1
|
Kolbinger FR, Bernard V, Lee JJ, Stephens BM, Branchi V, Raghav KPS, Maitra A, Guerrero PA, Semaan A. Significance of Distinct Liquid Biopsy Compartments in Evaluating Somatic Mutations for Targeted Therapy Selection in Cancer of Unknown Primary. J Gastrointest Cancer 2023; 54:1276-1285. [PMID: 36862364 DOI: 10.1007/s12029-023-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Cancer of unknown primary (CUP) accounts for 2-5% of all cancer diagnoses, wherein standard investigations fail to reveal the original tumor site. Basket trials allocate targeted therapeutics based on actionable somatic mutations, independent of tumor entity. These trials, however, mostly rely on variants identified in tissue biopsies. Since liquid biopsies (LB) represent the overall tumor genomic landscape, they may provide an ideal diagnostic source in CUP patients. To identify the most informative liquid biopsy compartment, we compared the utility of genomic variant analysis for therapy stratification in two LB compartments (circulating cell-free (cf) and extracellular vesicle (ev) DNA). METHODS CfDNA and evDNA from 23 CUP patients were analyzed using a targeted gene panel covering 151 genes. Identified genetic variants were interpreted regarding diagnostic and therapeutic relevance using the MetaKB knowledgebase. RESULTS LB revealed a total of 22 somatic mutations in evDNA and/or cfDNA in 11/23 patients. Out of the 22 identified somatic variants, 14 are classified as Tier I druggable somatic variants. Comparison of variants identified in evDNA and cfDNA revealed an overlap of 58% of somatic variants in both LB compartments, whereas over 40% of variants were only found in one or the other compartment. CONCLUSION We observed substantial overlap between somatic variants identified in evDNA and cfDNA of CUP patients. Nonetheless, interrogation of both LB compartments can potentially increase the rate of druggable alterations, stressing the significance of liquid biopsies for possible primary-independent basket and umbrella trial inclusion.
Collapse
Affiliation(s)
- Fiona R Kolbinger
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vittorio Branchi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal P S Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Li X, Li H, Yan Y, Xu H, Wang Y, Liu Y, Gao R. Metastatic differentiated thyroid cancer with negative serum stimulated Tg but positive post-therapeutic 131I-SPECT/CT scintigraphy: a single-center retrospective study. Endocrine 2023; 82:117-125. [PMID: 37209260 DOI: 10.1007/s12020-023-03397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE This study aimed to describe the characteristics of patients with metastatic differentiated thyroid carcinoma (DTC) who had positive 131I-scintigraphy but negative stimulated thyroglobulin (sTg), and to evaluate their short-term response to radioiodine therapy (RAI). METHODS A total of 2250 consecutive postoperative DTC patients, who underwent RAI treatment from July 2019 to June 2022, were analyzed retrospectively. The target group was defined as stimulated Tg < 2 ng/mL with TgAb < 100 IU/mL but with post-therapeutic 131I-SPECT/CT metastases. The characteristics of these patients were analyzed and the metastatic profiles were compared with TgAb positive or sTg positive ones. A cross-sectional efficacy was evaluated 6-12 months after the RAI therapy and the treatment course until the end of the study was recorded. RESULTS 105 (4.67%) DTC patients were post-therapeutic 131I-SPECT/CT positive and sTg negative (target group). Metastatic profiles were found significant differences between sTg negative and sTg positive ones (P < 0.001). Excellent response (ER) was achieved in 72.4% of the target group between 6-12 months of cross-sectional efficacy assessment, compared with only 12.8% in sTg positive ones (P < 0.001). The majority of the target group didn't require aggressive treatment in short-term follow-up compared with sTg positive group (P < 0.001). CONCLUSION The percentage of DTCs with negative sTg but positive post-therapeutic 131I-SPECT/CT was relatively low, but still significant. Moreover, the majority of these patients showed an ER to RAI and may not require the next course of therapy. Long-term follow-up is still necessary to assess recurrence and adapt surveillance in these patients.
Collapse
Affiliation(s)
- Xinru Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Huijie Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yan Yan
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, P.R. China
| | - Hui Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuanbo Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Rui Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
3
|
Yu H, Wang X, Bai L, Tang G, Carter KT, Cui J, Huang P, Liang L, Ding Y, Cai M, Huang M, Liu H, Cao G, Gallinger S, Pai RK, Buchanan DD, Win AK, Newcomb PA, Wang J, Grady WM, Luo Y. DNA methylation profile in CpG-depleted regions uncovers a high-risk subtype of early-stage colorectal cancer. J Natl Cancer Inst 2023; 115:52-61. [PMID: 36171645 PMCID: PMC10089593 DOI: 10.1093/jnci/djac183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The current risk stratification system defined by clinicopathological features does not identify the risk of recurrence in early-stage (stage I-II) colorectal cancer (CRC) with sufficient accuracy. We aimed to investigate whether DNA methylation could serve as a novel biomarker for predicting prognosis in early-stage CRC patients. METHODS We analyzed the genome-wide methylation status of CpG loci using Infinium MethylationEPIC array run on primary tumor tissues and normal mucosa of early-stage CRC patients to identify potential methylation markers for prognosis. The machine-learning approach was applied to construct a DNA methylation-based prognostic classifier for early-stage CRC (MePEC) using the 4 gene methylation markers FAT3, KAZN, TLE4, and DUSP3. The prognostic value of the classifier was evaluated in 2 independent cohorts (n = 438 and 359, respectively). RESULTS The comprehensive analysis identified an epigenetic subtype with high risk of recurrence based on a group of CpG loci in the CpG-depleted region. In multivariable analysis, the MePEC classifier was independently and statistically significantly associated with time to recurrence in validation cohort 1 (hazard ratio = 2.35, 95% confidence interval = 1.47 to 3.76, P < .001) and cohort 2 (hazard ratio = 3.20, 95% confidence interval = 1.92 to 5.33, P < .001). All results were further confirmed after each cohort was stratified by clinicopathological variables and molecular subtypes. CONCLUSIONS We demonstrated the prognostic statistical significance of a DNA methylation profile in the CpG-depleted region, which may serve as a valuable source for tumor biomarkers. MePEC could identify an epigenetic subtype with high risk of recurrence and improve the prognostic accuracy of current clinical variables in early-stage CRC.
Collapse
Affiliation(s)
- Huichuan Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Liangliang Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Guannan Tang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Kelly T Carter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ji Cui
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pinzhu Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Steven Gallinger
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON, Canada
| | - Rish K Pai
- Department of laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Familial Cancer Centre, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Polly A Newcomb
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Chen D, Su X, Zhu L, Jia H, Han B, Chen H, Liang Q, Hu C, Yang H, Liu L, Li P, Wei W, Zhao Y. Papillary thyroid cancer organoids harboring BRAF V600E mutation reveal potentially beneficial effects of BRAF inhibitor-based combination therapies. J Transl Med 2023; 21:9. [PMID: 36624452 PMCID: PMC9827684 DOI: 10.1186/s12967-022-03848-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUNDS Papillary thyroid cancer (PTC), which is often driven by acquired somatic mutations in BRAF genes, is the most common pathologic type of thyroid cancer. PTC has an excellent prognosis after treatment with conventional therapies such as surgical resection, thyroid hormone therapy and adjuvant radioactive iodine therapy. Unfortunately, about 20% of patients develop regional recurrence or distant metastasis, making targeted therapeutics an important treatment option. Current in vitro PTC models are limited in representing the cellular and mutational characteristics of parental tumors. A clinically relevant tool that predicts the efficacy of therapy for individuals is urgently needed. METHODS Surgically removed PTC tissue samples were dissociated, plated into Matrigel, and cultured to generate organoids. PTC organoids were subsequently subjected to histological analysis, DNA sequencing, and drug sensitivity assays, respectively. RESULTS We established 9 patient-derived PTC organoid models, 5 of which harbor BRAFV600E mutation. These organoids have been cultured stably for more than 3 months and closely recapitulated the histological architectures as well as mutational landscapes of the respective primary tumors. Drug sensitivity assays of PTC organoid cultures demonstrated the intra- and inter-patient specific drug responses. BRAFV600E inhibitors, vemurafenib and dabrafenib monotherapy was mildly effective in treating BRAFV600E-mutant PTC organoids. Nevertheless, BRAF inhibitors in combination with MEK inhibitors, RTK inhibitors, or chemotherapeutic agents demonstrated improved efficacy compared to BRAF inhibition alone. CONCLUSIONS These data indicate that patient-derived PTC organoids may be a powerful research tool to investigate tumor biology and drug responsiveness, thus being useful to validate or discover targeted drug combinations.
Collapse
Affiliation(s)
- Dong Chen
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Xi Su
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lizhang Zhu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Jia
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Bin Han
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Haibo Chen
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Qingzhuang Liang
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Chenchen Hu
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Hao Yang
- grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Lisa Liu
- grid.264727.20000 0001 2248 3398Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122 USA
| | - Peng Li
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Wei Wei
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| | - Yongsheng Zhao
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036 China ,grid.440601.70000 0004 1798 0578Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 China
| |
Collapse
|
5
|
Repaci A, Salituro N, Vicennati V, Monari F, Cavicchi O, de Biase D, Ciarrocchi A, Acquaviva G, De Leo A, Gruppioni E, Pagotto U, Tallini G. Unexpected Widespread Bone Metastases from a BRAF K601N Mutated Follicular Thyroid Carcinoma within a Previously Resected Multinodular Goiter. Endocr Pathol 2022; 33:519-524. [PMID: 34843063 DOI: 10.1007/s12022-021-09698-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Follicular thyroid carcinoma (FTC) represents the second most common malignant thyroid neoplasm after papillary carcinoma (PTC). FTC is characterized by the tendency to metastasize to distant sites such as bone and lung. In the last 20 years, the understanding of the molecular pathology of thyroid tumors has greatly improved. Uncommon BRAF non-V600E mutations have been identified and are generally believed to associate with follicular patterned tumors of low malignant potential, particularly non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTPs) (i.e., non-invasive encapsulated follicular variant PTC). We here report for the first time widespread bone metastases from a BRAF K601N mutated follicular tumor.
Collapse
Affiliation(s)
- Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy.
| | - Nicola Salituro
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Valentina Vicennati
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fabio Monari
- Radiotherapy Unit, Policlinico Di Sant'Orsola, University of Bologna, Bologna, Italy
| | - Ottavio Cavicchi
- Department of Otolaryngology, Policlinico Di Sant'Orsola, University of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBit), Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Giorgia Acquaviva
- Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology - Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology - Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Department of Pathology, Azienda Ospedaliero-Universitaria Di Bologna IRCCS Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Uberto Pagotto
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology - Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Jarboe T, Tuli NY, Chakraborty S, Maniyar RR, DeSouza N, Xiu-Min Li, Moscatello A, Geliebter J, Tiwari RK. Inflammatory Components of the Thyroid Cancer Microenvironment: An Avenue for Identification of Novel Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:1-31. [PMID: 34888842 DOI: 10.1007/978-3-030-83282-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incidence of thyroid cancer in the United States is on the rise with an appreciably high disease recurrence rate of 20-30%. Anaplastic thyroid cancer (ATC), although rare in occurrence, is an aggressive form of cancer with limited treatment options and bleak cure rates. This chapter uses discussions of in vitro models that are representative of papillary, anaplastic, and follicular thyroid cancer to evaluate the crosstalk between specific cells of the tumor microenvironment (TME), which serves as a highly heterogeneous realm of signaling cascades and metabolism that are associated with tumorigenesis. The cellular constituents of the TME carry out varying characteristic immunomodulatory functions that are discussed throughout this chapter. The aforementioned cell types include cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs), as well as specific immune cells, including natural killer (NK) cells, dendritic cells (DCs), mast cells, T regulatory (Treg) cells, CD8+ T cells, and tumor-associated macrophages (TAMs). TAM-mediated inflammation is associated with a poor prognosis of thyroid cancer, and the molecular basis of the cellular crosstalk between macrophages and thyroid cancer cells with respect to inducing a metastatic phenotype is not yet known. The dynamic nature of the physiological transition to pathological metastatic phenotypes when establishing the TME encompasses a wide range of characteristics that are further explored within this chapter, including the roles of somatic mutations and epigenetic alterations that drive the genetic heterogeneity of cancer cells, allowing for selective advantages that aid in their proliferation. Induction of these proliferating cells is typically accomplished through inflammatory induction, whereby chronic inflammation sets up a constant physiological state of inflammatory cell recruitment. The secretions of these inflammatory cells can alter the genetic makeup of proliferating cells, which can in turn, promote tumor growth.This chapter also presents an in-depth analysis of molecular interactions within the TME, including secretory cytokines and exosomes. Since the exosomal cargo of a cell is a reflection and fingerprint of the originating parental cells, the profiling of exosomal miRNA derived from thyroid cancer cells and macrophages in the TME may serve as an important step in biomarker discovery. Identification of a distinct set of tumor suppressive miRNAs downregulated in ATC-secreted exosomes indicates their role in the regulation of tumor suppressive genes that may increase the metastatic propensity of ATC. Additionally, the high expression of pro-inflammatory cytokines in studies looking at thyroid cancer and activated macrophage conditioned media suggests the existence of an inflammatory TME in thyroid cancer. New findings are suggestive of the presence of a metastatic niche in ATC tissues that is influenced by thyroid tumor microenvironment secretome-induced epithelial to mesenchymal transition (EMT), mediated by a reciprocal interaction between the pro-inflammatory M1 macrophages and the thyroid cancer cells. Thus, targeting the metastatic thyroid carcinoma microenvironment could offer potential therapeutic benefits and should be explored further in preclinical and translational models of human metastatic thyroid cancer.
Collapse
Affiliation(s)
- Tara Jarboe
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Neha Y Tuli
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Sanjukta Chakraborty
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Rachana R Maniyar
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole DeSouza
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Jan Geliebter
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
7
|
Di Giacomo D, Quintini M, Pierini V, Pellanera F, La Starza R, Gorello P, Matteucci C, Crescenzi B, Fiumara PF, Veltroni M, Borlenghi E, Albano F, Forghieri F, Maccaferri M, Bettelli F, Luppi M, Cuneo A, Rossi G, Mecucci C. Genomic and clinical findings in myeloid neoplasms with PDGFRB rearrangement. Ann Hematol 2021; 101:297-307. [PMID: 34859285 PMCID: PMC8742810 DOI: 10.1007/s00277-021-04712-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022]
Abstract
Platelet-derived growth factor receptor B (PDGFRB) gene rearrangements define a unique subgroup of myeloid and lymphoid neoplasms frequently associated with eosinophilia and characterized by high sensitivity to tyrosine kinase inhibition. To date, various PDGFRB/5q32 rearrangements, involving at least 40 fusion partners, have been reported. However, information on genomic and clinical features accompanying rearrangements of PDGFRB is still scarce. Here, we characterized a series of 14 cases with a myeloid neoplasm using cytogenetic, single nucleotide polymorphism array, and next-generation sequencing. We identified nine PDGFRB translocation partners, including the KAZN gene at 1p36.21 as a novel partner in a previously undescribed t(1;5)(p36;q33) chromosome change. In all cases, the PDGFRB recombination was the sole cytogenetic abnormality underlying the phenotype. Acquired somatic variants were mainly found in clinically aggressive diseases and involved epigenetic genes (TET2, DNMT3A, ASXL1), transcription factors (RUNX1 and CEBPA), and signaling modulators (HRAS). By using both cytogenetic and nested PCR monitoring to evaluate response to imatinib, we found that, in non-AML cases, a low dosage (100–200 mg) is sufficient to induce and maintain longstanding hematological, cytogenetic, and molecular remissions.
Collapse
Affiliation(s)
- Danika Di Giacomo
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Martina Quintini
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Caterina Matteucci
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | | | - Marinella Veltroni
- Department of Pediatric Oncology-Hematology, Meyer Children's Hospital, Florence, Italy
| | | | - Francesco Albano
- Hematology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, Modena, Italy
| | - Antonio Cuneo
- Hematology, Department of Medical Sciences, St. Anna University Hospital, 44124, Ferrara, Italy
| | | | - Cristina Mecucci
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy.
| |
Collapse
|
8
|
Lee WK, Cheng SY. Targeting transcriptional regulators for treatment of anaplastic thyroid cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34761120 PMCID: PMC8577520 DOI: 10.20517/2394-4722.2021.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulation of genes perpetuates cancer progression. During carcinogenesis, cancer cells acquire dependency of aberrant transcriptional programs (known as “transcription addiction”) to meet the high demands for uncontrolled proliferation. The needs for particular transcription programs for cancer growth could be cancer-type-selective. The dependencies of certain transcription regulators could be exploited for therapeutic benefits. Anaplastic thyroid cancer (ATC) is an extremely aggressive human cancer for which new treatment modalities are urgently needed. Its resistance to conventional treatments and the lack of therapeutic options for improving survival might have been attributed to extensive genetic heterogeneity due to subsequent evolving genetic alterations and clonal selections during carcinogenesis. Despite this genetic complexity, mounting evidence has revealed a characteristic transcriptional addiction of ATC cells resulting in evolving diverse oncogenic signaling for cancer cell survival. The transcriptional addiction has presented a huge challenge for effective targeting as shown by the failure of previous targeted therapies. However, an emerging notion is that many different oncogenic signaling pathways activated by multiple upstream driver mutations might ultimately converge on the transcriptional responses, which would provide an opportunity to target transcriptional regulators for treatment of ATC. Here, we review the current understanding of how genetic alterations in cancer distorted the transcription program, leading to acquisition of transcriptional addiction. We also highlight recent findings from studies aiming to exploit the opportunity for targeting transcription regulators as potential therapeutics for ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Chen D, Tan Y, Li Z, Li W, Yu L, Chen W, Liu Y, Liu L, Guo L, Huang W, Zhao Y. Organoid Cultures Derived From Patients With Papillary Thyroid Cancer. J Clin Endocrinol Metab 2021; 106:1410-1426. [PMID: 33524147 DOI: 10.1210/clinem/dgab020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Papillary thyroid cancer (PTC) has been one of the most frequent endocrine malignancies around the world. Although most PTC patients have a favorable prognosis, a subgroup of patients die, especially when disease recurrence occurs. There is a pressing need for clinically relevant preclinical thyroid cancer models for personalized therapy because of the lack of in vitro models that faithfully represent the biology of the parental tumors. OBJECTIVE To understand thyroid cancer and translate this knowledge to clinical applications, patient-derived PTC organoids as a promising new preclinical model were established. METHODS Surgically resected PTC primary tissues were dissociated and processed for organoid derivation. Tumor organoids were subsequently subjected to histological characterization, DNA sequencing, drug screen, and cell proliferation assay, respectively. RESULTS We describe a 3-dimensional culture system for the long-term expansion of patient-derived PTC organoid lines. Notably, PTC organoids preserve the histopathological profiles and genomic heterogeneity of the originating tumors. Drug sensitivity assays of PTC organoids demonstrate patient-specific drug responses, and large correlations with the respective mutational profiles. Estradiol was shown to promote cell proliferation of PTC organoids in the presence of estrogen receptor α (ERα), regardless of the expression of ERβ and G protein-coupled ER. CONCLUSION These data suggest that these newly developed PTC-derived organoids may be an excellent preclinical model for studying clinical response to anticancer drugs in a personalized way, as well as provide a potential strategy to develop prevention and treatment options for thyroid cancer with ERα-specific antagonists.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yawen Tan
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zhichao Li
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wujiao Li
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Lei Yu
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Chen
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Lisa Liu
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Liangfeng Guo
- Department of Breast and Thyroid Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Weiren Huang
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yongsheng Zhao
- Institute of Shenzhen Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Intratumoral Heterogeneity in Differentiated Thyroid Tumors: An Intriguing Reappraisal in the Era of Personalized Medicine. J Pers Med 2021; 11:jpm11050333. [PMID: 33922518 PMCID: PMC8146970 DOI: 10.3390/jpm11050333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiated thyroid tumors (DTTs) are characterized by significant molecular variability in both spatial and temporal intra-tumoral heterogeneity (ITH), that could influence the therapeutic management. ITH phenomenon appears to have a relevant role in tumor growth, aggressive behavior and drug resistance. Accordingly, characteristics and consequences of ITH in DTTs should be better analyzed and understood in order to guide clinical practice, improving survival. Consequently, in the present review, we investigated morphological and molecular ITH of DTTs in benign, borderline neoplasms and in malignant entities, summarizing the most significant data. Molecular testing in DTTs documents a high risk for recurrence of cancer associated with BRAFV600E, RET/PTC 1/3, ALK and NTRK fusions, while the intermediate risk may be related to BRAFK601E, H/K/N RAS and PAX8/PPARγ. In addition, it may be suggested that tumor genotype is associated with peculiar phenotype.
Collapse
|
11
|
Yan D, Wu F, Peng C, Wang M. Silencing of LINC00284 inhibits cell proliferation and migration in oral squamous cell carcinoma by the miR-211-3p/MAFG axis and FUS/KAZN axis. Cancer Biol Ther 2021; 22:149-163. [PMID: 33618612 DOI: 10.1080/15384047.2021.1877864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Emerging evidence has suggested that long noncoding RNAs (lncRNAs) play vital roles in various biological processes of cancers, such as cell proliferation, migration, invasion, and apoptosis. As reported previously, long intergenic non-protein coding RNA 284 (LINC00284) is an important regulator in multiple cancers. However, the biological role, as well as regulatory mechanism of LINC00284 in OSCC, has not been investigated. In our study, RT-qPCR results indicated that LINC00284 was significantly upregulated in OSCC tissues and cells. Moreover, loss-of-function experiments demonstrated that LINC00284 downregulation suppressed cell proliferation and migration and facilitated cell apoptosis. Mechanistically, we found that LINC00284 sponged microRNA 211-3p (miR-211-3p) to upregulate MAF bZIP transcription factor G (MAFG) expression in OSCC cells. Additionally, LINC00284 interacted with FUS protein to increase KAZN mRNA stability. Functional assays showed that either MAFG or KAZN overexpression promoted the malignant behaviors of OSCC cells. Through a series of rescue assays, we found that the inhibitory effect of silencing LINC00284 on OSCC cells can be reversed by upregulated MAFG and KAZN. Overall, silencing LINC00284 inhibits the malignant characteristics of OSCC cells by downregulating MAFG and inhibiting the binding of FUS to KAZN mRNA.
Collapse
Affiliation(s)
- Dayong Yan
- Department of Oral and Maxillofacial Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Fuhua Wu
- Department of Stomatology, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Caixia Peng
- Department of Oral and Maxillofacial Surgery, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Mei Wang
- Department of Stomatology, Dezhou People's Hospital, Dezhou, Shandong, China
| |
Collapse
|
12
|
Muzza M. The clonal origin of multifocal papillary thyroid cancer: intrathyroidal spread or independent tumors? Minerva Endocrinol (Torino) 2020; 46:35-44. [PMID: 33045819 DOI: 10.23736/s2724-6507.20.03302-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multifocality is a common finding in papillary thyroid cancer but the molecular pathogenesis, prognosis and management of multifocal papillary thyroid cancer are debated. The clonal origin of multifocal papillary thyroid cancer represents a controversial aspect, as two opposite viewpoints have been proposed: independent origin or intraglandular spread. Different approaches have been used for inferring the clonality of multifocal papillary thyroid cancer, including X-chromosome inactivation, mutational analysis, determination of loss of heterozygosity and, more recently, next-generation sequencing. Next-generation sequencing, able to provide information on genetic heterogeneity and phylogenetic evolution in multifocal tumors, represents the most reliable approach. While most evidences indicated an independent origin of multifocal papillary thyroid cancer, a minority of studies suggested that multifocal papillary thyroid tumors might be monoclonally derived. This discrepancy may reflect technical limitations; nevertheless, studies based on next-generation sequencing indicated that both independent and clonal origins are possible. The co-existence of multiple tumors implies a high degree of genetic heterogeneity, which may influence the best and targeted therapeutic strategy. On the other hand, intrathyroidal dissemination may indicate metastatic potential of the dominant tumor, thereby prompting more aggressive treatments. In conclusion, data available in the literature indicated that multifocal papillary thyroid cancer may derived from both intraglandular spread and independent tumor foci. The understanding of the clonal origin of multifocal papillary thyroid tumors might represent an important issue in patient treatment.
Collapse
Affiliation(s)
- Marina Muzza
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy -
| |
Collapse
|
13
|
Mourato FA, Almeida MA, Brito AET, Leal ALG, Almeida Filho P, Etchebehere E. FDG PET/CT versus somatostatin receptor PET/CT in TENIS syndrome: a systematic review and meta-analysis. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00390-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Intratumoral Genetic Heterogeneity in Papillary Thyroid Cancer: Occurrence and Clinical Significance. Cancers (Basel) 2020; 12:cancers12020383. [PMID: 32046148 PMCID: PMC7072350 DOI: 10.3390/cancers12020383] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Intratumoral heterogeneity (ITH) refers to a subclonal genetic diversity observed within a tumor. ITH is the consequence of genetic instability and accumulation of genetic alterations, two mechanisms involved in the progression from an early tumor stage to a more aggressive cancer. While this process is widely accepted, the ITH of early stage papillary thyroid carcinoma (PTC) is debated. By different genetic analysis, several authors reported the frequent occurrence of PTCs composed of both tumor cells with and without RET/PTC or BRAFV600E genetic alterations. While these data, and the report of discrepancies in the genetic pattern between metastases and the primary tumor, demonstrate the existence of ITH in PTC, its extension and biological significance is debated. The ITH takes on a great significance when involves oncogenes, such as RET rearrangements and BRAFV600E as it calls into question their role of driver genes. ITH is also predicted to play a major clinical role as it could have a significant impact on prognosis and on the response to targeted therapy. In this review, we analyzed several data indicating that ITH is not a marginal event, occurring in PTC at any step of development, and suggesting the existence of unknown genetic or epigenetic alterations that still need to be identified.
Collapse
|
15
|
Gawin M, Kurczyk A, Stobiecka E, Frątczak K, Polańska J, Pietrowska M, Widłak P. Molecular Heterogeneity of Papillary Thyroid Cancer: Comparison of Primary Tumors and Synchronous Metastases in Regional Lymph Nodes by Mass Spectrometry Imaging. Endocr Pathol 2019; 30:250-261. [PMID: 31664609 DOI: 10.1007/s12022-019-09593-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intra-tumor heterogeneity results from both genetic heterogeneity of cancer (sub)clones and phenotypic plasticity of cancer cells that could be induced by different local microenvironments. Here, we used mass spectrometry imaging (MSI) to compare molecular profiles of primary tumors located in the thyroid gland and their synchronous metastases in regional lymph nodes to analyze phenotypic heterogeneity in papillary thyroid cancer. Two types of cancerous (primary tumor and metastasis) and two types of not cancerous (thyroid gland and lymph node) regions of interest (ROIs) were delineated in postoperative material from 11 patients, then the distribution of tryptic peptides (spectral components) was analyzed by MSI in all tissue regions. Moreover, tryptic peptides identified by shotgun proteomics in corresponding tissue lysates were matched to components detected by MSI to enable their hypothetical protein annotation. Unsupervised segmentation of all cancer ROIs revealed that different clusters dominated in tumor ROIs and metastasis ROIs. The intra-patient similarity between thyroid and tumor ROIs was higher than the intra-patient similarity between tumor and metastasis ROIs. Moreover, the similarity between tumor and its metastasis from the same patients was lower than similarities among tumors and among metastases from different patients (inter-patient similarity was higher for metastasis ROIs than for tumor ROIs). Components differentiating between tumor and its metastases were annotated as proteins involved in the organization of the cytoskeleton and chromatin, as well as proteins involved in immunity-related functions. We concluded that phenotypical heterogeneity between primary tumor and lymph node metastases from the same patient was higher than inter-tumor heterogeneity between primary tumors from different patients.
Collapse
Affiliation(s)
- Marta Gawin
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Agata Kurczyk
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Ewa Stobiecka
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Katarzyna Frątczak
- Data Mining Division, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Joanna Polańska
- Data Mining Division, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Monika Pietrowska
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Piotr Widłak
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland.
| |
Collapse
|
16
|
CHARACTERISTICS OF SUBCLONAL STRUCTURE IN THYROCYTE POPULATION IN RADIOIODINE-REFRACTORY METASTASES OF PAPILLARY THYROID CANCER. EUREKA: LIFE SCIENCES 2019. [DOI: 10.21303/2504-5695.2019.00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was cytological and immunocytochemical researches of thyrocyte populations in fine-needle aspiration smears of radioiodine-refractory metastases and their comparison with radioiodine-avid metastases and corresponding primary papillary carcinoma of the thyroid.
Materials and Methods. The cytomorphological and immunocytochemical researches were conducted on the fine needle aspiration smears of 60 papillary thyroid carcinomas and 104 metastases, which were detected in the postoperative period. We applied the indirect immunoperoxidase technique using primary monoclonal mouse antibodies against leukocyte-common antigen, macrophage antigen, thyroglobulin, epithelial cell adhesion molecule, cytokeratines 7.8, polyclonal rabbit antibodies against calcitonin.
Results. It was demonstrated, that radioiodine-avid metastases and corresponding primary papillary thyroid carcinoma smears had first type of cellular population with a relatively regular location of thyrocytes. Unlike them, radioiodine-refractory metastases smears had the second type of cellular population with irregularly location of thyrocytes among which showed up two cellular phenotypes. In our investigated smears some special cellular complexes were found – in 21 % of radioiodine-refractory metastases, 1 % in radioiodine-avid metastases and none of it in corresponding primary papillary thyroid. The cytological sign of cystic degeneration was found in 58 % of radioiodine-refractory metastases, but in radioiodine-avid metastases – was absent.
Conclusion. The radioiodine-refractory metastases of papillary thyroid cancer demonstrated their distinction from radioiodine-uptake metastases with a presence of phenotypic heterogeneity. It is shown, that an appearance of certain cell subpopulations, special cellular complexes and cystic degeneration in fine-needle aspiration smears of radioiodine-refractory metastases, which in radioiodine-uptake metastases and corresponding primary papillary thyroid carcinomas were not found, can be used during the preoperative period to forecast the impossibility of radioiodine treatment.
Collapse
|
17
|
Abstract
A previous GWAS study performed on Brazilian pooled samples indicated some SNPs (single nucleotide polymorphisms) differentially frequent in infertile patients with endometriosis and controls. Some of them were located in the genes whose biological function suggests that they could be associated with endometriosis pathogenesis; thus, the purpose here was to confirm GWAS findings in a larger group of cases and controls in order to associate the results with the pathogenesis of endometriosis. Then, a genetic association study comprising 394 infertile women with endometriosis and 650 fertile control women was conducted. TaqMan allelic discrimination assays were used to investigate the frequency of three SNPs in the genes KAZN (rs10928050), LAMA5 (rs2427284), and TAC3 (rs733629). The analysis revealed a significant association of KAZN rs10928050 (p = .015) and LAMA5 rs2427284 (p = .0059) SNPs with endometriosis-related infertility, while TAC3 rs733629 showed no difference between cases and controls. As a conclusion, it was possible to observe that individual genotyping of a larger sample of patients and controls confirmed the association among KAZN and LAMA5 with endometriosis-related infertility and revealed new candidate genes contributing to the condition.
Collapse
Affiliation(s)
- Denise Maria Christofolini
- a Instituto Ideia Fértil de Saúde Reprodutiva , Santo André , Brazil
- b Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health , Faculdade de Medicina do ABC , Santo André , Brazil
| | - Fernanda Abani Mafra
- c Center for Applied Genomics, The Children's Hospital of Philadelphia , Philadelphia , USA
| | - Michelle Cristina Catto
- b Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health , Faculdade de Medicina do ABC , Santo André , Brazil
| | - Bianca Bianco
- a Instituto Ideia Fértil de Saúde Reprodutiva , Santo André , Brazil
- b Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health , Faculdade de Medicina do ABC , Santo André , Brazil
| | - Caio Parente Barbosa
- a Instituto Ideia Fértil de Saúde Reprodutiva , Santo André , Brazil
- b Discipline of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health , Faculdade de Medicina do ABC , Santo André , Brazil
| |
Collapse
|
18
|
Thyroid cancers of follicular origin in a genomic light: in-depth overview of common and unique molecular marker candidates. Mol Cancer 2018; 17:116. [PMID: 30089490 PMCID: PMC6081953 DOI: 10.1186/s12943-018-0866-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
In recent years, thyroid malignances have become more prevalent, especially among women. The most common sporadic types of thyroid tumors of follicular origin include papillary, follicular and anaplastic thyroid carcinomas. Although modern diagnosis methods enable the identification of tumors of small diameter, tumor subtype differentiation, which is imperative for the correct choice of treatment, is still troublesome. This review discusses the recent advances in the field of molecular marker identification via next-generation sequencing and microarrays. The potential use of these biomarkers to distinguish among the most commonly occurring sporadic thyroid cancers is presented and compared. Geographical heterogeneity might be a differentiator, although not necessarily a limiting factor, in biomarker selection. The available data advocate for a subset of mutations common for the three subtypes as well as mutations that are unique for a particular tumor subtype. Tumor heterogeneity, a known issue occurring within solid malignancies, is also discussed where applicable. Public databases with datasets derived from high-throughput experiments are a valuable source of information that aid biomarker research in general, including the identification of molecular hallmarks of thyroid cancer.
Collapse
|
19
|
Chmielik E, Rusinek D, Oczko-Wojciechowska M, Jarzab M, Krajewska J, Czarniecka A, Jarzab B. Heterogeneity of Thyroid Cancer. Pathobiology 2018; 85:117-129. [PMID: 29408820 DOI: 10.1159/000486422] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
There are 5 main histological types of thyroid cancers (TCs): papillary, follicular (also known as differentiated), poorly differentiated, anaplastic (the most aggressive form), and medullary TC, and only the latter arises from thyroid C cells. These different forms of TCs show significant variability, both among and within tumours. This great variation is particularly notable among the first 4 types, which all originate from thyroid follicular cells. Importantly, this heterogeneity is not limited to histopathological diversity only but is also manifested as variation in several genetic and/or epigenetic alterations, the numbers of interactions between the tumour and surrounding microenvironment, and interpatient differences, for example. All these factors contribute to the great complexity in the development of a tumour from cancer cells. In the present review, we summarise the knowledge accumulated about the heterogeneity of TCs. Further research in this direction should help to gain a better understanding of the underlying mechanisms contributing to the development and diversity of TCs, paving the way toward more effective treatment strategies.
Collapse
Affiliation(s)
- Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Malgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Michal Jarzab
- 3rd Department of Radiotherapy and Chemotherapy, Breast Unit, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
20
|
Kawamata F, Patch AM, Nones K, Bond C, McKeone D, Pearson SA, Homma S, Liu C, Fennell L, Dumenil T, Hartel G, Kobayasi N, Yokoo H, Fukai M, Nishihara H, Kamiyama T, Burge ME, Karapetis CS, Taketomi A, Leggett B, Waddell N, Whitehall V. Copy number profiles of paired primary and metastatic colorectal cancers. Oncotarget 2017; 9:3394-3405. [PMID: 29423054 PMCID: PMC5790471 DOI: 10.18632/oncotarget.23277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Liver metastasis is the major cause of death following a diagnosis of colorectal cancer (CRC). In this study, we compared the copy number profiles of paired primary and liver metastatic CRC to better understand how the genomic structure of primary CRC differs from the metastasis. Paired primary and metastatic tumors from 16 patients and their adjacent normal tissue samples were analyzed using single nucleotide polymorphism arrays. Genome-wide chromosomal copy number alterations were assessed, with particular attention to 188 genes known to be somatically altered in CRC and 24 genes that are clinically actionable in CRC. These data were analyzed with respect to the timing of primary and metastatic tissue resection and with exposure to chemotherapy. The genomic differences between the tumor and paired metastases revealed an average copy number discordance of 22.0%. The pairs of tumor samples collected prior to treatment revealed significantly higher copy number differences compared to post-therapy liver metastases (P = 0.014). Loss of heterozygosity acquired in liver metastases was significantly higher in previously treated liver metastasis samples compared to treatment naive liver metastasis samples (P = 0.003). Amplification of the clinically actionable genes ERBB2, FGFR1, PIK3CA or CDK8 was observed in the metastatic tissue of 4 patients but not in the paired primary CRC. These examples highlight the intra-patient genomic discrepancies that can occur between metastases and the primary tumors from which they arose. We propose that precision medicine strategies may therefore identify different actionable targets in metastatic tissue, compared to primary tumors, due to substantial genomic differences.
Collapse
Affiliation(s)
- Futoshi Kawamata
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ann-Marie Patch
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katia Nones
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Catherine Bond
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Diane McKeone
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sally-Ann Pearson
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Shigenori Homma
- Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Lochlan Fennell
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Gunter Hartel
- Statistics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nozomi Kobayasi
- Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Yokoo
- Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Moto Fukai
- Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | - Barbara Leggett
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Nicola Waddell
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Vicki Whitehall
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia.,Pathology Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Grzywa TM, Paskal W, Włodarski PK. Intratumor and Intertumor Heterogeneity in Melanoma. Transl Oncol 2017; 10:956-975. [PMID: 29078205 PMCID: PMC5671412 DOI: 10.1016/j.tranon.2017.09.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Paweł K Włodarski
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland.
| |
Collapse
|
22
|
Abstract
Next-generation sequencing (NGS) in thyroid cancer allows for simultaneous high-throughput sequencing analysis of variable genetic alterations and provides a comprehensive understanding of tumor biology. In thyroid cancer, NGS offers diagnostic improvements for fine needle aspiration (FNA) cytology of thyroid with indeterminate features. It also contributes to patient management, providing risk stratification of patients based on the risk of malignancy. Furthermore, NGS has been adopted in cancer research. It is used in molecular tumor classification, and molecular prediction of recurrence and metastasis in papillary thyroid carcinoma. This review covers previous NGS analyses in variable types of thyroid cancer, where samples including FNA cytology, fresh frozen tissue, and formalin-fixed, paraffin-embedded tissues were used. This review also focuses on the clinical and research implications of using NGS to study and treat thyroid cancer.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 South Korea
| |
Collapse
|
23
|
Pietrowska M, Diehl HC, Mrukwa G, Kalinowska-Herok M, Gawin M, Chekan M, Elm J, Drazek G, Krawczyk A, Lange D, Meyer HE, Polanska J, Henkel C, Widlak P. Molecular profiles of thyroid cancer subtypes: Classification based on features of tissue revealed by mass spectrometry imaging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:837-845. [PMID: 27760391 DOI: 10.1016/j.bbapap.2016.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023]
Abstract
Determination of the specific type of thyroid cancer is crucial for the prognosis and selection of treatment of this malignancy. However, in some cases appropriate classification is not possible based on histopathological features only, and it might be supported by molecular biomarkers. Here we aimed to characterize molecular profiles of different thyroid malignancies using mass spectrometry imaging (MSI) which enables the direct annotation of molecular features with morphological pictures of an analyzed tissue. Fifteen formalin-fixed paraffin-embedded tissue specimens corresponding to five major types of thyroid cancer were analyzed by MALDI-MSI after in-situ trypsin digestion, and the possibility of classification based on the results of unsupervised segmentation of MALDI images was tested. Novel method of semi-supervised detection of the cancer region of interest (ROI) was implemented. We found strong separation of medullary cancer from malignancies derived from thyroid epithelium, and separation of anaplastic cancer from differentiated cancers. Reliable classification of medullary and anaplastic cancers using an approach based on automated detection of cancer ROI was validated with independent samples. Moreover, extraction of spectra from tumor areas allowed the detection of molecular components that differentiated follicular cancer and two variants of papillary cancer (classical and follicular). We concluded that MALDI-MSI approach is a promising strategy in the search for biomarkers supporting classification of thyroid malignant tumors. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44101 Gliwice, Poland
| | - Hanna C Diehl
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Grzegorz Mrukwa
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44100 Gliwice, Poland
| | - Magdalena Kalinowska-Herok
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44101 Gliwice, Poland
| | - Marta Gawin
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44101 Gliwice, Poland
| | - Mykola Chekan
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44101 Gliwice, Poland
| | - Julian Elm
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Grzegorz Drazek
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44100 Gliwice, Poland
| | - Anna Krawczyk
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44100 Gliwice, Poland
| | - Dariusz Lange
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44101 Gliwice, Poland
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Joanna Polanska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44100 Gliwice, Poland.
| | - Corinna Henkel
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany.
| | - Piotr Widlak
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, ul. Wybrzeze Armii Krajowej 15, 44101 Gliwice, Poland.
| |
Collapse
|
24
|
Same difference: A pilot study of cyclin D1, bcl-2, AMACR, and ALDH-1 identifies significant differences in expression between primary colon adenocarcinoma and its metastases. Pathol Res Pract 2016; 212:995-1003. [PMID: 27623206 DOI: 10.1016/j.prp.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022]
Abstract
Tumor heterogeneity implies the possibility of significantly different expression of key pathways between primary and metastatic clones. Colon adenocarcinoma is one of the few tumors where current practice includes resection of primary and isolated organ metastases simultaneously without neoadjuvant therapy. We performed a pilot study on 28 cases of colon adenocarcinoma resected simultaneously with metastases in patients with no history of neoadjuvant therapy. We assayed matched primary and metastatic tumors from each patient with common diagnostic antibodies to Bcl-2, Cyclin D1, AMACR, and ALDH-1 by immunohistochemistry with semi-quantitative interpretation on archived formalin fixed, paraffin embedded samples. We were powered for large, consistent differences between primary and metastatic expression, and found 21 of 28 had a significant difference in expression of at least one of the four proteins, accounting for multiplicity of testing. Cyclin D1 had significantly more cases with differential metastatic:primary expression than would be expected by chance alone (p-value 0.0043), favoring higher expression in the metastatic sample. Bcl-2 and ALDH-1 had trends in this direction (p-value 0.078 each). Proportionately more cases with significant differences were identified when a liver metastasis was tested. We conclude differences in expression between metastatic and primary colon adenocarcinoma within the same patient exist, and may have therapeutic and biomarker testing consequences.
Collapse
|