1
|
Ye L, Huang Y, Chen K, Hang C, Ying Y, Zu L, Luo X, Du L. Early postnatal moderate catch‑up growth in rats with nutritional intrauterine growth restriction preserves pulmonary vascular and cognitive function in adulthood. Exp Ther Med 2024; 27:183. [PMID: 38515647 PMCID: PMC10952380 DOI: 10.3892/etm.2024.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Intrauterine growth restriction (IUGR) with rapid postnatal catch-up growth is strongly associated with pulmonary vascular dysfunction in adulthood, whereas IUGR with delayed growth in early postnatal life results in long-term brain deficits. In the present study, it was hypothesized that IUGR with early moderate catch-up growth may alleviate pulmonary vascular remodeling in adulthood without affecting memory function. An IUGR model was established by restricting maternal nutrition during pregnancy. Different growth patterns were achieved by adjusting the litter size in each group during lactation. Rats meeting the weight requirement at weaning were selected for subsequent studies at three time points (3, 9 and 13 weeks). Cognitive function was evaluated using a Y-maze. Invasive hemodynamic measurements were conducted to measure the mean pulmonary arterial pressure (mPAP). In addition, primary pulmonary artery smooth muscle cells (PASMCs) and pulmonary vascular endothelial cells (PVECs) were cultured to investigate their role in the increase in mPAP following rapid catch-up growth. The results showed that memory function deficits in the rats in the delayed growth group were associated with reduced proliferation of neural stem cells in the subgranular zone of the hippocampus. Furthermore, moderate catch-up growth at the three time points improved memory function while maintaining a normal mPAP. In adult IUGR rats experiencing rapid catch-up growth, although memory function improved, elevated mPAP and medial thickening of pulmonary arterioles were observed. Additionally, PASMCs exhibited excessive proliferation, migration and anti-apoptotic activity in the rapid catch-up group, and PVECs also displayed excessive proliferation. These results suggested that moderate catch-up growth after IUGR is a better strategy for optimal cognition and cardiovascular health in adulthood compared with rapid catch-up growth or delayed growth.
Collapse
Affiliation(s)
- Lixia Ye
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Yajie Huang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Kewei Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Chengcheng Hang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Yuhan Ying
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Lu Zu
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Xiaofei Luo
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| |
Collapse
|
2
|
Huang W, Liu N, Tong X, Du Y. Sildenafil protects against pulmonary hypertension induced by hypoxia in neonatal rats via activation of PPARγ‑mediated downregulation of TRPC. Int J Mol Med 2022; 49:19. [PMID: 34935055 PMCID: PMC8722768 DOI: 10.3892/ijmm.2021.5074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/04/2021] [Indexed: 11/06/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a common pulmonary vascular disease during the neonatal period, and it is associated with a high clinical mortality rate and a poor prognosis. At present, the treatment of PPHN is based mainly on inhaled nitric oxide (iNO), high‑frequency ventilation, and pulmonary vasodilators. Sildenafil has gradually begun to be used in recent years for the treatment of PPHN and has exhibited some success; however, its detailed mechanism of action requires further elucidation. An animal model of neonatal pulmonary hypertension (neonatal rats, 48 h after birth, 10% O2, 14 days) as well as a cell model [human pulmonary artery smooth muscle cells (PASMCs), 4% O2, 60 h] were established. The effects of sildenafil on pulmonary hypertension in neonatal rats were evaluated by hematoxylin and eosin staining, immunofluorescence analysis, western blotting and PCR, and the changes in peroxisome proliferator‑activated receptor γ (PPARγ), transient receptor potential canonical (TRPC)1, TRPC6 and Ki67 expression levels were detected under hypoxic conditions. The results revealed that sildenafil reversed the increases in the right ventricular mean pressure and right ventricular hypertrophy index induced by hypoxia, and attenuated pulmonary arterial remodeling as well as PASMC proliferation. The inhibitory effects of sildenafil on TRPC expression and PASMC proliferation were attenuated by GW9662 and PPARγ small interfering RNA. In conclusion, sildenafil protects against hypoxia‑induced pulmonary hypertension and right ventricular hypertrophy in neonatal rats by upregulating PPARγ expression and downregulating TRPC1 and TRPC6 expression.
Collapse
Affiliation(s)
- Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Na Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanna Du
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
3
|
Qiu J, Ma C, Dai W, Fang E, Li W, Yang F. Ghrelin attenuates transforming growth factor-β1-induced pulmonary fibrosis via the miR-125a-5p/Kruppel-like factor 13 axis. Arch Biochem Biophys 2022; 715:109082. [PMID: 34767797 DOI: 10.1016/j.abb.2021.109082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a severe condition with limited therapeutic options and characterized by increased fibroblast activation and progressive accumulation of extracellular matrix. Ghrelin, a gastrointestinal hormone, has been reported to possess protective roles in lung diseases including pulmonary fibrosis. However, the precise mechanisms underlying the protective effects of ghrelin remain unknown. The present study was designed to investigate the effects of ghrelin on transforming growth factor-β1 (TGF-β1)-induced pulmonary fibrosis in vitro and in vivo and the possible mechanism of action. It was found that ghrelin significantly attenuated TGF-β1-induced fibrotic responses in human lung fibroblast (IMR-90) cells and bleomycin (BLM)-induced fibrotic lung tissues. Meanwhile, ghrelin decreased the expressions of miR-125a-5p and phosphorylated smad2/3 and increased protein expressions of Kruppel-like factor 13 (KLF13) in vivo and in vitro. Ghrelin-induced anti-fibrotic effects and smad2/3 downregulation in TGF-β1-stimulated IMR-90 cells were markedly reversed by miR-125a-5p mimics and KLF13 siRNA. Furthermore, miR-125a-5p directly targeted KLF13 in IMR-90 cells. Our findings suggest that ghrelin attenuates TGF-β1-induced pulmonary fibrosis via the miR-125a-5p/KLF13 axis, which supports ghrelin as a new therapeutic agent against pulmonary fibrosis by antagonizing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Jing Qiu
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Chunlan Ma
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Wenjing Dai
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Enrong Fang
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Wancheng Li
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Fan Yang
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China.
| |
Collapse
|
4
|
Research progress of ghrelin on cardiovascular disease. Biosci Rep 2021; 41:227556. [PMID: 33427286 PMCID: PMC7823193 DOI: 10.1042/bsr20203387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Ghrelin, a 28-aminoacid peptide, was isolated from the human and rat stomach and identified in 1999 as an endogenous ligand for the growth hormone secretagogue-receptor (GHS-R). In addition to stimulating appetite and regulating energy balance, ghrelin and its receptor GHS-R1a have a direct effect on the cardiovascular system. In recent years, it has been shown that ghrelin exerts cardioprotective effects, including the modulation of sympathetic activity and hypertension, enhancement of the vascular activity and angiogenesis, inhibition of arrhythmias, reduction in heart failure and inhibition of cardiac remodeling after myocardial infarction (MI). The cardiovascular protective effect of ghrelin may be associated with anti-inflammation, anti-apoptosis, inhibited sympathetic nerve activation, regulated autophagy, and endothelial dysfunction. However, the molecular mechanisms underlying the effects of ghrelin on the cardiovascular system have not been fully elucidated, and no specific therapeutic agent has been established. It is important to further explore the pharmacological potential of ghrelin pathway modulation for the treatment of cardiovascular diseases.
Collapse
|
5
|
Dagher-Hamalian C, Stephan J, Zeeni N, Harhous Z, Shebaby WN, Abdallah MS, Faour WH. Ghrelin-induced multi-organ damage in mice fed obesogenic diet. Inflamm Res 2020; 69:1019-1026. [PMID: 32719925 DOI: 10.1007/s00011-020-01383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE AND DESIGN Ghrelin has a key role in modulating energy metabolism and weight gain. The present study aimed at studying the potential role of ghrelin in the development and/or exacerbation of organ damage in a mouse model of diet-induced obesity. OBJECTIVE AND DESIGN Adult mice were fed one of two diets for 20 weeks: standard high carbohydrate (HC) or high-fat high-sugar (HFHS). Starting week 17, the animals were given regular intraperitoneal ghrelin (160 µg/kg) or saline injections Abdominal fat, serum creatinine, and glucose levels, as well as kidney, liver and heart weight and pathology were assessed. RESULTS Ghrelin-injected mice showed significant organ damage, which was more exacerbated in HFHS-fed animals. While the HFHS diet was associated with significant liver damage, ghrelin administration did not reverse it. Interestingly, ghrelin administration induced moderate kidney damage and significantly affected the heart by increasing perivascular and myocardium fibrosis, steatosis as well as inflammation. Moreover, serum creatinine levels were higher in the animal group injected with ghrelin. CONCLUSION Ghrelin administration was associated with increased functional and structural organ damage, regardless of diet. The present study provides novel evidence of multi-organ physiologic alterations secondary to ghrelin administration.
Collapse
Affiliation(s)
- Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Joseph Stephan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nadine Zeeni
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Zeina Harhous
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Maya S Abdallah
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon.
| |
Collapse
|
6
|
Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. Perinatal Undernutrition, Metabolic Hormones, and Lung Development. Nutrients 2019; 11:nu11122870. [PMID: 31771174 PMCID: PMC6950278 DOI: 10.3390/nu11122870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal and perinatal undernutrition affects the lung development of litters and it may produce long-lasting alterations in respiratory health. This can be demonstrated using animal models and epidemiological studies. During pregnancy, maternal diet controls lung development by direct and indirect mechanisms. For sure, food intake and caloric restriction directly influence the whole body maturation and the lung. In addition, the maternal food intake during pregnancy controls mother, placenta, and fetal endocrine systems that regulate nutrient uptake and distribution to the fetus and pulmonary tissue development. There are several hormones involved in metabolic regulations, which may play an essential role in lung development during pregnancy. This review focuses on the effect of metabolic hormones in lung development and in how undernutrition alters the hormonal environment during pregnancy to disrupt normal lung maturation. We explore the role of GLP-1, ghrelin, and leptin, and also retinoids and cholecalciferol as hormones synthetized from diet precursors. Finally, we also address how metabolic hormones altered during pregnancy may affect lung pathophysiology in the adulthood.
Collapse
|
7
|
Peng Z, Zha L, Yang M, Li Y, Guo X, Feng Z. Effects of ghrelin on pGSK-3β and β-catenin expression when protects against neuropathic pain behavior in rats challenged with chronic constriction injury. Sci Rep 2019; 9:14664. [PMID: 31601982 PMCID: PMC6787073 DOI: 10.1038/s41598-019-51140-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Ghrelin has been shown to alleviate neuropathic pain by inhibiting the release of proinflammatory cytokines. The purpose of this study was to investigate the role of GSK-3β/β-catenin signaling in mediating the effect of ghrelin on neuropathic pain and to understand the associated mechanisms. Chronic constriction injury (CCI) of the sciatic nerve was used to establish a rat model of neuropathic pain. Hyperalgesia and allodynia were evaluated by observing the mechanical withdrawal threshold and the thermal withdrawal latency. Wnt3a and β-catenin protein expression and GSK-3β phosphorylation were detected by western blotting analysis. The levels of tumor necrosis factor-α and IL-1β were determined using an enzyme-linked immunosorbent assay. In addition, we used immunohistochemical analysis to determine the levels of GSK-3β phosphorylation in the dorsal horn of the spinal cord. Intrathecal delivery of ghrelin effectively ameliorated CCI-induced mechanical allodynia and thermal hyperalgesia at 7 and 14 days and reduced the levels of tumor necrosis factor-α. Ghrelin inhibited CCI-induced GSK-3β activation and β-catenin overexpression in the spinal dorsal horn. Moreover, intrathecal injection of ghrelin suppressed the activation of GSK-3β in the spinal dorsal horn of CCI rats, as assessed by immunohistochemical analysis. Our data indicated that ghrelin could markedly alleviate neuropathic pain by inhibiting the expression of β-catenin, via the suppression of GSK-3β activation, in the spinal cord of CCI rats.
Collapse
Affiliation(s)
- Zhiyou Peng
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leiqiong Zha
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijuan Yang
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunze Li
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Involvement of fatty acid synthase in right ventricle dysfunction in pulmonary hypertension. Exp Cell Res 2019; 383:111569. [DOI: 10.1016/j.yexcr.2019.111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
9
|
El Zein N, Abdallah MS, Daher CF, Mroueh M, Stephan J, Bahous SA, Eid A, Faour WH. Ghrelin modulates intracellular signalling pathways that are critical for podocyte survival. Cell Biochem Funct 2019; 37:245-255. [DOI: 10.1002/cbf.3397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Maya S. Abdallah
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
- Institut Européen des MembranesUniversité de Montpellier Montpellier France
| | - Costantine F. Daher
- School of Arts and Sciences, Natural Sciences DepartmentLebanese American University Byblos Lebanon
| | - Mohammad Mroueh
- Department of Pharmaceutical Sciences, School of PharmacyLebanese American University Byblos Lebanon
| | - Joseph Stephan
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| | - Sola Aoun Bahous
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of MedicineAmerican University of Beirut Beirut Lebanon
| | - Wissam H. Faour
- Gilbert and Rose‐Marie Chagoury, School of MedicineLebanese American University Byblos Lebanon
| |
Collapse
|
10
|
Tang Z, Jiang M, Ou-Yang Z, Wu H, Dong S, Hei M. High mobility group box 1 protein (HMGB1) as biomarker in hypoxia-induced persistent pulmonary hypertension of the newborn: a clinical and in vivo pilot study. Int J Med Sci 2019; 16:1123-1131. [PMID: 31523175 PMCID: PMC6743282 DOI: 10.7150/ijms.34344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Inflammation plays an important role in neonatal hypoxia-induced organ damage. Newborns with perinatal asphyxia often develop persistent pulmonary hypertension of the newborn (PPHN). The objective of this study was to explore changes in the pro-inflammatory high mobility group box-l (HMGB1) protein during hypoxia-induced PPHN clinically and in vivo. Methods: Serum samples were collected from full-term newborns at PPHN onset and remission. As controls, blood serum samples were collected from the umbilical arteries of healthy full-term newborns born in our hospital during the same period. Clinical data for neonates were collected and serum levels of HMGB1, IL-6, and TNF-α were detected by enzyme-linked immunosorbent assay (ELISA). An animal study compared a PPHN Sprague-Dawley rat model to healthy newborn control rats. Histopathology was used to evaluate changes in the pulmonary artery wall. ELISA and western blot analyses were used to examine HMGB1 levels in the serum and lungs. Results: Serum HMGB1 levels were significantly elevated in newborns with PPHN, compared to those in healthy controls, and decreased dramatically after PPHN resolution. HMGB1 changes were positively correlated with serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. Histopathological analysis demonstrated that the median wall thickness of pulmonary arterioles accounting for the percentage of pulmonary arteriole diameter (MT%) was not significantly different between PPHN and control groups 3 d after PPHN, although thickness of the small pulmonary arterial wall middle membrane and stenosis of the small pulmonary arteries. ELISA and western blot analyses showed similar trends between serum HMGB1 levels and HMGB1 protein expression in the lungs. Serum and lung HMGB1 levels were significantly elevated soon after PPHN onset, peaked after 24 h, and then decreased after 3 d, although they remained elevated compared to those in the control group. Conclusions: This study indicates that HMGB1 is related to hypoxia-induced PPHN pathogenesis. HMGB1 changes might thus be used as an early indicator to diagnose hypoxia-induced PPHN and evaluate its improvement. We also provide important evidence for the involvement of inflammation in the progression of hypoxia-induced PPHN.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013 China
| | - Min Jiang
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Zhicui Ou-Yang
- Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013 China
| | - Hailan Wu
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Shixiao Dong
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| |
Collapse
|
11
|
Yang YM, Sehgal PB. Smooth Muscle-Specific BCL6+/- Knockout Abrogates Sex Bias in Chronic Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. Int J Endocrinol 2018; 2018:3473105. [PMID: 30140283 PMCID: PMC6081567 DOI: 10.1155/2018/3473105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/07/2018] [Accepted: 06/24/2018] [Indexed: 12/18/2022] Open
Abstract
The "estrogen paradox" in pulmonary arterial hypertension (PAH) refers to observations that while there is a higher incidence of idiopathic PAH in women, rodent models of PAH show male dominance and estrogens are protective. To explain these differences, we previously proposed the neuroendocrine-STAT5-BCL6 hypothesis anchored in the sex-biased and species-specific patterns of growth hormone (GH) secretion by the pituitary, the targeting of the hypothalamus by estrogens to feminize GH secretion patterns, and the role of the transcription factors STAT5a/b and BCL6 as downstream mediators of this patterned GH-driven sex bias. As a test of this hypothesis, we previously reported that vascular smooth muscle cell- (SMC-) specific deletion of the STAT5a/b locus abrogated the male-dominant sex bias in the chronic hypoxia model of PAH in mice. In the present study, we confirmed reduced BCL6 expression in pulmonary arterial (PA) segments in both male and female SMC:STAT5a/b-/- mice. In order to test the proposed contribution of BCL6 to sex bias in PAH, we developed mice with SMC-specific deletion of BCL6+/- by crossing SM22α-Cre mice with BCL6-floxed mice and investigated sex bias in these mutant mice in the chronic hypoxia model of PAH. We observed that the male-bias observed in wild-type- (wt-) SM22α-Cre-positive mice was abrogated in the SMC:BCL6+/- knockouts-both males and females showed equivalent enhancement of indices of PAH. The new data confirm BCL6 as a contributor to the sex-bias phenotype observed in hypoxic PAH in mice and support the neuroendocrine-STAT5-BCL6 hypothesis of sex bias in this experimental model of vascular disease.
Collapse
Affiliation(s)
- Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Pravin B. Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
12
|
Effects of FHL1 and P21 on hypoxia-induced pulmonary vascular remodeling in neonatal rats. Exp Ther Med 2017; 14:4245-4253. [PMID: 29067108 PMCID: PMC5647724 DOI: 10.3892/etm.2017.5055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have demonstrated that altered expression levels of four and a half LIM domains 1 (FHL1) and P21 are necessary for hypoxia-induced pulmonary vascular remodeling in both adult rats and human patients with idiopathic pulmonary arterial hypertension. However, whether FHL1 and P21 are present in the pulmonary artery and whether these proteins affect pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH) in neonatal rats remain unknown. The present study investigated the effects of altered FHL1 and P21 expression on pulmonary vascular remodeling in neonatal rats with HPH. A total of 32 newborn Sprague-Dawley rats were exposed to hypoxia or room air for 7 or 14 days (n=8/subgroup). Parameters including the percentage of medial wall thickness (WT%), the percentage of medial wall area (WA%), right ventricular (RV) mean pressure, RV hypertrophy index (RVHI) and RV systolic pressure (RVSP) were measured to evaluate the development of HPH. Additionally, the expressions of FHL1 and P21 in the pulmonary artery smooth muscle cells (PASMCs) were measured by reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemical staining. WA%, WT%, RV mean pressure, RVHI and RVSP were significantly increased in the HPH model group when compared with the control group (P<0.01). The protein expression levels of FHL1 were significantly increased in the HPH group (P<0.05), while the mRNA and protein expression levels of P21 were significantly reduced (P<0.05). Pearson correlation analysis indicated that the protein expressions of FHL1 and P21 were correlated with WA% and WT% (all P<0.001), and that the protein expression of P21 was negatively correlated with that of FHL1 (P<0.01). The results indicated that the expressions of FHL1 and P21 were altered in the PASMCs of newborn rats with HPH. Furthermore, FHL1 and P21 may serve important roles in pulmonary vascular remodeling.
Collapse
|
13
|
Colldén G, Tschöp MH, Müller TD. Therapeutic Potential of Targeting the Ghrelin Pathway. Int J Mol Sci 2017; 18:ijms18040798. [PMID: 28398233 PMCID: PMC5412382 DOI: 10.3390/ijms18040798] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Collapse
Affiliation(s)
- Gustav Colldén
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Institute for Diabetes and Obesity (IDO), Business Campus Garching-Hochbrück, Parkring 13, 85748 Garching, Germany.
| |
Collapse
|
14
|
Abstract
Ghrelin is a small peptide released primarily from the stomach. It is a potent stimulator of growth hormone secretion from the pituitary gland and is well known for its regulation of metabolism and appetite. There is also a strong relationship between ghrelin and the cardiovascular system. Ghrelin receptors are present throughout the heart and vasculature and have been linked with molecular pathways, including, but not limited to, the regulation of intracellular calcium concentration, inhibition of proapoptotic cascades, and protection against oxidative damage. Ghrelin shows robust cardioprotective effects including enhancing endothelial and vascular function, preventing atherosclerosis, inhibiting sympathetic drive, and decreasing blood pressure. After myocardial infarction, exogenous administration of ghrelin preserves cardiac function, reduces the incidence of fatal arrhythmias, and attenuates apoptosis and ventricular remodeling, leading to improvements in heart failure. It ameliorates cachexia in end-stage congestive heart failure patients and has shown clinical benefit in pulmonary hypertension. Nonetheless, since ghrelin's discovery is relatively recent, there remains a substantial amount of research needed to fully understand its clinical significance in cardiovascular disease.
Collapse
|
15
|
Xu YP, He Q, Shen Z, Shu XL, Wang CH, Zhu JJ, Shi LP, Du LZ. MiR-126a-5p is involved in the hypoxia-induced endothelial-to-mesenchymal transition of neonatal pulmonary hypertension. Hypertens Res 2017; 40:552-561. [PMID: 28148930 DOI: 10.1038/hr.2017.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome characterized by increased medial and adventitial thickness of the lung vasculature. The underlying mechanisms that regulate the cell phenotype alteration during PPHN remodeling are largely unknown. We randomly selected newborn rats that were exposed to hypoxia (10-12%) or room air for 2 weeks and used a microarray to identify the lung tissue microRNAs (miRNAs) involved in PPHN progression. The role of a key miRNA that affects the endothelial-to-mesenchymal transition (EndMT) in primary cultured rat pulmonary microvascular endothelial cells (RPMECs) was investigated. The expression of miR-126a-5p was elevated in the PPHN model according to microarray analysis. The relative expression of miR-126a-5p in RPMECs increased when they were exposed to hypoxia (P<0.05), consistent with the microarray results. Pecam1 expression decreased, whereas alpha-smooth muscle actin (α-SMA) increased in the hypoxic RPMECs. Knockdown of miR-126a-5p in RPMECs followed by treatment with hypoxia for 48 h resulted in a significant increase in the expression of Pecam1 and a reduction in α-SMA expression, with a simultaneous increase in PI3K (p85β) and phosphorylation of AKT at serine 473 compared with the negative control. Finally, the circulating miR-126a-5p concentration was upregulated in the PPHN model compared with healthy neonates. We concluded that hypoxia changed the cell homeostasis and that miR-126a-5p was upregulated in PPHN, which is partly responsible for hypoxia-induced EndMT. The mechanism underlying the upregulation of miR-126a-5p by hypoxia probably acts through the p85-β/p-AKT pathway.
Collapse
Affiliation(s)
- Yan-Ping Xu
- NICU, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Qi He
- NICU, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Zheng Shen
- Center Lab, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Li Shu
- Center Lab, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Hong Wang
- NICU, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Jia-Jun Zhu
- Department of Neonatology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Ping Shi
- NICU, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | - Li-Zhong Du
- NICU, The Children's Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| |
Collapse
|
16
|
Pullamsetti SS, Perros F, Chelladurai P, Yuan J, Stenmark K. Transcription factors, transcriptional coregulators, and epigenetic modulation in the control of pulmonary vascular cell phenotype: therapeutic implications for pulmonary hypertension (2015 Grover Conference series). Pulm Circ 2017; 6:448-464. [PMID: 28090287 DOI: 10.1086/688908] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a complex and multifactorial disease involving genetic, epigenetic, and environmental factors. Numerous stimuli and pathological conditions facilitate severe vascular remodeling in PH by activation of a complex cascade of signaling pathways involving vascular cell proliferation, differentiation, and inflammation. Multiple signaling cascades modulate the activity of certain sequence-specific DNA-binding transcription factors (TFs) and coregulators that are critical for the transcriptional regulation of gene expression that facilitates PH-associated vascular cell phenotypes, as demonstrated by several studies summarized in this review. Past studies have largely focused on the role of the genetic component in the development of PH, while the presence of epigenetic alterations such as microRNAs, DNA methylation, histone levels, and histone deacetylases in PH is now also receiving increasing attention. Epigenetic regulation of chromatin structure is also recognized to influence gene expression in development or disease states. Therefore, a complete understanding of the mechanisms involved in altered gene expression in diseased cells is vital for the design of novel therapeutic strategies. Recent technological advances in DNA sequencing will provide a comprehensive improvement in our understanding of mechanisms involved in the development of PH. This review summarizes current concepts in TF and epigenetic control of cell phenotype in pulmonary vascular disease and discusses the current issues and possibilities in employing potential epigenetic or TF-based therapies for achieving complete reversal of PH.
Collapse
Affiliation(s)
- Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Frédéric Perros
- Université Paris-Sud; and Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche (UMR_S) 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Prakash Chelladurai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Jason Yuan
- University of Arizona, Tucson, Arizona, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Medicine and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
17
|
Wang H, Yang T, Shen Y, Wan C, Li X, Li D, Liu Y, Wang T, Xu D, Wen F, Ying B. Ghrelin Inhibits Interleukin-6 Production Induced by Cigarette Smoke Extract in the Bronchial Epithelial Cell Via NF-κB Pathway. Inflammation 2016; 39:190-198. [PMID: 26277356 DOI: 10.1007/s10753-015-0238-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cigarette smoke (CS)-induced airway inflammation is the main pathogenesis of COPD. The present study was designed to evaluate whether ghrelin, a novel growth hormone-releasing peptide, can affect the pro-inflammatory cytokine interleukin-6 (IL-6) production induced by cigarette smoke extract (CSE) in the human bronchial epithelial cell line (16-HBE) and its possible mechanism. 16-HBE cells were pre-incubated with vehicle or ghrelin (0.1 to 1000 ng/mL) in a concentration-dependent manner, and then CSE (0 to 16 %) was added. The protein levels of IL-6 in the medium were determined by ELISA, and the mRNA expressions of IL-6 was detected by RT-PCR. We also detected the phosphorylation of IKKα/β/p65 protein and the degradation of inhibitory protein-κB (I-κB) by Western blot analysis. And the generation of reactive oxygen species (ROS) in 16-HBE was evaluated by labeling specific fluorescence probes DCFH-DA. 16-HBE Cells treated with CSE (8 %) exhibited significantly higher IL-6 production compared with cells treated with vehicle alone (P < 0.05). Ghrelin suppressed CSE-induced IL-6 production at both mRNA and protein levels in a concentration-dependent manner (P < 0.05). Moreover, ghrelin attenuated CSE-triggered NF-κB activation in 16-HBE, but the intracellular ROS level after application of CSE was not affected by ghrelin (0.1 to 1000 ng/mL). Together, these results suggest that ghrelin inhibits CSE-induced IL-6 production in 16-HBE cells by targeting on NF-κB pathway, but not by scavenging intracellular ROS.
Collapse
Affiliation(s)
- Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchun Shen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chun Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoou Li
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Diandian Li
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Liu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu, Sichuan, 610000, China.,Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Liu X, Chen D, Wu Z, Li J, Li J, Zhao H, Liu T. Ghrelin inhibits high glucose-induced 16HBE cells apoptosis by regulating Wnt/β-catenin pathway. Biochem Biophys Res Commun 2016; 477:902-907. [DOI: 10.1016/j.bbrc.2016.06.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022]
|
19
|
Sehgal PB, Yang YM, Miller EJ. Hypothesis: Neuroendocrine Mechanisms (Hypothalamus-Growth Hormone-STAT5 Axis) Contribute to Sex Bias in Pulmonary Hypertension. Mol Med 2015; 21:688-701. [PMID: 26252185 PMCID: PMC4749490 DOI: 10.2119/molmed.2015.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with high morbidity and mortality. The prevalence of idiopathic pulmonary arterial hypertension (IPAH) and hereditary pulmonary arterial hypertension (HPAH) is approximately two- to four-fold higher in women than in men. Paradoxically, there is an opposite male bias in typical rodent models of PH (chronic hypoxia or monocrotaline); in these models, administration of estrogenic compounds (for example, estradiol-17β [E2]) is protective. Further complexities are observed in humans ingesting anorexigens (female bias) and in rodent models, such as after hypoxia plus SU5416/Sugen (little sex bias) or involving serotonin transporter overexpression or dexfenfluramine administration (female bias). These complexities in sex bias in PH remain incompletely understood. We recently discovered that conditional deletion of signal transducer and activator of transcription 5a/b (STAT5a/b) in vascular smooth muscle cells abrogated the male bias in PH in hypoxic mice and that late-stage obliterative lesions in patients of both sexes with IPAH and HPAH showed reduced STAT5a/b, reduced Tyr-P-STAT5 and reduced B-cell lymphoma 6 protein (BCL6). In trying to understand the significance of these observations, we realized that there existed a well-characterized E2-sensitive central neuroendocrine mechanism of sex bias, studied over the last 40 years, that, at its peripheral end, culminated in species-specific male ("pulsatile") versus female ("more continuous") temporal patterns of circulating growth hormone (GH) levels leading to male versus female patterned activation of STAT5a/b in peripheral tissues and thus sex-biased expression of hundreds of genes. In this report, we consider the contribution of this neuroendocrine mechanism (hypothalamus-GH-STAT5) in the generation of sex bias in different PH situations.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
- Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Edmund J Miller
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
20
|
Mrak E, Casati L, Pagani F, Rubinacci A, Zarattini G, Sibilia V. Ghrelin Increases Beta-Catenin Level through Protein Kinase A Activation and Regulates OPG Expression in Rat Primary Osteoblasts. Int J Endocrinol 2015; 2015:547473. [PMID: 25866509 PMCID: PMC4381660 DOI: 10.1155/2015/547473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023] Open
Abstract
Ghrelin, by binding growth hormone secretagogue receptor (GHS-R), promotes osteoblast proliferation but the signaling mechanism of GHS-R on these cells remains unclear. Since canonical Wnt/β-catenin pathway is critically associated with bone homeostasis, we investigated its involvement in mediating ghrelin effects in osteoblasts and in osteoblast-osteoclast cross talk. Ghrelin (10(-10)M) significantly increased β-catenin levels in rat osteoblasts (rOB). This stimulatory action on β-catenin involves a specific interaction with GHS-R1a, as it is prevented by the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M). The effect of ghrelin on β-catenin involves the phosphorylation and inactivation of GSK-3β via protein kinase A (PKA). Inhibition of PKA activity reduces the facilitatory action of ghrelin on β-catenin stabilization. Ghrelin treatment of rOB significantly increases the expression of osteoprotegerin (OPG), which plays an important role in the regulation of osteoclastogenesis, and this effect is blocked by D-Lys(3)-GHRP-6. Furthermore, ghrelin reduced RANKL/OPG ratio thus contrasting osteoclastogenesis. Accordingly, conditioned media from rOB treated with ghrelin decreased the number of multinucleated TRAcP+ cells as compared with the conditioned media from untreated-control rOB. Our data suggest new roles for ghrelin in modulating bone homeostasis via a specific interaction with GHSR-1a in osteoblasts with subsequent enhancement of both β-catenin levels and OPG expression.
Collapse
Affiliation(s)
- Emanuela Mrak
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Alessandro Rubinacci
- Bone Metabolism Unit, Scientific Institute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Guido Zarattini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Medical Pharmacology Unit, Università degli Studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy
- *Valeria Sibilia:
| |
Collapse
|
21
|
Zhao YT, Yang HB, Li L, Gao K, Li PF, Xie WW. Reciprocal relationship between plasma ghrelin level and arterial stiffness in hypertensive subjects. Clin Exp Pharmacol Physiol 2013; 40:735-9. [PMID: 23964904 DOI: 10.1111/1440-1681.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Yin-Tao Zhao
- Department of Cardiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Hai-Bo Yang
- Department of Cardiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Ling Li
- Department of Cardiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Ke Gao
- Department of Ultrasonography; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Peng-Fei Li
- Department of Cardiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Wei-Wei Xie
- Department of Cardiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
22
|
Lv Y, Tang LL, Wei JK, Xu XF, Gu W, Fu LC, Zhang LY, Du LZ. Decreased Kv1.5 expression in intrauterine growth retardation rats with exaggerated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2013; 305:L856-65. [PMID: 24077947 DOI: 10.1152/ajplung.00179.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia pulmonary hypertension (CH-PHT) in adulthood is likely to be of fetal origin following intrauterine growth retardation (IUGR). Oxygen (O₂)-sensitive voltage-gated potassium channels (Kv channels) in resistance pulmonary artery smooth muscle cells (PASMCs) play an important role in scaling pulmonary artery (PA) pressure. Expression and functional changes of Kv channels are determined, in part, by embryonic development. We hypothesized that O₂-sensitive Kv channels play an important role in exaggerated CH-PHT following IUGR. We established a rat model of IUGR by restricting maternal food during the entire pregnancy and exposed IUGR rats and their age-matched controls aged 12 wk to hypoxia for 2 wk. We found that hypoxia exposure significantly induced increased PA pressure and thicker smooth muscle layer in the IUGR group relative to controls. We compared the constriction of the resistance PA to inhibitors of K⁺ channels, 4-aminopyridine (4-AP), tetraethylammonium, and BaCl₂. Despite the thickness of the smooth muscle layer, the constriction to 4-AP was significantly reduced in the IUGR group exposed to hypoxia. Consistent with these changes in pulmonary vascular reactivity, 2 wk of hypoxia induced weaker 4-AP-sensitive Kv currents in a single IUGR PASMC. Moreover, after 2 wk of hypoxia, Kv1.5 expression in resistance PAs decreased significantly in the IUGR group. Overexpression of Kv1.5 in cultured PASMCs could offset hypoxia-induced cell proliferation and hypoxia-inhibited Kv currents in the IUGR group. These results suggest that the inhibited expression of Kv1.5 in PASMCs contribute to the development of exaggerated CH-PHT in IUGR rats during adulthood.
Collapse
Affiliation(s)
- Ying Lv
- The Children's Hospital, Zhejiang Univ. School of Medicine, Hangzhou, Zhejiang province, P.R. China, 310003.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Percutaneous coronary intervention is a revolutionary treatment for ischemic heart disease, but in-stent restenosis (ISR) remains a clinical challenge. Inflammation, smooth muscle proliferation, endothelial function impairment, and local thrombosis have been identified as the main mechanisms for ISR. Considering the multifactorial mechanisms of ISR, a novel therapeutic agent with multiple bioactivities is required. Ghrelin is a novel gut-brain peptide predominantly produced by the stomach, and has been shown to play a role in various cardiovascular activities, such as increasing myocardial contractility, improving cardiac output, and inhibiting ventricular remodeling, as well as attenuating cardiac ischemia-reperfusion injury. Recent studies have demonstrated that ghrelin effectively inhibits vascular inflammation and vascular smooth muscle cell proliferation, repairs endothelial cells, promotes vascular endothelial function, inhibits platelet aggregation, and exerts antithrombotic effects. These findings suggest that ghrelin may be an innovative therapeutic candidate for the prevention and treatment of ISR.
Collapse
Affiliation(s)
- Z W Shu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | |
Collapse
|
24
|
Martins I, Gomes S, Costa R, Otvos L, Oliveira C, Resende R, Pereira C. Leptin and ghrelin prevent hippocampal dysfunction induced by Aβ oligomers. Neuroscience 2013; 241:41-51. [DOI: 10.1016/j.neuroscience.2013.02.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 01/10/2023]
|
25
|
Yu XM, Wang L, Li JF, Liu J, Li J, Wang W, Wang J, Wang C. Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin. Am J Physiol Lung Cell Mol Physiol 2013; 304:L103-11. [DOI: 10.1152/ajplung.00070.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia-induced pulmonary arterial hypertension (HPH) is closely associated with profound vascular remodeling, especially pulmonary arterial medial hypertrophy and muscularization due to hyperplasia of pulmonary artery smooth muscle cells (PASMCs). Aberrant Wnt signaling has been associated with lung diseases, but its role in pulmonary hypertension is unclear. This study evaluated the effect of Wnt5a on hypoxia-induced proliferation of human PASMCs and its possible mechanism. The results show that hypoxia (3% O2, 48 h) induced proliferation of human PASMCs, accompanied with a significant decrease in Wnt5a gene expression, increase in β-catenin and Cyclin D1 expression, as well as β-catenin nuclear translocation. Treatment with recombinant mouse Wnt5a significantly inhibited hypoxia-induced proliferation of human PASMCs, upregulation of Cyclin D1 and β-catenin expression, as well as the nuclear translocation of β-catenin. These effects were inhibited by Wnt5a antibody. Knocking down β-catenin or Cyclin D1 gene expression inhibited hypoxia-induced human PASMC proliferation, whereas overexpression of β-catenin increased hypoxia-induced human PASMC proliferation and counteracted the inhibitory effect of Wnt5a. These results suggest that Wnt5a has an antiproliferative effect on hypoxia-induced human PASMC proliferation by downregulation of β-catenin and its target gene Cyclin D1. Hypoxia-induced downregulation of Wnt5a may be a way to facilitate hypoxia-induced human PASMC proliferation. The results of this study will help to understand the novel strategies for PH treatment involving Wnt signaling.
Collapse
Affiliation(s)
- Xiao-Min Yu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital and
- Department of Physiology, Capital Medical University
| | - Lei Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital and
- Department of Physiology, Capital Medical University
| | - Ji-Feng Li
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital and
- Department of Physiology, Capital Medical University
| | - Jie Liu
- Department of Physiology, Capital Medical University
| | - Jing Li
- Department of Physiology, Capital Medical University
| | - Wang Wang
- Department of Physiology, Capital Medical University
| | - Jun Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital and
- Department of Physiology, Capital Medical University
| | - Chen Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital and
- Department of Beijing Hospital, Ministry of Health, Beijing, People's Republic of China
| |
Collapse
|
26
|
Wu R, Chaung WW, Dong W, Ji Y, Barrera R, Nicastro J, Molmenti EP, Coppa GF, Wang P. Ghrelin maintains the cardiovascular stability in severe sepsis. J Surg Res 2012; 178:370-7. [PMID: 22459289 DOI: 10.1016/j.jss.2011.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cardiovascular dysfunction, characterized by reduced cardiac contractility and depressed endothelium-dependent vascular relaxation, is common in severe sepsis. Although it is known that ghrelin produces beneficial effects following various adverse circulatory conditions, it remains unknown whether ghrelin increases cardiac contractility and improves vascular responsiveness to vasoactive agents in severe sepsis. METHODS Male adult rats were subjected to sepsis by cecal ligation and puncture (CLP). At 5 h after CLP, a bolus intravenous injection of 2 nmol ghrelin was followed by a continuous infusion of 12 nmol ghrelin via a primed mini-pump over 15 h. At 20 h after CLP (i.e., severe sepsis), the maximal rates of ventricular pressure increase (+dP/dt(max)) and decrease (-dP/dt(max)) were determined in vivo. In additional groups of animals, the thoracic aortae were isolated at 20 h after CLP. The aortae were cut into rings, and placed in organ chambers. Norepinephrine (NE) was used to induce vascular contraction. Dose responses for an endothelium-dependent vasodilator, acetylcholine (ACh), and an endothelium-independent vasodilator, nitroglycerine (NTG) were carried out. RESULTS +dP/dt(max) and -dP/dt(max) decreased significantly at 20 h after CLP. Treatment with ghrelin significantly increased +dP/dt(max) and -dP/dt(max) by 36% (P < 0.05) and 35% (P < 0.05), respectively. Moreover, NE-induced vascular contraction and endothelium-dependent (ACh-induced) vascular relaxation decreased significantly at 20 h after CLP. Administration of ghrelin, however, increased NE-induced vascular contraction and ACh-induced vascular relaxation. In contrast, no significant reduction in NTG-induced vascular relaxation was seen in rats with severe sepsis irrespective of ghrelin treatment. CONCLUSIONS Ghrelin may be further developed as a useful agent for maintaining cardiovascular stability in severe sepsis.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, and The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alipour MR, Aliparasti MR, Keyhanmanesh R, Almasi S, Halimi M, Ansarin K, Feizi H. Effect of ghrelin on protein kinase C-ε and protein kinase C-δ gene expression in the pulmonary arterial smooth muscles of chronic hypoxic rats. J Endocrinol Invest 2011; 34:e369-73. [PMID: 22067223 DOI: 10.3275/8056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Protein kinase C (PKC), can be activated in pulmonary arterial smooth muscle cells during hypoxia, leading to hypoxic pulmonary vasoconstriction (HPV). Studies are going on to detect the strict PKC isoform involved in the phenomenon. It has been shown that ghrelin, a 28-amino-acid peptide, may protect lungs from HPV side effects, to some extent. The aim of study was to evaluate the effect of exogenous ghrelin on PKC-ε and PKC-δ gene expression during chronic hypoxia. MATERIAL AND METHODS Twenty-four adult male Wistar rats were divided randomly in 3 groups. Hypoxic rats with saline or ghrelin treatment were placed in a normobaric hypoxic chamber for 2 weeks. Controls remained in room air. PKC-ε and PKC-δ gene expression was measured by real-time RT-PCR. RESULTS Morphometric analysis showed that ghrelin reversed the hypoxia induced pulmonary artery wall thickness. In hypoxic animals, there was a 2- and 4-fold increment in PKC-ε and PKC- δ gene expression, respectively. Ghrelin treatment reduced the overexpression of PKC-ε and PKC-δ to control animals' value. CONCLUSION Ghrelin by decreasing the expression of PKC-ε and PKC-δ in hypoxic animals reduces the HPV. Although more studies are needed, it could be an honest deduction that ghrelin affects HPV in a multifunctional manner and might be used as a therapeutic agent in the future.
Collapse
Affiliation(s)
- M R Alipour
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | | | |
Collapse
|