(s)
- Mariska A M Schröder
- Department of Pediatrics, Radboud Amalia Children’s Hospital, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick O’Day
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Hedi L Claahsen-van der Grinten
- Department of Pediatrics, Radboud Amalia Children’s Hospital, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
14
|
Turcu AF, Mallappa A, Nella AA, Chen X, Zhao L, Nanba AT, Byrd JB, Auchus RJ, Merke DP. 24-Hour Profiles of 11-Oxygenated C 19 Steroids and Δ 5-Steroid Sulfates during Oral and Continuous Subcutaneous Glucocorticoids in 21-Hydroxylase Deficiency. Front Endocrinol (Lausanne) 2021; 12:751191. [PMID: 34867794 PMCID: PMC8636728 DOI: 10.3389/fendo.2021.751191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Optimal management of androgen excess in 21-hydroxylase deficiency (21OHD) remains challenging. 11-oxygenated-C19 steroids (11-oxyandrogens) have emerged as promising biomarkers of disease control, but data regarding their response to treatment are lacking. Objective To compare the dynamic response of a broad set of steroids to both conventional oral glucocorticoids (OG) and circadian cortisol replacement via continuous subcutaneous hydrocortisone infusion (CSHI) in patients with 21OHD based on 24-hour serial sampling. Participants and Methods We studied 8 adults (5 women), ages 19-43 years, with poorly controlled classic 21OHD who participated in a single-center open-label phase I-II study comparing OG with CSHI. We used mass spectrometry to measure 15 steroids (including 11-oxyandrogens and Δ5 steroid sulfates) in serum samples obtained every 2 h for 24 h after 3 months of stable OG, and 6 months into ongoing CSHI. Results In response to OG therapy, androstenedione, testosterone (T), and their four 11-oxyandrogen metabolites:11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone and 11-ketotestosterone (11KT) demonstrated a delayed decline in serum concentrations, and they achieved a nadir between 0100-0300. Unlike DHEAS, which had little diurnal variation, pregnenolone sulfate (PregS) and 17-hydoxypregnenolone sulfate peaked in early morning and declined progressively throughout the day. CSHI dampened the early ACTH and androgen rise, allowing the ACTH-driven adrenal steroids to return closer to baseline before mid-day. 11KT concentrations displayed the most consistent difference between OG and CSHI across all time segments. While T was lowered by CSHI as compared with OG in women, T increased in men, suggesting an improvement of the testicular function in parallel with 21OHD control in men. Conclusion 11-oxyandrogens and PregS could serve as biomarkers of disease control in 21OHD. The development of normative data for these promising novel biomarkers must consider their diurnal variability.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Ashwini Mallappa
- Pediatric Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
| | - Aikaterini A Nella
- Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX, United States
| | - Xuan Chen
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Aya T Nanba
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - James Brian Byrd
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Deborah P Merke
- Pediatric Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
15
|
Costa-Barbosa FA, Carvalho VM, Oliveira KC, Vieira JGH, Kater CE. Reassessment of predictive values of ACTH-stimulated serum 21-deoxycortisol and 17-hydroxyprogesterone to identify CYP21A2 heterozygote carriers and nonclassic subjects. Clin Endocrinol (Oxf) 2021; 95:677-685. [PMID: 34231242 DOI: 10.1111/cen.14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Heterozygotes (HZs) for 21-hydroxylase deficiency (21OHD) are highly prevalent, ranging from 1:60 to 1:11 for classic and nonclassic (NC) forms, respectively. Detection of HZ and asymptomatic NC by CYP21A2 genotyping is valuable for genetic counselling, but costly, complex and narrowly available. Adrenocorticotropic hormone (ACTH)-stimulated serum 17-hydroxyprogesterone (17P) and 21-deoxycortisol (21DF) discriminate 21OHD phenotypes effectively, notably if measured simultaneously by liquid chromatography-tandem mass spectrometry (LC-MS/MS). OBJECTIVE This study was performed to reassess former LC-MS/MS-defined post-ACTH 21DF, 17P and cortisol (F) cutoffs in family members at risk for 21OHD. DESIGN AND PATIENTS Prospective study in which we screened 58 asymptomatic relatives from families with 21OHD patients and compared post-ACTH steroid phenotypes with subsequent genotypes. RESULTS Post-ACTH 21DF, 17P, F and (21DF + 17P)/F ratio segregate NC, HZ and wild-type (WT) phenotypes (subsequently genotyped) with some overlap. New receiver operating characteristic curve-defined cutoffs for post-ACTH 21DF, 17P and (21DF + 17P)/F ratio are 60 ng/dl, 310 ng/dl and 12 (unitless). Twenty-six of 33 HZ and all 6 NC (82.1%) had post-ACTH 21DF > 60 and 17P > 310 ng/dl, whereas 17/19 WT (89.5%) had values below cutoffs. Post-ACTH 21DF and 17P had a strong positive correlation (r = .9558; p < .001). A (21DF + 17P)/F ratio > 12 correctly identified 36 of 39 HZ plus NC (92.3% sensitivity) with 84.2% specificity (16 of 19 WT). Given the high frequency of 21OHD HZ, the negative prediction of ratio values below 12 excludes heterozygosity in 99.8% and 99.1% for classic and NC mutations, respectively. CONCLUSIONS Reassessed ACTH-stimulated 21DF and 17P cutoffs by LC-MS/MS (60 and 310 ng/dl, respectively) correctly recognised 82.5% HZ plus NC, but combined precursor-to-product ratio ([21DF + 17P]/F) cutoff of 12 was superior, identifying 92.3% HZ plus NC. Since one WT subject is an outlier (potential HZ), these values would be somewhat better reinforcing their utility for screening asymptomatic relatives at risk for 21OHD.
Collapse
Affiliation(s)
- Flávia A Costa-Barbosa
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Steroids Laboratory, Federal University of São Paulo Medical School, EPM/UNIFESP, São Paulo, Sao Paulo, Brazil
- Research and Development Division, Fleury Medicina Diagnóstica, São Paulo, Sao Paulo, Brazil
| | - Valdemir M Carvalho
- Research and Development Division, Fleury Medicina Diagnóstica, São Paulo, Sao Paulo, Brazil
| | - Kelly C Oliveira
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Steroids Laboratory, Federal University of São Paulo Medical School, EPM/UNIFESP, São Paulo, Sao Paulo, Brazil
| | - José Gilberto H Vieira
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Steroids Laboratory, Federal University of São Paulo Medical School, EPM/UNIFESP, São Paulo, Sao Paulo, Brazil
- Research and Development Division, Fleury Medicina Diagnóstica, São Paulo, Sao Paulo, Brazil
| | - Claudio E Kater
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Steroids Laboratory, Federal University of São Paulo Medical School, EPM/UNIFESP, São Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Keevil BG. LC-MS/MS the First 20 years: A Personal View. Ann Clin Biochem 2021; 59:3-6. [PMID: 34459220 DOI: 10.1177/00045632211040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Brian G Keevil
- Clinical Biochemistry, Wythenshawe Hospital, 5293Manchester University NHS Foundation Trust, Manchester, UK.,University of Manchester, 158986Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
17
|
Ntali G, Charisis S, Kylafi CF, Vogiatzi E, Michala L. The way toward adulthood for females with nonclassic congenital adrenal hyperplasia. Endocrine 2021; 73:16-30. [PMID: 33855677 DOI: 10.1007/s12020-021-02715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Females with NC21OHD may present as asymptomatic or develop a wide range of androgen excess expression. Clinical manifestations may become evident in childhood and adolescence and include premature pubarche, precocious puberty, acne, hirsutism, and menstrual disorders or present later in life as oligo-ovulation and infertility. Glucocorticoids have been the mainstay of treatment as they regulate excess androgen expression by dampening ACTH activation. Their use requires a careful dose monitoring to avoid overtreatment and subsequently the risk of obesity, type 2 diabetes, dyslipidemia, hypertension, and osteoporosis. Women with NC21OHD need regular follow up throughout their life in order to overcome the physical and psychological burden of hyperandrogenism.
Collapse
Affiliation(s)
- Georgia Ntali
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital, Athens, Greece.
| | - Sokratis Charisis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Christo F Kylafi
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | | | - Lina Michala
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| |
Collapse
|
18
|
Jha S, Turcu AF. Nonclassic Congenital Adrenal Hyperplasia: What Do Endocrinologists Need to Know? Endocrinol Metab Clin North Am 2021; 50:151-165. [PMID: 33518183 PMCID: PMC7863575 DOI: 10.1016/j.ecl.2020.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Congenital adrenal hyperplasia encompasses a group of autosomal recessive defects in cortisol biosynthesis, and 21-hydroxylase deficiency accounts for 95% of such cases. Non-classic 21-hydroxylase deficiency is due to partial enzymatic defects, which present with normal cortisol synthesis, but excessive production of adrenal androgens, including 11-oxygenated androgens. Non-classic 21-hydroxylase deficiency is relatively common, and its phenotype resembles closely that of polycystic ovary syndrome. This review focuses primarily on non-classic 21-hydroxylase deficiency, its clinical features, diagnosis, and management.
Collapse
Affiliation(s)
- Smita Jha
- Section on Congenital Disorders, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA; Metabolic Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, Room 9C432A, Bethesda, MD 20892, USA. https://twitter.com/docsmita_jha
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 1150 West Medical Center Drive, MSRB II, 5570B, Ann Arbor, MI 48109, USA.
| |
Collapse
|