1
|
Wang M, Zhang S, He J, Zhang T, Zhu H, Sun R, Yang N. Biochemical classification diagnosis of polycystic ovary syndrome based on serum steroid hormones. J Steroid Biochem Mol Biol 2024; 245:106626. [PMID: 39448042 DOI: 10.1016/j.jsbmb.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic disorder with clinical heterogeneity. PCOS women with non-hyperandrogenemia (NA) might be misdiagnosed due to a lack of diagnostic markers. This study aims to systematically analyze the differences in steroid hormones between PCOS women with hyperandrogenemia (HA) and NA, and to screen classification diagnosis models for PCOS. The serum samples from 54 HA-PCOS, 79 NA-PCOS and 60 control women (Non-PCOS) aged between 18 and 35 were measured by an integrated steroid hormone-targeted quantification assay using LC-MS/MS. The levels of serum androgens, corticosteroids, progestins and estrogens in the steroid hormone biosynthesis pathway were analyzed in PCOS and Non-PCOS women. Eight machine learning methods including Linear Discriminant Analysis (LDA), K-nearest Neighbors (KNN), Boosted Logistic Regression (LogitBoost), Naive Bayes (NB), C5.0 algorithm (C5), Random Forest (RF), Support Vector Machines (SVM), and Neural Network (NNET) were performed, evaluated and selected for classification diagnosis of PCOS. A 10-fold cross-validation on the training set was performed. The whole metabolic flux from cholesterol to downstream steroid hormones increased significantly in PCOS, especially in HA-POCS women. The RF model was chosen for the classification diagnosis of HA-PCOS, NA-PCOS, and Non-PCOS women due to the maximum average accuracy (0.938, p<0.001), AUC (0.989, p<0.001), and kappa (0.906, p<0.001), and the minimum logLoss (0.200, p<0.001). Five steroid hormones including testosterone, androstenedione, total 2-methoxyestradiol, total 4-methoxyestradiol, and free estrone were selected as the decision trees for the simplified RF model. A total of 37 women were included in the validation set. The diagnostic sensitivity for HA-PCOS, NA-PCOS, and Non-PCOS was 100 %, 93.3 % and 91.7 %, respectively. HA-PCOS, NA-PCOS, and Non-PCOS women showed obvious different steroid hormone profiles. The simplified RF model based on two androgens and three estrogens could be effectively applied to the classification diagnosis of PCOS, further reducing the missed diagnosis rate of NA-PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Shuhan Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China; Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210000, China
| | - Jun He
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Charoensri S, Rege J, Lee C, Marko X, Sherk W, Sholinyan J, Rainey WE, Turcu AF. Human Gonads Do Not Contribute to the Circulating Pool of 11-Oxygenated Androgens. J Clin Endocrinol Metab 2024:dgae420. [PMID: 38885296 DOI: 10.1210/clinem/dgae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT Androstenedione (A4) and testosterone (T) are produced by both the adrenal glands and the gonads. The adrenal enzyme 11β-hydroxylase (CYP11B1) executes the final step in cortisol synthesis; CYP11B1 also uses A4 and T as substrates, generating 11-hydroxyandrostenedione and 11-hydroxytestosterone, respectively. It has been suggested that CYP11B1 is expressed in the gonads, yet the circulating levels of all 11-oxygenated androgens (11-oxyandrogens) are similar in males and females of reproductive ages, despite enormous differences in T. OBJECTIVE To assess the gonadal contribution to the circulating pool of 11-oxyandrogens. METHODS We used liquid chromatography-tandem mass spectrometry to measure 13 steroids, including traditional and 11-oxyandrogens in: (I) paired gonadal and peripheral vein blood samples obtained during gonadal venograms from 11 patients (7 women), median age 37 (range 31-51 years); and (II) 17 women, median age 57 (range 41-81 years) before and after bilateral salpingo-oophorectomy (BSO). We also compared CYP11B1, 17α-hydroxylase/17,20-lyase (CYP17A1), and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) mRNA expression in adrenal, ovarian, and testicular tissue. RESULTS A4, T, estradiol, estrone, progesterone, 17α- and 16α-hydroxyprogesterone were all higher in gonadal veins vs. periphery (p < 0.05 for all), while four 11-oxyandrogens were similar between matched gonadal and peripheral vein samples. Equally, in women who underwent BSO, A4 (median [interquartile range]: 59.7 [47.7-67.6] ng/dL vs. 32.7 [27.4-47.8] ng/dL, p < 0.001) and T (24.1 [16.4-32.3] vs.15.5 [13.7-19.0] ng/dL, p < 0.001) declined, while 11-oxyandrogens remained stable. Gonadal tissue displayed negligible CYP11B1 mRNA. CONCLUSION Despite producing substantial amounts of A4 and T, human gonads are not relevant sources of 11-oxyandrogens.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40000, Thailand
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Chaelin Lee
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Xhorlina Marko
- Division of Vascular and Interventional Radiology, University of Michigan, Ann Arbor, Michigan 48109
| | - William Sherk
- Division of Vascular and Interventional Radiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Julieta Sholinyan
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
3
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Sarafoglou K, Merke DP, Reisch N, Claahsen-van der Grinten H, Falhammar H, Auchus RJ. Interpretation of Steroid Biomarkers in 21-Hydroxylase Deficiency and Their Use in Disease Management. J Clin Endocrinol Metab 2023; 108:2154-2175. [PMID: 36950738 PMCID: PMC10438890 DOI: 10.1210/clinem/dgad134] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The most common form of congenital adrenal hyperplasia is 21-hydroxylase deficiency (21OHD), which in the classic (severe) form occurs in roughly 1:16 000 newborns worldwide. Lifelong treatment consists of replacing cortisol and aldosterone deficiencies, and supraphysiological dosing schedules are typically employed to simultaneously attenuate production of adrenal-derived androgens. Glucocorticoid titration in 21OHD is challenging as it must balance the consequences of androgen excess vs those from chronic high glucocorticoid exposure, which are further complicated by interindividual variability in cortisol kinetics and glucocorticoid sensitivity. Clinical assessment and biochemical parameters are both used to guide therapy, but the specific purpose and goals of each biomarker vary with age and clinical context. Here we review the approach to medication titration for children and adults with classic 21OHD, with an emphasis on how to interpret adrenal biomarker values in guiding this process. In parallel, we illustrate how an understanding of the pathophysiologic and pharmacologic principles can be used to avoid and to correct complications of this disease and consequences of its management using existing treatment options.
Collapse
Affiliation(s)
- Kyriakie Sarafoglou
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, Minneapolis, MN 55454, USA
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Deborah P Merke
- Department of Pediatrics, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Nicole Reisch
- Medizinische Klinik and Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Hedi Claahsen-van der Grinten
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|