1
|
Giannakopoulos A, Chrysis D. Reversibility of disturbed pituitary function in pediatric conditions with psychological stressors: implications for clinical practice. Hormones (Athens) 2024; 23:709-716. [PMID: 38421589 DOI: 10.1007/s42000-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The complex communication network between the central nervous system and the hypothalamic-pituitary axis forms the basis of endocrine functional plasticity, which facilitates adaptation to changing internal and external conditions, but also makes it vulnerable to the negative effects of stressful psychological factors. Herein, clinical conditions such as functional hypothalamic amenorrhea, eating disorders, growth faltering, post-traumatic stress disorder, and pubertal disorders that may emerge during childhood or adolescence, their origin possibly including psychological stressors, are analyzed regarding their genetic susceptibility and reversibility of endocrine function. A discussion on the optimization of therapeutic management defined by managing stress and maximizing the degree and rate of reversibility follows.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, 26504, Patras, Greece.
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, 26504, Patras, Greece
| |
Collapse
|
2
|
Karaman V, Karakilic-Ozturan E, Poyrazoglu S, Gelmez MY, Bas F, Darendeliler F, Uyguner ZO. Novel variants ensued genomic imprinting in familial central precocious puberty. J Endocrinol Invest 2024; 47:2041-2052. [PMID: 38367171 PMCID: PMC11266277 DOI: 10.1007/s40618-023-02300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Central precocious puberty (CPP) is characterized by the early onset of puberty and is associated with the critical processes involved in the pubertal switch. The puberty-related gene pool in the human genome is considerably large though few have been described in CPP. Within those genes, the genomic imprinting features of the MKRN3 and DLK1 genes add additional complexity to the understanding of the pathologic pathways. This study aimed to investigate the molecular etiology in the CPP cohort. METHODS Eighteen familial CPP cases were investigated by Sanger sequencing for five CPP-related genes; DLK1, KISS1, KISS1R, MKRN3, and PROKR2. Segregation analysis was performed in all patients with pathogenic variants. Using an ELISA test, the functional pathogenicity of novel variants was also investigated in conjunction with serum delta-like 1 homolog (DLK1) concentrations. RESULTS In three probands, a known variant in the MKRN3 gene (c.982C>T/p.(Arg328Cys)) and two novel variants in the DLK1 gene (c.357C>G/p.(Tyr119Ter) and c.67+78C>T) were identified. All three were inherited from the paternal allele. The individuals carrying the DLK1 variants had low detectable DLK1 levels in their serum. CONCLUSIONS The frequencies were 5.5% (1/18) for MKRN3 11% (2/18) for DLK1, and none for either KISS1, KISS1R, and PROKR2. Low serum DLK1 levels in affected individuals supported the relationship between here described novel DLK1 gene variants with CPP. Nonsense nature of c.357C>G/p.(Tyr119Ter) and an alteration in the evolutionarily conserved nucleotide c.67+78C>T suggested the disruptive nature of the variant's compatibility with CPP.
Collapse
Affiliation(s)
- V Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey.
| | - E Karakilic-Ozturan
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - S Poyrazoglu
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Y Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - F Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - F Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z O Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey
| |
Collapse
|
3
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Dan N, Shah H, Bhatt H, Ladumor R, Salunke A, Ramachandran AV, Pandya P. Decoding the effect of photoperiodic cues in transducing kisspeptin-melatonin circuit during the pubertal onset in common carp. Mol Reprod Dev 2024; 91:e23744. [PMID: 38800960 DOI: 10.1002/mrd.23744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.
Collapse
Affiliation(s)
- Nehareeka Dan
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Himadri Bhatt
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Rahul Ladumor
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| | - Ankita Salunke
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - A V Ramachandran
- Mentor, School of Science, Department of Biomedical and Life Sciences, Navrachana University, Vadodara, India
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, India
| |
Collapse
|
5
|
Chen Z, You Q, Wang J, Dong Z, Wang W, Yang Y, Ma X, Li C, Lu W. The functional study of a novel MKRN3 missense mutation associated with familial central precocious puberty. Am J Med Genet A 2024; 194:e63460. [PMID: 38054352 DOI: 10.1002/ajmg.a.63460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Central precocious puberty (CPP) refers to a syndrome of early puberty initiation with a characteristic increase in the release of gonadotropin-releasing hormone (GnRH); therefore, it is also called GnRH-related precocious puberty. About a quarter of idiopathic central precocious puberty (ICPP) may be familial. Studies suggest that mutations of makorin ring finger protein 3 (MKRN3) can cause familial central precocious puberty (FCPP). In this report, we describe a Chinese female patient carrying a novel MKRN3 variant (c.980G>A/p.Arg327His) and presenting the CPP phenotype. This novel variant attenuated its own ubiquitination, degradation, and inhibition on the transcriptional and translational activity of GNRH1, which was verified through functional tests. We can consider this variant as a loss-of-function mutation, which subsides the inhibition of GnRH1-related signaling and gives rise to GnRH-related precocious puberty.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyan Yang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Fung W, Tan TM, Kolotuev I, Heiman MG. A sex-specific switch in a single glial cell patterns the apical extracellular matrix. Curr Biol 2023; 33:4174-4186.e7. [PMID: 37708887 PMCID: PMC10578079 DOI: 10.1016/j.cub.2023.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the overlying aECM from a solid sheet to an ∼200 nm pore, thus allowing a male sensory neuron to access the environment. Using cell-specific genetic sex reversal, we find that this switch reflects an inherent sex difference in the glial cell that is independent of the sex identity of the surrounding neurons. Through candidate and unbiased genetic screens, we find that this glial sex difference is controlled by factors shared with neurons (mab-3, lep-2, and lep-5) as well as previously unidentified regulators whose effects may be glia specific (nfya-1, bed-3, and jmjd-3.1). The switch results in male-specific glial expression of a secreted Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites where aECM pores will form. Using electron microscopy, we find that blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific glial gene expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure. Our results highlight that aECM is not a simple homogeneous meshwork, but instead is composed of discrete local features that reflect the identity of the underlying cells.
Collapse
Affiliation(s)
- Wendy Fung
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Taralyn M Tan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Pereira SA, Oliveira FCB, Naulé L, Royer C, Neves FAR, Abreu AP, Carroll RS, Kaiser UB, Coelho MS, Lofrano-Porto A. Mouse Testicular Mkrn3 Expression Is Primarily Interstitial, Increases Peripubertally, and Is Responsive to LH/hCG. Endocrinology 2023; 164:bqad123. [PMID: 37585624 PMCID: PMC10449413 DOI: 10.1210/endocr/bqad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Studies in humans and mice support a role for Makorin RING finger protein 3 (MKRN3) as an inhibitor of gonadotropin-releasing hormone (GnRH) secretion prepubertally, and its loss of function is the most common genetic cause of central precocious puberty in humans. Studies have shown that the gonads can synthesize neuropeptides and express MKRN3/Mkrn3 mRNA. Therefore, we aimed to investigate the spatiotemporal expression pattern of Mkrn3 in gonads during sexual development, and its potential regulation in the functional testicular compartments by gonadotropins. Mkrn3 mRNA was detected in testes and ovaries of wild-type mice at all ages evaluated, with a sexually dimorphic expression pattern between male and female gonads. Mkrn3 expression was highest peripubertally in the testes, whereas it was lower peripubertally than prepubertally in the ovaries. Mkrn3 is expressed primarily in the interstitial compartment of the testes but was also detected at low levels in the seminiferous tubules. In vitro studies demonstrated that Mkrn3 mRNA levels increased in human chorionic gonadotropin (hCG)-treated Leydig cell primary cultures. Acute administration of a GnRH agonist in adult mice increased Mkrn3 expression in testes, whereas inhibition of the hypothalamic-pituitary-gonadal axis by chronic administration of GnRH agonist had the opposite effect. Finally, we found that hCG increased Mkrn3 mRNA levels in a dose-dependent manner. Taken together, our developmental expression analyses, in vitro and in vivo studies show that Mkrn3 is expressed in the testes, predominantly in the interstitial compartment, and that Mkrn3 expression increases after puberty and is responsive to luteinizing hormone/hCG stimulation.
Collapse
Affiliation(s)
- Sidney A Pereira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fernanda C B Oliveira
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carine Royer
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Francisco A R Neves
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michella S Coelho
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasilia, Brasilia-DF, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Magnotto JC, Mancini A, Bird K, Montenegro L, Tütüncüler F, Pereira SA, Simas V, Garcia L, Roberts SA, Macedo D, Magnuson M, Gagliardi P, Mauras N, Witchel SF, Carroll RS, Latronico AC, Kaiser UB, Abreu AP. Novel MKRN3 Missense Mutations Associated With Central Precocious Puberty Reveal Distinct Effects on Ubiquitination. J Clin Endocrinol Metab 2023; 108:1646-1656. [PMID: 36916482 PMCID: PMC10653150 DOI: 10.1210/clinem/dgad151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.
Collapse
Affiliation(s)
- John C Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keisha Bird
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Luciana Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Filiz Tütüncüler
- Department of Pediatrics and Pediatric Endocrinology Unit, Trakya University Faculty of Medicine, Edirne 22030, Turkey
| | - Sidney A Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vitoria Simas
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonardo Garcia
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie A Roberts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Delanie Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Magnuson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Priscila Gagliardi
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes, and Metabolism, Nemours Children's Health, Jacksonville, FL 32207, USA
| | - Selma F Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Kutlu E, Ozgen LT, Bulut H, Kocyigit A, Ustunova S, Hüseyinbas O, Torun E, Cesur Y. Investigation of irisin's role in pubertal onset physiology in female rats. Peptides 2023; 163:170976. [PMID: 36796677 DOI: 10.1016/j.peptides.2023.170976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE The timing of pubertal development is closely related to metabolic status and energy reserves. It is thought that irisin, which is involved in the regulation of energy metabolism and is shown to be present in the hypothalamo-pituitary-gonadal (HPG) axis, may play a role in this process. In our study, we aimed to investigate the effect of irisin administration on pubertal development and HPG axis in rats. DESIGN-METHODS 36 female rats were included in the study were divided into 3 groups: 100 ng/kg/day irisin treatment group (irisin-100), 50 ng/kg/day irisin treatment group (irisin-50), and control group. On the 38th day, serum samples were taken to determine levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), estradiol and irisin. Brain hypothalamus samples were taken to determine levels of pulsatile gonadotropin-releasing hormone (GnRH), kisspeptin, neurokinin-B, dynorphin (Dyn), and makorin ring finger protein-3 (MKRN3). RESULTS Vaginal opening and estrus were seen firstly in the irisin-100 group. At the end of the study, the highest rate of vaginal patency was found in the irisin-100 group. Hypothalamic protein expression levels of GnRH, NKB and Kiss1 in homogenates; serum FSH, LH, and estradiol levels were the highest in the irisin-100 group, followed by the irisin-50 and control groups, respectively. Ovarian sizes were significantly greater in the irisin-100 group compared to the other groups. The hypothalamic protein expression levels of MKRN3 and Dyn were the lowest in the irisin-100 group. CONCLUSIONS In this experimental study, irisin triggered the onset of puberty in a dose-dependent manner. Irisin administration caused the excitatory system to dominate in the hypothalamic GnRH pulse generator.
Collapse
Affiliation(s)
- Esra Kutlu
- Health Sciences University Istanbul Umraniye Training and Research Hospital, Department of Pediatrics, Division of Pediatric Endocrinology, Umraniye, Istanbul, Turkey.
| | - Lker Tolga Ozgen
- Bezmialem Vakif University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Fatih, Istanbul, Turkey
| | - Huri Bulut
- Istinye University, Faculty of Medicine, Department of Biochemistry, Zeytinburnu, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Bezmialem Vakif University, Faculty of Medicine, Department of Biochemistry, Fatih, Istanbul, Turkey
| | - Savas Ustunova
- Bezmialem Vakif University, Faculty of Medicine, Department of Physiology, Fatih, Istanbul, Turkey
| | - Onder Hüseyinbas
- Bezmialem Vakif University, Faculty of Medicine, Animal Research Laboratory, Fatih, Istanbul, Turkey
| | - Emel Torun
- Bezmialem Vakif University, Faculty of Medicine, Department of Pediatrics, Fatih, Istanbul, Turkey
| | - Yasar Cesur
- Bezmialem Vakif University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Fatih, Istanbul, Turkey
| |
Collapse
|
10
|
Naulé L, Mancini A, Pereira SA, Gassaway BM, Lydeard JR, Magnotto JC, Kim HK, Liang J, Matos C, Gygi SP, Merkle FT, Carroll RS, Abreu AP, Kaiser UB. MKRN3 inhibits puberty onset via interaction with IGF2BP1 and regulation of hypothalamic plasticity. JCI Insight 2023; 8:e164178. [PMID: 37092553 PMCID: PMC10243807 DOI: 10.1172/jci.insight.164178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandra Mancini
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sidney A. Pereira
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon M. Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John R. Lydeard
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Magnotto
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Han Kyeol Kim
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joy Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cynara Matos
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian T. Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust – Medical Research Council Institute of Metabolic Science and
- Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Fung W, Tan TM, Kolotuev I, Heiman MG. A sex-specific switch in a single glial cell patterns the apical extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533199. [PMID: 36993293 PMCID: PMC10055199 DOI: 10.1101/2023.03.17.533199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the aECM into a ∼200 nm pore, allowing a male sensory neuron to access the environment. We find that this glial sex difference is controlled by factors shared with neurons ( mab-3, lep-2, lep-5 ) as well as previously unidentified regulators whose effects may be glia-specific ( nfya-1, bed-3, jmjd-3.1 ). The switch results in male-specific expression of a Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites of aECM pore formation. Blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure.
Collapse
Affiliation(s)
- Wendy Fung
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Taralyn M. Tan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Yang Y, Luo Y, Huang S, Tao Y, Li C, Wang C. MKRN1/2 serve as tumor suppressors in renal clear cell carcinoma by regulating the expression of p53. Cancer Biomark 2023; 36:267-278. [PMID: 36938725 DOI: 10.3233/cbm-210559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) belongs to renal cell carcinoma which is a very aggressive malignant tumor with poor prognosis and high mortality. The MKRN family includes three members MKRN1, MKRN2 and MKRN3, which are closely related to cancers, and have been involved in many studies. OBJECTIVE This study aimed to explore the roles of MKRN family in KIRC. METHODS The expression of MKRNs was analyzed using the UALCAN database, prognostic analysis was performed with the GEPIA2 and Kaplan-Meier Plotter database, and correlation analysis was assessed by GEPIA2. The CCK-8 and colony formation assay were performed to detect cell proliferation, wound healing assays were performed to detect cell migration, cell cycles were detected by flow cytometry analysis, GST pull-down and co-immunoprecipitation assays were performed to detect the interaction of proteins, and the expression of MKRNs, p53 and other proteins were detect by immunoblotting analysis or quantitative PCR (qPCR). RESULTS MKRN1 and MKRN2 were lowly expressed in KIRC samples compared to the corresponding normal tissues, and KIRC patients with high levels of MKRN1 and MKRN2 showed higher overall survival (OS) and disease free survival (DFS) rates. The overexpression of MKRN1 and MKRN2 inhibited the proliferation of human KIRC cells by arresting the cell cycles, but shows little effect on cells migration. The expression of MKRN1 and MKRN2 are correlated, and MKRN1 directly interacts with MKRN2. Moreover, both MKRN1 and MKRN2 were closely correlated with the expression of TP53 in KIRC tumor, and promoted the expression of p53 both at protein and mRNA levels. CONCLUSIONS Our study suggests that MKRN1 and MKRN2 serve as tumor suppressors in KIRC, and act as promising therapeutic targets for KIRC treatment.
Collapse
Affiliation(s)
- Yun Yang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Yanyan Luo
- Department of Clinical Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Shuting Huang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Yonghui Tao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengcheng Wang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,School of Medicine, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
14
|
Lee JS, Lee YA, Shin CH, Suh DI, Lee YJ, Yon DK. Long-term health outcomes of early menarche in women: an umbrella review. QJM 2022; 115:837-847. [PMID: 35929081 DOI: 10.1093/qjmed/hcac187] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is limited comprehensive evidence on the potential association between early menarche and subsequent health outcomes. AIM To evaluate the existing evidence for the association of early menarche with later health outcomes and assesse the strength and validity of the evidence for these associations. DESIGN Umbrella review. METHODS We searched PubMed, Web of Science, Embase, CINAHL, Cochrane Database of Systematic Reviews and Google Scholar, and manually screened retrieved references to find systematic reviews and meta-analyses from inception to July 2021. Early menarche was defined by taking into account ethnicity and birth year, and the outcomes were long-term consequences in adulthood. RESULTS Thirteen reviews encompassing 283 original articles and over 6.8 million participants from 39 countries across 5 continents were included. In categorical outcomes, early menarche was associated with metabolic syndrome (n = 37 543 pooled adjusted relative risk [aRR] 1.56, 95% confidence interval (CI) 1.33, 1.83; high certainty [Hi]), endometrial cancer (n = 874 188, aRR 1.40, 95% CI 1.17, 1.68; Hi), type 2 diabetes mellitus/impaired glucose tolerance (n = 1 185 444, aRR 1.30, 95% CI 1.19, 1.42; Hi), breast cancer (n = 103 574, aRR 1.19, 95% CI 1.06, 1.33; Hi), death from all causes (n = 152 747, aRR 1.11, 95% CI 1.03, 1.19; Hi), obesity (n = 54 006, aRR 1.68, 95% CI 1.53, 1.84; moderate certainty [Mod]), gestational diabetes mellitus (n = 48 535, aRR 1.32, 95% CI 1.09, 1.58; Mod), hypertension (n = 1 682 689, aRR 1.24, 95% CI 1.20, 1.29; Mod), endometriosis (n = 885 390, aRR 1.22, 95% CI 1.09, 1.37; Mod), ovarian cancer (n = 1 022 451, aRR 1.17, 95% CI 1.04, 1.31; Mod) and asthma (n = 22 859, aRR 1.31, 95% CI 1.09, 1.57; low certainty [Lo]). For continuous outcomes, early menarche was associated with increased body mass index (BMI) in adults ≥40 years of age (n = 121 943, adjusted pooled standardized mean difference [aSMD] 0.30, 95% CI 0.28, 0.32; Mod), BMI in adults <40 years of age (n = 124 728, aSMD 0.39, 95% CI 0.36, 0.43; Mod), serum fasting insulin level (n = 17 020, aSMD 0.52, 95% CI 0.48, 0.57; Mod) and homeostatic model assessment of insulin resistance (n = 7925, aSMD 0.27, 95% CI 0.19, 0.35; Mod). CONCLUSION We found varied levels of evidence for the association between early menarche and the development of subsequent health problems. Our results recommend that physicians should pay attention to these associations, as early menarche can be a potential indicator of metabolic disorders and female-specific cancer and cause death in women.
Collapse
Affiliation(s)
- Jeong-Seon Lee
- From the Department of Pediatrics, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Mariani M, Fintini D, Cirillo G, Palumbo S, Del Giudice EM, Bocchini S, Manco M, Cappa M, Grandone A. MKRN3 circulating levels in Prader-Willi syndrome: a pilot study. J Endocrinol Invest 2022; 45:2165-2170. [PMID: 35854182 DOI: 10.1007/s40618-022-01860-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
CONTEXT Hypogonadism in Prader-Willi syndrome (PWS) is generally attributed to hypothalamic dysfunction or to primary gonadal defect. MKRN3, a maternal imprinted gene located on 15q11.2-q13 region, encodes makorin ring finger protein 3, whose deficiency causes precocious puberty, an extremely rare symptom in PWS. OBJECTIVE This study aimed to evaluate MKRN3 levels in patients with PWS and to analyze its correlation with sexual hormone levels, insulin resistance and Body Mass Index (BMI). METHODS We performed an observational cross-sectional study and enrolled 80 patients with genetically confirmed diagnosis of PWS with median age of 9.6 years. RESULTS MKRN3 levels were measurable in 49 PWS patients with a geometric mean of 34.9 ± 22 pg/ml (median: 28.4). Unmeasurable levels of MKRN3 were found in 31 patients. No statistically significant differences were found between patients with and without measurable MKRN3 levels for any clinical, biochemical, or genetic characteristics. However, MKRN3 levels were inversely correlated with HOMA-IR index (p: 0.005) and HbA1c (p: 0.046) values. No statistically significant correlations were found between MKRN3 and LH, estradiol and testosterone concentrations, pubertal development and genetic defect, whereas a direct correlation with FSH was found (p: 0.007). CONCLUSIONS The typical genetic defect of PWS should lead to unmeasurable levels of the MKRN3 protein due to the inactivation of the paternal allele. Measurable circulating MKRN3 could suggest the possible involvement of tissue-specific imprinting mechanisms and other regulatory factors in gene expression. Correlations with HOMA-IR index, HbA1c, and FSH suggest peripheral actions of MKRN3, but future studies are warranted to investigate this topic.
Collapse
Affiliation(s)
- M Mariani
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy.
| | - D Fintini
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy
| | - G Cirillo
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - S Palumbo
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - E M Del Giudice
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - S Bocchini
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy
| | - M Manco
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children's Hospital, Rome, Italy
| | - M Cappa
- Endocrinology Unit, University Pediatric Department, Bambino Gesù Children's Hospital, Piazza S.Onofrio, 4, 00165, Rome, Italy
| | - A Grandone
- Department of Woman, Child, General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
16
|
Proteins and Proteases of Prader-Willi Syndrome: A Comprehensive Review and Perspectives. Biosci Rep 2022; 42:231361. [PMID: 35621394 PMCID: PMC9208313 DOI: 10.1042/bsr20220610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Prader–Willi Syndrome (PWS) is a rare complex genetic disease that is associated with pathological disorders that include endocrine disruption, developmental, neurological, and physical problems as well as intellectual, and behavioral dysfunction. In early stage, PWS is characterized by respiratory distress, hypotonia, and poor sucking ability, causing feeding concern and poor weight gain. Additional features of the disease evolve over time. These include hyperphagia, obesity, developmental, cognitive delay, skin picking, high pain threshold, short stature, growth hormone deficiency, hypogonadism, strabismus, scoliosis, joint laxity, or hip dysplasia. The disease is associated with a shortened life expectancy. There is no cure for PWS, although interventions are available for symptoms management. PWS is caused by genetic defects in chromosome 15q11.2-q13, and categorized into three groups, namely Paternal deletion, Maternal uniparental disomy, and Imprinting defect. PWS is confirmed through genetic testing and DNA-methylation analysis. Studies revealed that at least two key proteins namely MAGEL-2 and NECDIN along with two proteases PCSK1 and PCSK2 are linked to PWS. Herein, we summarize our current understanding and knowledge about the role of these proteins and enzymes in various biological processes associated with PWS. The review also describes how loss and/or impairment of functional activity of these macromolecules can lead to hormonal disbalance by promoting degradation of secretory granules and via inhibition of proteolytic maturation of precursor-proteins. The present review will draw attention of researchers, scientists, and academicians engaged in PWS study and will help to identify potential targets and molecular pathways for PWS intervention and treatment.
Collapse
|
17
|
Zhao X, Erickson M, Mohammed R, Kentner AC. Maternal immune activation accelerates puberty initiation and alters mechanical allodynia in male and female C57BL6/J mice. Dev Psychobiol 2022; 64:e22278. [DOI: 10.1002/dev.22278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| | - Mary Erickson
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| | - Ruqayah Mohammed
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program Massachusetts College of Pharmacy and Health Sciences Boston Massachusetts USA
| |
Collapse
|
18
|
de Oliveira Neto CP, Azulay RSDS, de Almeida AGFP, Tavares MDGR, Vaz LHG, Leal IRL, Gama MEA, Ribeiro MRC, Nascimento GC, Magalhães M, dos Santos WC, Facundo AN, Faria MDS, Lago DCF. Differences in Puberty of Girls before and during the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4733. [PMID: 35457600 PMCID: PMC9031193 DOI: 10.3390/ijerph19084733] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
In the COVID-19 pandemic, there was an increase in consultations for precocious puberty. We aim to analyze differences in female puberty before and during the COVID-19 pandemic. A cross-sectional analytical study was designed at the Pediatric Endocrinology Clinic of the University Hospital of the Federal University of Maranhão in São Luis, Brazil. We included 55 girls with precocious puberty, 22 who started puberty during the pandemic and 33 who started puberty before the pandemic. Clinical, anthropometric, laboratory and imaging variables were compared between groups. Statistics were performed to determine if there was a statistical difference between the groups. Girls with puberty during the pandemic had higher Z-scores for weight (1.08 ± 1.29 versus 0.69 ± 0.83; p = 0.04), lower ovarian volume (1.88 ± 0.95 versus 3.15 ± 2.31; p = 0.01), and smaller differences between thelarche noticed by the parents and the diagnosis (6.63 ± 5.21 versus 12.15 ± 9.96; p = 0.02). The association between precocious puberty during the pandemic with higher Z-scores for weight, lower ovarian volume, and a reduction in the time between the perception of pubertal findings by parents and the diagnosis suggests the influence of the pandemic on the normal time of puberty.
Collapse
Affiliation(s)
- Clariano Pires de Oliveira Neto
- Service of Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (R.S.d.S.A.); (A.G.F.P.d.A.); (M.d.G.R.T.); (G.C.N.); (A.N.F.)
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luis 65080-805, Brazil
| | - Rossana Santiago de Sousa Azulay
- Service of Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (R.S.d.S.A.); (A.G.F.P.d.A.); (M.d.G.R.T.); (G.C.N.); (A.N.F.)
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
| | - Ana Gregória Ferreira Pereira de Almeida
- Service of Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (R.S.d.S.A.); (A.G.F.P.d.A.); (M.d.G.R.T.); (G.C.N.); (A.N.F.)
| | - Maria da Glória Rodrigues Tavares
- Service of Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (R.S.d.S.A.); (A.G.F.P.d.A.); (M.d.G.R.T.); (G.C.N.); (A.N.F.)
| | - Luciana Helena Gama Vaz
- Service of Pediatric Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (L.H.G.V.); (I.R.L.L.)
| | - Ianik Rafaela Lima Leal
- Service of Pediatric Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (L.H.G.V.); (I.R.L.L.)
| | - Monica Elinor Alves Gama
- Department of Medicine III, Federal University of Maranhão, São Luis 65020-240, Brazil; (M.E.A.G.); (M.R.C.R.)
| | | | - Gilvan Cortês Nascimento
- Service of Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (R.S.d.S.A.); (A.G.F.P.d.A.); (M.d.G.R.T.); (G.C.N.); (A.N.F.)
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
| | - Marcelo Magalhães
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
- Clinical Research Center, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil
| | - Wellyandra Costa dos Santos
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
- Clinical Research Center, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil
| | - Alexandre Nogueira Facundo
- Service of Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (R.S.d.S.A.); (A.G.F.P.d.A.); (M.d.G.R.T.); (G.C.N.); (A.N.F.)
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
| | - Manuel dos Santos Faria
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luis 65080-805, Brazil
- Clinical Research Center, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil
| | - Débora Cristina Ferreira Lago
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luis 65020-070, Brazil; (M.M.); (W.C.d.S.); (M.d.S.F.); (D.C.F.L.)
- Service of Pediatric Endocrinology, University Hospital, Federal University of Maranhão, São Luis 65020-070, Brazil; (L.H.G.V.); (I.R.L.L.)
| |
Collapse
|
19
|
Sun X, Zheng D, Guo W. Comprehensive Analysis of a Zinc Finger Protein Gene–Based Signature with Regard to Prognosis and Tumor Immune Microenvironment in Osteosarcoma. Front Genet 2022; 13:835014. [PMID: 35281811 PMCID: PMC8914066 DOI: 10.3389/fgene.2022.835014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor that seriously threatens the lives of teenagers and children. Zinc finger (ZNF) protein genes encode the largest transcription factor family in the human genome. Aberrant expressions of ZNF protein genes widely occur in osteosarcoma, and these genes are therefore attractive biomarker candidates for prognosis prediction. In this study, we conducted a comprehensive analysis of ZNF protein genes in osteosarcoma and identified prognosis-related ZNF protein genes. Then, we constructed a prognostic signature based on seven prognosis-related ZNF protein genes and stratified patients into high- and low-risk groups. The seven genes included MKRN3, ZNF71, ZNF438, ZNF597, ATMIN, ZNF692, and ZNF525. After validation of the prognostic signature in internal and external cohorts, we constructed a nomogram including clinical features such as sex and age and the relative risk score based on the risk signature. Functional enrichment analysis of the risk-related differentially expressed genes revealed that the prognostic signature was closely associated with immune-related biological processes and signaling pathways. Moreover, we found significant differences between the high- and low-risk groups for the scores of diverse immune cell subpopulations, including CD8+ T cells, neutrophils, Th1 cells, and TILs. Regarding immune function, APC co-inhibition, HLA, inflammation promotion, para-inflammation, T-cell co-inhibition, and the type I IFN response were significantly different between the high- and low-risk groups. Of the seven ZNF protein genes, lower expressions of ATMIN, MKRN3, ZNF71, ZNF438, and ZNF597 were correlated with a high risk, while higher expressions of ZNF525 and ZNF692 were associated with a high risk. The Kaplan–Meier survival analysis suggested that lower expressions of ATMIN, ZNF438, and ZNF597 and the higher expression of ZNF692 were associated with worse overall survival in osteosarcoma. In conclusion, our ZNF protein gene–based signature was a novel and clinically useful prognostic biomarker for osteosarcoma patients.
Collapse
|
20
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Moise-Silverman J, Silverman LA. A review of the genetics and epigenetics of central precocious puberty. Front Endocrinol (Lausanne) 2022; 13:1029137. [PMID: 36531492 PMCID: PMC9757059 DOI: 10.3389/fendo.2022.1029137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Gonadotrophin dependent sexual precocity, commonly referred to as central precocious puberty (CPP), results from a premature reactivation of the hypothalamic-pituitary-gonadal (HPG) axis before the normal age of pubertal onset. CPP is historically described as girls who enter puberty before the age of eight, and boys before the age of nine. Females are more likely to be diagnosed with idiopathic CPP; males diagnosed with CPP have a greater likelihood of a defined etiology. These etiologies may include underlying CNS congenital defects, tumors, trauma, or infections as well as environmental, genetic, and epigenetic factors. Recently, genetic variants and mutations which may cause CPP have been identified at both the level of the hypothalamus and the pituitary. Single nucleotide polymorphisms (SNPs), monogenetic mutations, and modifications of the epigenome have been evaluated in relationship to the onset of puberty; these variants are thought to affect the development, structure and function of GnRH neurons which may lead to either precocious, delayed, or absent pubertal reactivation. This review will describe recent advances in the field of the genetic basis of puberty and provide a clinically relevant approach to better understand these varying etiologies of CPP.
Collapse
Affiliation(s)
| | - Lawrence A. Silverman
- Division of Pediatric Endocrinology Goyreb Children’s Hospital – Atlantic Health System, Morristown, NJ, United States
- *Correspondence: Lawrence A. Silverman,
| |
Collapse
|
22
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
23
|
Zhang S, Liu C, Li G, Liu Y, Wang X, Qiu Y. Elevated expression of MKRN3 in squamous cell carcinoma of the head and neck and its clinical significance. Cancer Cell Int 2021; 21:557. [PMID: 34689784 PMCID: PMC8543891 DOI: 10.1186/s12935-021-02271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) is one of the most common types of cancer that cause a substantial number of cancer-related deaths. Our previous study has revealed that makorin ring finger protein 3 (MKRN3) may act as a key regulator of the SCCHN tumorigenesis; however, its specific role in SCCHN progression has not been reported. METHODS The Cancer Genome Atlas (TCGA) data analysis and quantitative polymerase chain reaction (qPCR) were used to quantify the MKRN3 mRNA expression levels in SCCHN; immunohistochemical staining or immunoblotting analyses were performed to detect MKRN3 protein expression. Kaplan-Meier plotter was used to assess the prognostic values of MKRN3 in terms of overall survival and disease-free survival. The expression differences based on various clinicopathological features were evaluated using subgroup analysis and forest map analysis. The regulatory mechanism of MKRN3 was further investigated using gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, STRING was used to perform a co-expression and enrichment analysis for MKRN3. Homologous modeling, molecular docking, and western blot analyses were performed to investigate the relationship between MKRN3 and its potential target gene P53. RESULTS MKRN3 was ectopically expressed between cancerous and noncancerous SCCHN tissues, and its expression level was tightly associated with high T classifications as well as advanced clinical stages. qPCR analysis revealed that MKRN3 was upregulated in the SCCHN cell line. Moreover, Kaplan-Meier and Cox regression analyses indicated that SCCHN patients with high MKRN3 expression had poorer prognosis and that MKRN3 was a potential prognostic marker for SCCHN. Using gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, we determined that MKRN3 may be involved in the regulation of synthesis and metabolism and cell growth, death and motility, as well as cancer pathways associated with SCCHN progression. Mechanism investigation further revealed that P53, a potential target of MKRN3, may be involved in the SCCHN tumorigenesis mediated by MKRN3. CONCLUSIONS We performed a comprehensive evaluation of the clinical significance of MKRN3 and explored its underlying mechanisms. We concluded that MKRN3 represents a valuable predictive biomarker and potential therapeutic target in SCCHN.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China
| | - Xingwei Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China. .,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China.
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China. .,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Abstract
Puberty is the process through which reproductive competence is achieved and comprises gonadarche and adrenarche. Breast development is the initial physical finding of pubertal onset in girls and typically occurs between 8 and 13 years. Menarche normally occurs 2 to 3 years after the onset of breast development. Pubertal onset is controlled by the gonadotropin-releasing hormone pulse generator in the hypothalamus; however, environmental factors such as alterations in energy balance and exposure to endocrine-disrupting chemicals can alter the timing of pubertal onset. Improvement in nutritional and socioeconomic conditions over the past two centuries has been associated with a secular trend in earlier pubertal onset. Precocious puberty is defined as onset of breast development prior to 8 years and can be central or peripheral. Delayed puberty can be hypogonadotropic or hypergonadotropic and is defined as lack of breast development by 13 years or lack of menarche by 16 years. Both precocious and delayed puberty may have negative effects on self-esteem, potentially leading to psychosocial stress. Patients who present with pubertal differences require a comprehensive assessment to determine the underlying etiology and to devise an effective treatment plan.
Collapse
Affiliation(s)
- Aviva B Sopher
- Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Sharon E Oberfield
- Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Selma F Witchel
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Li M, Chen Y, Liao B, Tang J, Zhong J, Lan D. The role of kisspeptin and MKRN3 in the diagnosis of central precocious puberty in girls. Endocr Connect 2021; 10:1147-1154. [PMID: 34414898 PMCID: PMC8494402 DOI: 10.1530/ec-21-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the characteristics and significance of serum kisspeptin and makorin ring finger protein 3 (MKRN3) levels for the diagnosis of central precocious puberty (CPP) in girls. METHOD Thirty four individuals with CPP, 17 individuals with premature thelarche (PT), and 28 age-matched prepubertal girls as normal control (NC) were recruited in this case-control study. Physical measurements included BMI and tests for breast, bone, and sexual characteristics. Biochemical measurements included serum LH, FSH, estradiol, insulin-like growth factor-1, MKRN3, and kisspeptin. Blood samples were taken from individuals with CPP and PT before the gonadotrophin-releasing hormone stimulation test and at 30, 60, 90, and 120 min after injection with triptorelin. RESULTS Serum kisspeptin levels were higher in the CPP group when compared to the NC group (P = 0.020), while serum MKRN3 levels were lower in the two groups (P = 0.028). There were no significant differences between the CPP and PT groups as well as the PT and NC groups (all, P > 0.05). The cut-off value of serum kisspeptin differentiating patients with CPP from those without CPP was 0.40 nmol/L, with 82.4% sensitivity and 57.1% specificity, while the cut-off value of serum MKRN3 was 0.33 pmol/L, with 79.4% sensitivity and 53.6% specificity. The area under the curves (AUCs) of both kisspeptin and MKRN3 for differentiating those girls with CPP from PT were less than 0.5. CONCLUSIONS Serum levels of kisspeptin and MKRN3 may play an auxiliary role in predicting CPP. However, the two measurements were not able to differentiate girls with CPP from PT and prepubertal control. This study emphasizes the need to search for markers to simplify the accurate diagnosis of CPP in girls.
Collapse
Affiliation(s)
- Mei Li
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanfei Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binrong Liao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Tang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence should be addressed to D Lan:
| |
Collapse
|
26
|
Yin X, Wang J, Han T, Tingting Z, Li Y, Dong Z, Wang W, Li C, Lu W. A Novel Loss-of-Function MKRN3 Variant in a Chinese Patient With Familial Precocious Puberty: A Case Report and Functional Study. Front Genet 2021; 12:663746. [PMID: 34421985 PMCID: PMC8378174 DOI: 10.3389/fgene.2021.663746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Central precocious puberty (CPP) is one of the most common and complex problems in clinical pediatric endocrinology practice. Mutation of the MKRN3 gene can cause familial CPP. Methods and Results: Here we reported a Chinese patient bearing a novel MKRN3 mutation (c.G277A/p.Gly93Ser) and showing the CPP phenotype. Functional studies found that this mutation of MKRN3 attenuated its autoubiquitination, degradation, and inhibition on the transcriptional activity of GNRH1, KISS1, and TAC3 promoters. Conclusion: MKRN3 (Gly93Ser) is a loss-of-function mutation, which attenuates the inhibition on GnRH1-related signaling, suggesting that this mutant can lead to central precocious puberty.
Collapse
Affiliation(s)
- Xueling Yin
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Tianting Han
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Tingting
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Li
- Shanghai QingCongquan Training Center for Children With Special Needs, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Li J, Chen W, Li D, Gu S, Liu X, Dong Y, Jin L, Zhang C, Li S. Conservation of Imprinting and Methylation of MKRN3, MAGEL2 and NDN Genes in Cattle. Animals (Basel) 2021; 11:1985. [PMID: 34359112 PMCID: PMC8300276 DOI: 10.3390/ani11071985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is the epigenetic mechanism of transcriptional regulation that involves differential DNA methylation modification. Comparative analysis of imprinted genes between species can help us to investigate the biological significance and regulatory mechanisms of genomic imprinting. MKRN3, MAGEL2 and NDN are three maternally imprinted genes identified in the human PWS/AS imprinted locus. This study aimed to assess the allelic expression of MKRN3, MAGEL2 and NDN and to examine the differentially methylated regions (DMRs) of bovine PWS/AS imprinted domains. An expressed single-nucleotide polymorphism (SNP)-based approach was used to investigate the allelic expression of MKRN3, MAGEL2 and NDN genes in bovine adult tissues and placenta. Consistent with the expression in humans and mice, we found that the MKRN3, MAGEL2 and NDN genes exhibit monoallelic expression in bovine somatic tissues and the paternal allele expressed in the bovine placenta. Three DMRs, PWS-IC, MKRN3 and NDN DMR, were identified in the bovine PWS/AS imprinted region by analysis of the DNA methylation status in bovine tissues using the bisulfite sequencing method and were located in the promoter and exon 1 of the SNRPN gene, NDN promoter and 5' untranslated region (5'UTR) of MKRN3 gene, respectively. The PWS-IC DMR is a primary DMR inherited from the male or female gamete, but NDN and MKRN3 DMR are secondary DMRs that occurred after fertilization by examining the methylation status in gametes.
Collapse
Affiliation(s)
- Junliang Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Weina Chen
- Department of Traditional Chinese Medicine, Hebei University, Baoding 071000, China;
| | - Dongjie Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050081, China;
| | - Shukai Gu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Xiaoqian Liu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Yanqiu Dong
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Lanjie Jin
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| |
Collapse
|
28
|
Correa‐da‐Silva F, Fliers E, Swaab DF, Yi C. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021; 33:e12994. [PMID: 34156126 PMCID: PMC8365683 DOI: 10.1111/jne.12994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
29
|
Zubkova NA, Kolodkina AA, Makretskaya NA, Okorokov PL, Pogoda TV, Vasiliev EV, Petrov VM, Tiulpakov AN. [Clinical and molecular genetic features of 3 family cases of the central precocious puberty, due to MKRN3 gene defects]. ACTA ACUST UNITED AC 2021; 67:55-61. [PMID: 34297502 DOI: 10.14341/probl12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Gonadotropin-dependent precocious puberty (central) is a condition resulting from the early (up to 8 years in girls and 9 years in boys) reactivation of the hypothalamic-pituitary-gonadal axis. An increase in the secretion of sex steroids by the gonads in this form is a consequence of the stimulation of the sex glands by gonadotropic hormones of the pituitary gland. In the absence of central nervous system abnormalities, CPP is classified as idiopathic and as familial in some cases, emphasizing the genetic origin of this disorder. Loss-of-function mutations in Makorin Ring Finger Protein 3 (MKRN3) are the most common identified genetic cause of central precocious puberty compared to sporadic cases. In the present study we performed the first descrition of 3 family cases of central precocious puberty duo to novel MKRN3 gene mutation detected by NGS in the Russian Federation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A N Tiulpakov
- Endocrinology Research Centre; Research Centre for Medical Genetics
| |
Collapse
|
30
|
Li C, Han T, Li Q, Zhang M, Guo R, Yang Y, Lu W, Li Z, Peng C, Wu P, Tian X, Wang Q, Wang Y, Zhou V, Han Z, Li H, Wang F, Hu R. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty. Nucleic Acids Res 2021; 49:3796-3813. [PMID: 33744966 PMCID: PMC8053111 DOI: 10.1093/nar/gkab155] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
The family of Poly(A)-binding proteins (PABPs) regulates the stability and translation of messenger RNAs (mRNAs). Here we reported that the three members of PABPs, including PABPC1, PABPC3 and PABPC4, were identified as novel substrates for MKRN3, whose deletion or loss-of-function mutations were genetically associated with human central precocious puberty (CPP). MKRN3-mediated ubiquitination was found to attenuate the binding of PABPs to the poly(A) tails of mRNA, which led to shortened poly(A) tail-length of GNRH1 mRNA and compromised the formation of translation initiation complex (TIC). Recently, we have shown that MKRN3 epigenetically regulates the transcription of GNRH1 through conjugating poly-Ub chains onto methyl-DNA bind protein 3 (MBD3). Therefore, MKRN3-mediated ubiquitin signalling could control both transcriptional and post-transcriptional switches of mammalian puberty initiation. While identifying MKRN3 as a novel tissue-specific translational regulator, our work also provided new mechanistic insights into the etiology of MKRN3 dysfunction-associated human CPP.
Collapse
Affiliation(s)
- Chuanyin Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200031, China
| | - Tianting Han
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingrun Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghuan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Guo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenli Lu
- Department of Juvenile Endocrinology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhengwei Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Qinqin Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuexiang Wang
- Institute of Nutritional and Health Science, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Vincent Zhou
- Shao-Hua-Ye M.D. Inc, 416 W Las Tunas Dr Ste 205, San Gabriel, CA 91776, USA
| | - Ziyan Han
- Occidental College, 1600 campus Rd, LA, CA 90041, USA
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200001, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Disease, Shanghai 200001, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200031, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease, Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
31
|
Prader-Willi Syndrome and Hypogonadism: A Review Article. Int J Mol Sci 2021; 22:ijms22052705. [PMID: 33800122 PMCID: PMC7962179 DOI: 10.3390/ijms22052705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prader-Labhart-Willi syndrome (PWS) is a rare genetic disorder characterized by intellectual disability, behavioural problems, hypothalamic dysfunction and specific dysmorphisms. Hypothalamic dysfunction causes dysregulation of energy balance and endocrine deficiencies, including hypogonadism. Although hypogonadism is prevalent in males and females with PWS, knowledge about this condition is limited. In this review, we outline the current knowledge on the clinical, biochemical, genetic and histological features of hypogonadism in PWS and its treatment. This was based on current literature and the proceedings and outcomes of the International PWS annual conference held in November 2019. We also present our expert opinion regarding the diagnosis, treatment, care and counselling of children and adults with PWS-associated hypogonadism. Finally, we highlight additional areas of interest related to this topic and make recommendations for future studies.
Collapse
|
32
|
Jeong HR, Yoon JS, Lee HJ, Shim YS, Kang MJ, Hwang IT. Serum level of NPTX1 is independent of serum MKRN3 in central precocious puberty. J Pediatr Endocrinol Metab 2021; 34:59-63. [PMID: 33180049 DOI: 10.1515/jpem-2020-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Makorin ring finger protein 3 (MKRN3) is associated with the initiation of puberty, and loss of function mutation of MKRN3 is the most common genetic cause of central precocious puberty (CPP). A recent study reported that MKRN3 interacts with and suppresses neural pentraxin-1 precursor (NPTX1) activity via polyubiquitination during early puberty in the mouse hypothalamus. This study investigated the correlation between serum NPTX1 and MKRN3 in CPP girls and predicted the potential role of NPTX1 in pubertal progression. METHODS In this case-control study, we examined 34 girls diagnosed with CPP and 34 healthy prepubertal girls. Anthropometric and hormonal parameters were measured and serum levels of NPTX1 and MKRN3 were evaluated with commercial enzyme-linked immunosorbent assay kits. RESULTS Serum MKRN3 level decreased significantly in CPP patients compared to controls (344.48 ± 333.77 and 1295.21 ± 780.80 pg/mL, respectively, p<0.001). Serum MKRN3 tended to decrease as Tanner breast stage increased. However, no significant difference was observed in serum NPTX1 levels between patients and controls (20.14 ± 31.75 ng/mL and 12.93 ± 8.28 ng/mL, respectively, p=0.248). The serum level of NPTX1 did not change significantly with the Tanner breast stage. Serum NPTX1 was correlated with the height standard deviation score (r=0.255; p<0.05), but was not correlated with serum MKRN3 level or the others. Conclusion: Although serum NPTX1 level was independent of serum MKRN3 level, the possibility they might be involved in the progression of puberty or CPP remains. Further research is needed to determine their role in the hypothalamus.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong Seo Yoon
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Hye Jin Lee
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Yeong Suk Shim
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Min Jae Kang
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University, College of Medicine, Gangdong-gu, Seoul, Korea
| |
Collapse
|
33
|
Spaziani M, Tarantino C, Tahani N, Gianfrilli D, Sbardella E, Lenzi A, Radicioni AF. Hypothalamo-Pituitary axis and puberty. Mol Cell Endocrinol 2021; 520:111094. [PMID: 33271219 DOI: 10.1016/j.mce.2020.111094] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Puberty is a complex process that culminates in the acquisition of psychophysical maturity and reproductive capacity. This elaborate and fascinating process marks the end of childhood. Behind it lies a complex, genetically mediated neuroendocrine mechanism through which the gonads are activated thanks to the fine balance between central inhibitory and stimulating neuromodulators and hormones with both central and peripheral action. The onset of puberty involves the reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, supported by the initial "kiss" between kisspeptin and the hypothalamic neurons that secrete GnRH (the GnRH "pulse generator"). This pulsatile production of GnRH is followed by a rise in LH and, consequently, in gonadal steroids. The onset of puberty varies naturally between individuals, and especially between males and females, in the latter of whom it is typically earlier. However, pathological variations, namely precocious and delayed puberty, are also possible. This article reviews the scientific literature on the physiological mechanisms of puberty and the main pathophysiological aspects of its onset.
Collapse
Affiliation(s)
- Matteo Spaziani
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy.
| | - Chiara Tarantino
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy
| | - Natascia Tahani
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | - Daniele Gianfrilli
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Emilia Sbardella
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Antonio F Radicioni
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
34
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Burger LL, Wagenmaker ER, Phumsatitpong C, Olson DP, Moenter SM. Prenatal Androgenization Alters the Development of GnRH Neuron and Preoptic Area RNA Transcripts in Female Mice. Endocrinology 2020; 161:bqaa166. [PMID: 33095238 PMCID: PMC7583650 DOI: 10.1210/endocr/bqaa166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 01/27/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common form of infertility in women. The causes of PCOS are not yet understood and both genetics and early-life exposure have been considered as candidates. With regard to the latter, circulating androgens are elevated in mid-late gestation in women with PCOS, potentially exposing offspring to elevated androgens in utero; daughters of women with PCOS are at increased risk for developing this disorder. Consistent with these clinical observations, prenatal androgenization (PNA) of several species recapitulates many phenotypes observed in PCOS. There is increasing evidence that symptoms associated with PCOS, including elevated luteinizing hormone (LH) (and presumably gonadotropin-releasing hormone [GnRH]) pulse frequency emerge during the pubertal transition. We utilized translating ribosome affinity purification coupled with ribonucleic acid (RNA) sequencing to examine GnRH neuron messenger RNAs from prepubertal (3 weeks) and adult female control and PNA mice. Prominent in GnRH neurons were transcripts associated with protein synthesis and cellular energetics, in particular oxidative phosphorylation. The GnRH neuron transcript profile was affected more by the transition from prepuberty to adulthood than by PNA treatment; however, PNA did change the developmental trajectory of GnRH neurons. This included families of transcripts related to both protein synthesis and oxidative phosphorylation, which were more prevalent in adults than in prepubertal mice but were blunted in PNA adults. These findings suggest that prenatal androgen exposure can program alterations in the translatome of GnRH neurons, providing a mechanism independent of changes in the genetic code for altered expression.
Collapse
Affiliation(s)
- Laura L Burger
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan
| | | | | | - David P Olson
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan
- Department of Pediatrics, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
36
|
Abstract
Precocious puberty (PP) is a common reason for referral to pediatric endocrinology clinics, with a strong female predominance. PP is a broad term encompassing benign variants of normal development, gonadotropin-dependent precious puberty (GDPP), and gonadotropin-independent precocious puberty (GIPP). This article reviews the definitions, physiology, clinical presentation, evaluation and treatment of these conditions.
Collapse
Affiliation(s)
- Mariam Gangat
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA -
| | - Sally Radovick
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
37
|
Abreu AP, Toro CA, Song YB, Navarro VM, Bosch MA, Eren A, Liang JN, Carroll RS, Latronico AC, Rønnekleiv OK, Aylwin CF, Lomniczi A, Ojeda S, Kaiser UB. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest 2020; 130:4486-4500. [PMID: 32407292 PMCID: PMC7410046 DOI: 10.1172/jci136564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty in association with the decrease in MKRN3 expression in the medial basal hypothalamus of mice before the initiation of reproductive maturation suggests that MKRN3 is acting as a brake on gonadotropin-releasing hormone (GnRH) secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, decreases as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus and that MKRN3 repressed promoter activity of human KISS1 and TAC3, 2 key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve an MKRN3-directed ubiquitination-mediated mechanism.
Collapse
Affiliation(s)
- Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos A. Toro
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martha A. Bosch
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Aysegul Eren
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joy N. Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Claudia Latronico
- Laboratório de Hormônios e Genética Molecular, Unidade de Endocrinologia do Desenvolvimento, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Oline K. Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Carlos F. Aylwin
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Sergio Ojeda
- Division of Neuroscience, Oregon National Primate Research Center–OHSU, Hillsboro, Oregon, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Rare variant of the epigenetic regulator SMCHD1 in a patient with pituitary hormone deficiency. Sci Rep 2020; 10:10985. [PMID: 32620854 PMCID: PMC7335161 DOI: 10.1038/s41598-020-67715-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/12/2020] [Indexed: 11/17/2022] Open
Abstract
Isolated hypogonadotropic hypogonadism (IHH), combined pituitary hormone deficiency (CPHD), and septo-optic dysplasia (SOD) constitute a disease spectrum whose etiology remains largely unknown. This study aimed to clarify whether mutations in SMCHD1, an epigenetic regulator gene, might underlie this disease spectrum. SMCHD1 is a causative gene for Bosma arhinia microphthalmia syndrome characterized by arhinia, microphthalmia and IHH. We performed mutation screening of SMCHD1 in patients with etiology-unknown IHH (n = 31) or CPHD (n = 43, 19 of whom also satisfied the SOD diagnostic criteria). Rare variants were subjected to in silico analyses and classified according to the American College of Medical Genetics and Genomics guidelines. Consequently, a rare likely pathogenic variant, p.Asp398Asn, was identified in one patient. The patient with p.Asp398Asn exhibited CPHD, optic nerve hypoplasia, and a thin retinal nerve fiber layer, and therefore satisfied the criteria of SOD. This patient showed a relatively low DNA methylation level of the 52 SMCHD1-target CpG sites at the D4Z4 locus. Exome sequencing for the patient excluded additional variants in other IHH/CPHD-causative genes. In vitro assays suggested functional impairment of the p.Asp398Asn variant. These results provide the first indication that SMCHD1 mutations represent a rare genetic cause of the HH-related disease spectrum.
Collapse
|
39
|
Roberts SA, Abreu AP, Navarro VM, Liang JN, Maguire CA, Kim HK, Carroll RS, Kaiser UB. The Peripubertal Decline in Makorin Ring Finger Protein 3 Expression is Independent of Leptin Action. J Endocr Soc 2020; 4:bvaa059. [PMID: 32587933 PMCID: PMC7304661 DOI: 10.1210/jendso/bvaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023] Open
Abstract
A critical body weight is necessary for pubertal development, an effect mediated in part by leptin. The potential regulation by leptin of Makorin Ring Finger Protein 3 (MKRN3), in which loss-of-function mutations are the most common genetic cause of central precocious puberty, has not been previously explored. In mice, expression of Mkrn3 in the hypothalamic arcuate nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if leptin contributes to the decrease in hypothalamic Mkrn3 mRNA levels observed in mice during pubertal development. We first used a leptin-deficient (ob/ob) mouse model. Mkrn3 mRNA levels in the mediobasal hypothalamus (MBH), which includes the arcuate nucleus, and in the preoptic area (POA), both showed a significant decrease with age from postnatal day (PND) 12 to PND30 in ob/ob mice in both males and females, similar to that observed in wild-type mice. To further explore the effects of leptin on Mkrn3 expression, we exposed prepubertal wild-type mice to high levels of leptin from age PND9-12, which did not result in any significant difference in Mkrn3 expression levels in either the MBH or POA. In summary, regulation of Mkrn3 expression by leptin was not observed in either the MBH or the POA, 2 hypothalamic sites important for pubertal maturation. These data suggest that the decline in Mkrn3 at the onset of puberty may occur independently of leptin and support our hypothesis that MKRN3 is a bona fide controller of puberty initiation.
Collapse
Affiliation(s)
- Stephanie A Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Victor M Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Joy N Liang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Caroline A Maguire
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Han Kyeol Kim
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Ubiquitination of IGF2BP3 by E3 ligase MKRN2 regulates the proliferation and migration of human neuroblastoma SHSY5Y cells. Biochem Biophys Res Commun 2020; 529:43-50. [PMID: 32560817 DOI: 10.1016/j.bbrc.2020.05.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
Neuroblastoma (NB) is a paediatric tumour that shows great biomolecule and clinical heterogeneity, and patients with NB often develop various neurological complications. Currently, the disease is mainly treated by surgery and still lacks specific therapeutic drugs; therefore, targets are urgently needed. Makorin ring finger protein 2 (MKRN2) is an E3 ligase whose effects on neuroblastoma have not been illustrated. shRNAs for MKRN2 have been designed, and MKRN2-knockdown human neuroblastoma SHSY5Y cells were established. MKRN2 knockdown promotes the proliferation and migration of SHSY5Y cells. Because MKRN2 is an E3 ligase, we performed a series of experiments, and Insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) was identified as a new substrate for MKRN2. IGF2BP3 is an RNA-binding protein that regulates the stability of many mRNAs, including CD44 and PDPN, and our study demonstrated that MKRN2 regulates the expression of CD44 and PDPN in an IGF2BP3-dependent manner. These results suggest that MKRN2 might be a potential therapeutic target for neuroblastoma.
Collapse
|
41
|
Association Study of Puberty-Related Candidate Genes in Chinese Female Population. Int J Genomics 2020; 2020:1426761. [PMID: 32566640 PMCID: PMC7285286 DOI: 10.1155/2020/1426761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
Puberty is a transition period where a child transforms to an adult. Puberty can be affected by various genetic factors and environmental influences. In mammals, the regulation of puberty is enhanced by the hypothalamic-pituitary-gonadal axis (HPG axis). A number of genes such as GnRH, Kiss1, and GPR54 have been reported as key regulators of puberty onset. In this study, we have conducted an association study of puberty-related candidate genes in Chinese female population. Gene variations reported to be related with some traits in a population may not exist in others due to different genetic and ethnic backgrounds, hence the need for this kind of study. The genotyping of SNPs was based on multiplex PCR and the next-generation sequencing (NGS) platform of Illumina. We finally performed association study using PLINK software. Our results confirmed that SNPs rs34787247 in LIN28, rs74795793 and rs9347389 in OCT-1, and rs379202 and rs10491080 in ZEB1 genes showed a significant association with puberty. With the result, it is reasonable to conclude that these genes affect the process of puberty in Shanghai Chinese female population, yet the mechanism remains to be investigated by further study.
Collapse
|
42
|
Stamou M, Ng SY, Brand H, Wang H, Plummer L, Best L, Havlicek S, Hibberd M, Khor CC, Gusella J, Balasubramanian R, Talkowski M, Stanton LW, Crowley WF. A Balanced Translocation in Kallmann Syndrome Implicates a Long Noncoding RNA, RMST, as a GnRH Neuronal Regulator. J Clin Endocrinol Metab 2020; 105:5601163. [PMID: 31628846 PMCID: PMC7112981 DOI: 10.1210/clinem/dgz011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. OBJECTIVE Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. DESIGN Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. SETTING The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. PATIENT A KS patient with a unique translocation, t(7;12)(q22;q24). INTERVENTIONS/MAIN OUTCOME MEASURE/RESULTS A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. CONCLUSIONS A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.
Collapse
Affiliation(s)
- Maria Stamou
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital, Boston
| | - Shi-Yan Ng
- Institute of Molecular & Cell Biology, Singapore
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Neurology, Psychiatry, & Pathology Departments, Massachusetts General Hospital, Boston
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA
| | - Harold Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Lacey Plummer
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital, Boston
| | - Lyle Best
- Turtle Mountain Community College, Belcourt, ND
- Family Medicine Department, University of North Dakota, Grand Forks, ND
| | | | - Martin Hibberd
- London School of Hygiene & Tropical Medicine, Keppel Street, London
- Genome Institute of Singapore, Singapore
| | | | - James Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | | | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Neurology, Psychiatry, & Pathology Departments, Massachusetts General Hospital, Boston
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA
| | - Lawrence W Stanton
- Genome Institute of Singapore, Singapore
- Qatar Biomedical Research Institute (QBRI), Hamad BIn Khalifa University (HBRI), Doha, Qatar
| | - William F Crowley
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Correspondence and Reprint Requests: William F. Crowley, Jr., M.D., Center for Genomic Medicine CPZN-6.6312 - 185 Cambridge Street, Boston, MA 02114. E-mail:
| |
Collapse
|
43
|
Li C, Lu W, Yang L, Li Z, Zhou X, Guo R, Wang J, Wu Z, Dong Z, Ning G, Shi Y, Gu Y, Chen P, Hao Z, Han T, Yang M, Wang W, Huang X, Li Y, Gao S, Hu R. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl Sci Rev 2020; 7:671-685. [PMID: 34692086 PMCID: PMC8288866 DOI: 10.1093/nsr/nwaa023] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Central precocious puberty (CPP) refers to a human syndrome of early puberty initiation with characteristic increase in hypothalamic production and release of gonadotropin-releasing hormone (GnRH). Previously, loss-of-function mutations in human MKRN3, encoding a putative E3 ubiquitin ligase, were found to contribute to about 30% of cases of familial CPP. MKRN3 was thereby suggested to serve as a ‘brake’ of mammalian puberty onset, but the underlying mechanisms remain as yet unknown. Here, we report that genetic ablation of Mkrn3 did accelerate mouse puberty onset with increased production of hypothalamic GnRH1. MKRN3 interacts with and ubiquitinates MBD3, which epigenetically silences GNRH1 through disrupting the MBD3 binding to the GNRH1 promoter and recruitment of DNA demethylase TET2. Our findings have thus delineated a molecular mechanism through which the MKRN3–MBD3 axis controls the epigenetic switch in the onset of mammalian puberty.
Collapse
Affiliation(s)
- Chuanyin Li
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liguang Yang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengwei Li
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Zhou
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Rong Guo
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhebao Wu
- Center for Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yujiang Shi
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Yinmin Gu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Chen
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Hao
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianting Han
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiqiang Yang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yixue Li
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ronggui Hu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
44
|
Zhang Y, Cui N, Zheng G. Ubiquitination of P53 by E3 ligase MKRN2 promotes melanoma cell proliferation. Oncol Lett 2020; 19:1975-1984. [PMID: 32194692 DOI: 10.3892/ol.2020.11261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most aggressive and lethal type of skin cancer. The aim of the present study was to illustrate the molecular mechanism of makorin ring finger protein 2 (MKRN2) control of melanoma cell proliferation. The expression level of MKRN2 was detected in human malignant melanoma cell lines by immunoblotting and reverse transcription-quantitative PCR. Short hairpin RNAs for MKRN2 were designed and transfected into melanoma cells, and the proliferation of these cells was detected by MTT and colony formation assays. The interaction of MKRN2 with P53 was detected by co-immunoprecipitation and glutathione S-transferase pulldown assays. The ubiquitination of P53 by MKRN2 was detected by in vitro ubiquitination assays. A P53-knockout cell line was generated using the CRISPR-Cas9 method. MKRN2 exhibited higher expression levels in melanoma cells, and downregulation of MKRN2 inhibited melanoma cell growth in a P53-dependent manner. MKRN2 regulated melanoma cell proliferation by interacting and ubiquitylating P53, which suggests that MKRN2 may be a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yiling Zhang
- Department of Dermatology, Xuzhou Central Hospital, Affiliated to Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ningning Cui
- Department of Intensive Care Unit, Suining People's Hospital, Xuzhou, Jiangsu 221200, P.R. China
| | - Gang Zheng
- Department of Dermatology, Xuzhou Central Hospital, Affiliated to Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
45
|
Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biol 2019; 17:e3000532. [PMID: 31697675 PMCID: PMC6863565 DOI: 10.1371/journal.pbio.3000532] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/19/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states.
Collapse
|
46
|
Ehrhart F, Janssen KJM, Coort SL, Evelo CT, Curfs LMG. Prader-Willi syndrome and Angelman syndrome: Visualisation of the molecular pathways for two chromosomal disorders. World J Biol Psychiatry 2019; 20:670-682. [PMID: 29425059 DOI: 10.1080/15622975.2018.1439594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objectives: Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two syndromes that are caused by the same chromosomal deletion on 15q11.2-q13. Due to methylation patterns, different genes are responsible for the two distinct phenotypes resulting in the disorders. Patients of both disorders exhibit hypotonia in neonatal stage, delay in development and hypopigmentation. Typical features for PWS include hyperphagia, which leads to obesity, the major cause of mortality, and hypogonadism. In AS, patients suffer from a more severe developmental delay, they have a distinctive behaviour that is often described as unnaturally happy, and a tendency for epileptic seizures. For both syndromes, we identified and visualised molecular downstream pathways of the deleted genes that could give insight on the development of the clinical features.Methods: This was done by consulting literature, genome browsers and pathway databases to identify molecular interactions and to construct downstream pathways.Results: A pathway visualisation was created and uploaded to the open pathway database WikiPathways covering all molecular pathways that were found.Conclusions: The visualisation of the downstream pathways of PWS- and AS-deleted genes shows that some of the typical symptoms are caused by multiple genes and reveals critical gaps in the current knowledge.
Collapse
Affiliation(s)
- Friederike Ehrhart
- GCK, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kelly J M Janssen
- GCK, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- GCK, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
47
|
Howard SR, Dunkel L. Delayed Puberty-Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries. Endocr Rev 2019; 40:1285-1317. [PMID: 31220230 PMCID: PMC6736054 DOI: 10.1210/er.2018-00248] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
This review presents a comprehensive discussion of the clinical condition of delayed puberty, a common presentation to the pediatric endocrinologist, which may present both diagnostic and prognostic challenges. Our understanding of the genetic control of pubertal timing has advanced thanks to active investigation in this field over the last two decades, but it remains in large part a fascinating and mysterious conundrum. The phenotype of delayed puberty is associated with adult health risks and common etiologies, and there is evidence for polygenic control of pubertal timing in the general population, sex-specificity, and epigenetic modulation. Moreover, much has been learned from comprehension of monogenic and digenic etiologies of pubertal delay and associated disorders and, in recent years, knowledge of oligogenic inheritance in conditions of GnRH deficiency. Recently there have been several novel discoveries in the field of self-limited delayed puberty, encompassing exciting developments linking this condition to both GnRH neuronal biology and metabolism and body mass. These data together highlight the fascinating heterogeneity of disorders underlying this phenotype and point to areas of future research where impactful developments can be made.
Collapse
Affiliation(s)
- Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
48
|
Valadares LP, Meireles CG, De Toledo IP, Santarem de Oliveira R, Gonçalves de Castro LC, Abreu AP, Carroll RS, Latronico AC, Kaiser UB, Guerra ENS, Lofrano-Porto A. MKRN3 Mutations in Central Precocious Puberty: A Systematic Review and Meta-Analysis. J Endocr Soc 2019; 3:979-995. [PMID: 31041429 PMCID: PMC6483926 DOI: 10.1210/js.2019-00041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023] Open
Abstract
MKRN3 mutations represent the most common genetic cause of central precocious puberty (CPP) but associations between genotype and clinical features have not been extensively explored. This systematic review and meta-analysis investigated genotype-phenotype associations and prevalence of MKRN3 mutations in CPP. The search was conducted in seven electronic databases (Cochrane, EMBASE, LILACS, LIVIVO, PubMed, Scopus, and Web of Science) for articles published until 4 September 2018. Studies evaluating MKRN3 mutations in patients with CPP were considered eligible. A total of 22 studies, studying 880 subjects with CPP, fulfilled the inclusion criteria. Eighty-nine subjects (76 girls) were identified as harboring MKRN3 mutations. Girls, compared with boys, exhibited earlier age at pubertal onset (median, 6.0 years; range, 3.0 to 7.0 vs 8.5 years; range, 5.9 to 9.0; P < 0.001), and higher basal FSH levels (median, 4.3 IU/L; range, 0.7 to 13.94 IU/L vs 2.45 IU/L; range, 0.8 to 13.70 IU/L; P = 0.003), and bone age advancement (ΔBA; median, 2.3 years; range, -0.9 to 5.2 vs 1.2 years; range, 0.0 to 2.3; P = 0.01). Additional dysmorphisms were uncommon. A total of 14 studies evaluating 857 patients were included for quantitative analysis, with a pooled overall mutation prevalence of 9.0% (95% CI, 0.04 to 0.15). Subgroup analysis showed that prevalence estimates were higher in males, familial cases, and in non-Asian countries. In conclusion, MKRN3 mutations are associated with nonsyndromic CPP and manifest in a sex-dimorphic manner, with girls being affected earlier. They represent a common cause of CPP in western countries, especially in boys and familial cases.
Collapse
Affiliation(s)
- Luciana Pinto Valadares
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Isabela Porto De Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Renata Santarem de Oliveira
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
- Jose Alencar Brasilia Children´s Hospital, State Secretary of Health, Brasilia, DF, Brazil
| | - Luiz Cláudio Gonçalves de Castro
- Pediatric Endocrinology Unit, Department of Pediatrics, University Hospital of Brasília, Faculty of Medicine, University of Brasilia, DF, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular, LIM42, Hospital das Clínicas, Disciplina Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, Health Sciences Faculty, University of Brasilia, Brasilia, DF, Brazil
- Gonadal and Adrenal Diseases Clinics, University Hospital of Brasilia, University of Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
49
|
Chen X, Wang J, Hou X, Yue W, Huang S, Wang C. Tissue expression profiles unveil the gene interaction of hepatopancreas, eyestalk, and ovary in the precocious female Chinese mitten crab, Eriocheir sinensis. BMC Genet 2019; 20:12. [PMID: 30683050 PMCID: PMC6347758 DOI: 10.1186/s12863-019-0716-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/18/2019] [Indexed: 02/02/2023] Open
Abstract
Background Sexual precocity is a common biological phenomenon in animal species. A large number of precocity individuals were identified in Chinese mitten crab Eriocheir sinensis, which caused huge economic loss annually. However, the underlying genetic basis of precocity in E. sinensis remains unclear to date. Results In this study, morphological and histological observation and comparative transcriptome analysis were conducted among different stages of precocious one-year-old and normal two-year-old sexually mature E. sinensis. The expression profiles of the ovary, hepatopancreas, and eyestalk tissues were presented and compared. Genes associated with lipid metabolic process, lipid transport, vitelline membrane formation, vitelline synthesis, and neuropeptide hormone-related genes were upregulated in the ovary, hepatopancreas, and eyestalk of precocious E. sinensis. Our results indicated that the eyestalk was involved in the neuroendocrine system providing neuropeptide hormones that may induce vitellogenesis in the hepatopancreas and further stimulate ovary development. The hepatopancreas is a site for energy storage and vitellogenin synthesis, and it may assist oogenesis through lipid transport in precocious E. sinensis. Conclusion We provided not only an effective and convenient phenotype measurement method for the identification of potential precocious E. sinensis detection but also valuable genetic resources and novel insights into the molecular mechanism of precocity in E. sinensis. The genetic basis of precocity in E. sinensis is an integrated gene regulatory network of eyestalk, hepatopancreas, and ovary tissues. Electronic supplementary material The online version of this article (10.1186/s12863-019-0716-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Shu Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China. .,National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China. .,Shanghai Engineering Research Center of Aquaculture, 999, Hucheng huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
50
|
Matsuyama S, Matsui F, Matsuoka K, Iijima M, Takeuchi M, Ida S, Matsumoto F, Mizokami A. Gonadal function and testicular histology in males with Prader-Willi syndrome. Endocrinol Diabetes Metab 2019; 2:e00049. [PMID: 30815576 PMCID: PMC6354757 DOI: 10.1002/edm2.49] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/28/2018] [Accepted: 09/24/2018] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Cryptorchidism is common in Prader-Willi syndrome (PWS) males, but the testicular histology in childhood remains uncertain. The association between testicular histology and long-term gonadal function in PWS males is also unknown. OBJECTIVES To evaluate the relationship between testicular histology in childhood and long-term gonadal function in PWS males. PATIENTS AND METHODS Forty men with PWS were assessed longitudinally at our institute over the past 24 years. Clinical examinations and blood tests for LH, FSH and testosterone levels were compared with normal reference values. Tissue specimens were collected during orchiopexy and analyzed based on Nistal categories. RESULTS Of nine testes available for pathological assessments, two showed favourable histology (Nistal I) and seven showed unfavourable histology (Nistal II or III). Of five postpubertal males with histology available, four reached puberty spontaneously, but only one reached Tanner stage 5. In a male with favourable histology, LH and FSH were high, but testosterone was normal, though below the average of the reference range. In three males with unfavourable histology, LH was normal, but FSH was highly elevated, and testosterone was at the lower limit of normal. One patient took hCG treatment to induce puberty; this patient showed favourable histology, but LH, FSH and testosterone were not elevated in adolescence. CONCLUSIONS Testicular histology of PWS men in childhood varies from normal to Sertoli Cell-Only Syndrome. Regardless of the testicular histology in childhood, hypogonadism in PWS adults arises as a consequence of primary testicular dysfunction with highly elevated FSH and insufficient testosterone levels.
Collapse
Affiliation(s)
- Satoko Matsuyama
- Department of UrologyOsaka Women’s and Children’s HospitalOsakaJapan
- Department of Integrative Cancer Therapy and UrologyKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Futoshi Matsui
- Department of UrologyOsaka Women’s and Children’s HospitalOsakaJapan
| | - Keiko Matsuoka
- Department of PathologyOsaka Women’s and Children’s HospitalOsakaJapan
| | - Masashi Iijima
- Department of Integrative Cancer Therapy and UrologyKanazawa University Graduate School of Medical ScienceKanazawaJapan
| | - Makoto Takeuchi
- Department of PathologyOsaka Women’s and Children’s HospitalOsakaJapan
| | - Shinobu Ida
- Department of Gastroenterology and EndocrinologyOsaka Women’s and Children’s HospitalOsakaJapan
| | - Fumi Matsumoto
- Department of UrologyOsaka Women’s and Children’s HospitalOsakaJapan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and UrologyKanazawa University Graduate School of Medical ScienceKanazawaJapan
| |
Collapse
|