1
|
Verdelli C, Fabrizio FP, Maroni P, Morotti A, Tavanti GS, Carrara S, Guarnieri V, Cetani F, Scillitani A, Maggiore R, Perticone F, Vaira V, Muscarella LA, Corbetta S. Aberrant promoter methylation, expression and function of RASSF1A gene in a series of Italian parathyroid tumors. Endocrine 2024:10.1007/s12020-024-04113-7. [PMID: 39607643 DOI: 10.1007/s12020-024-04113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Aberrant epigenetic features are key events involved in parathyroid tumorigenesis, including DNA methylation, histone methylation, and non-coding RNAs. Ras Association Domain Family Protein1 Isoform A (RASSF1A) and Adenomatous Polyposis of Colon (APC) are frequently downregulated in human cancers. Here, we investigated their deregulated expression and the potential role in parathyroid neoplasms. METHODS methylation of RASSF1A and APC promoters was analyzed in a series of parathyroid adenomas (PAds, n = 80) and parathyroid carcinomas (PCas, n = 9) from Italian patients with primary hyperparathyroidism, RESULTS: RASSF1A and APC promoter methylation occurred in about 90% of PAds samples. PCas displayed RASSF1A promoter methylation, while APC promoter was methylated only in 2 samples. Of note, RASSF1A promoter methylation negatively correlated with PAds tumor size. However, RASSF1A transcript and protein levels were reduced in PAds and PCas compared with parathyroid normal glands. Investigating the potential mechanism involved in RASSF1A promoter methylation, we found that DNA methyltransferases (DNMTs) activity was variable in PAds and inversely correlated with RASSF1A protein levels. In addition, the RASSF1A promoter methylation negatively correlated with long-non-coding Antisense Intronic Noncoding RASSF1A (ANRASSF1A) mRNA levels, excluding the involvement of ANRASSF1 in RASSF1A regulation. In HEK293A cells transfected with the calcium sensing receptor (CASR), loss of RASSF1A increased basal phosphorylated Extracellular signal-regulated kinase (pERK/ERK) levels blunting the CASR-induced increases. CONCLUSION RASSF1A and APC promoter methylation is a hallmark of parathyroid tumors; deregulation of DNMTs activity contributes to modulation of RASSF1A expression. Loss of RASSF1A may be involved in the tuning of ERK pathway in parathyroid tumors.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Annamaria Morotti
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Stefania Tavanti
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Silvia Carrara
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vito Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Filomena Cetani
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Pisa, Pisa, Italy
| | - Alfredo Scillitani
- Endocrine Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | | | | | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Sabrina Corbetta
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Bone Metabolic Diseases and Diabetes Unit, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
2
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
3
|
Storvall S, Ryhänen E, Karhu A, Schalin-Jäntti C. Novel PRUNE2 Germline Mutations in Aggressive and Benign Parathyroid Neoplasms. Cancers (Basel) 2023; 15:cancers15051405. [PMID: 36900197 PMCID: PMC10000765 DOI: 10.3390/cancers15051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Parathyroid tumors are mostly sporadic but can also occur in familial forms, including different kinds of genetic syndromes with varying phenotypes and penetrance. Recently, somatic mutations of the tumor suppressor gene PRUNE2 were found to be frequent in parathyroid cancer (PC). The germline mutation status of PRUNE2 was investigated in a large cohort of patients with parathyroid tumors from the genetically homogenous Finnish population, 15 of which had PC, 16 atypical parathyroid tumors (APT), and 6 benign parathyroid adenomas (PA). Mutations in previously established hyperparathyroidism-related genes were screened with a targeted gene panel analysis. Nine PRUNE2 germline mutations with a minor allele frequency (MAF) of <0.05 were found in our cohort. Five of these were predicted to be potentially damaging and were identified in two patients with PC, two with APT, and three with PA. The mutational status was not associated with the tumor group nor related to the clinical picture or severity of the disease. Still, the frequent finding of rare germline mutations of PRUNE2 may point to the gene playing a role in the pathogenesis of parathyroid neoplasms.
Collapse
Affiliation(s)
- Sara Storvall
- Department of Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Eeva Ryhänen
- Department of Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Auli Karhu
- Department of Applied Tumor Genomics, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00290 Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Department of Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland
| |
Collapse
|
4
|
Uljanovs R, Sinkarevs S, Strumfs B, Vidusa L, Merkurjeva K, Strumfa I. Immunohistochemical Profile of Parathyroid Tumours: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23136981. [PMID: 35805976 PMCID: PMC9266566 DOI: 10.3390/ijms23136981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
Immunohistochemistry remains an indispensable tool in diagnostic surgical pathology. In parathyroid tumours, it has four main applications: to detect (1) loss of parafibromin; (2) other manifestations of an aberrant immunophenotype hinting towards carcinoma; (3) histogenesis of a neck mass and (4) pathogenetic events, including features of tumour microenvironment and immune landscape. Parafibromin stain is mandatory to identify the new entity of parafibromin-deficient parathyroid neoplasm, defined in the WHO classification (2022). Loss of parafibromin indicates a greater probability of malignant course and should trigger the search for inherited or somatic CDC73 mutations. Aberrant immunophenotype is characterised by a set of markers that are lost (parafibromin), down-regulated (e.g., APC protein, p27 protein, calcium-sensing receptor) or up-regulated (e.g., proliferation activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared to benign parathyroid disease. Aberrant immunophenotype is not the final proof of malignancy but should prompt the search for the definitive criteria for carcinoma. Histogenetic studies can be necessary for differential diagnosis between thyroid vs. parathyroid origin of cervical or intrathyroidal mass; detection of parathyroid hormone (PTH), chromogranin A, TTF-1, calcitonin or CD56 can be helpful. Finally, immunohistochemistry is useful in pathogenetic studies due to its ability to highlight both the presence and the tissue location of certain proteins. The main markers and challenges (technological variations, heterogeneity) are discussed here in the light of the current WHO classification (2022) of parathyroid tumours.
Collapse
Affiliation(s)
- Romans Uljanovs
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Stanislavs Sinkarevs
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Boriss Strumfs
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Liga Vidusa
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Kristine Merkurjeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia; (R.U.); (S.S.); (B.S.); (L.V.); (K.M.)
- Correspondence:
| |
Collapse
|
5
|
Marini F, Giusti F, Palmini G, Perigli G, Santoro R, Brandi ML. Genetics and Epigenetics of Parathyroid Carcinoma. Front Endocrinol (Lausanne) 2022; 13:834362. [PMID: 35282432 PMCID: PMC8908968 DOI: 10.3389/fendo.2022.834362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Parathyroid carcinoma (PC) is an extremely rare malignancy, accounting less than 1% of all parathyroid neoplasms, and an uncommon cause of primary hyperparathyroidism (PHPT), characterized by an excessive secretion of parathyroid hormone (PTH) and severe hypercalcemia. As opposed to parathyroid hyperplasia and adenomas, PC is associated with a poor prognosis, due to a commonly unmanageable hypercalcemia, which accounts for death in the majority of cases, and an overall survival rate of 78-85% and 49-70% at 5 and 10 years after diagnosis, respectively. No definitively effective therapies for PC are currently available. The mainly employed treatment for PC is the surgical removal of tumoral gland(s). Post-surgical persistent or recurrent disease manifest in about 50% of patients. The comprehension of genetic and epigenetic bases and molecular pathways that characterize parathyroid carcinogenesis is important to distinguish malignant PCs from benign adenomas, and to identify specific targets for novel therapies. Germline heterozygote inactivating mutations of the CDC73 tumor suppressor gene, with somatic loss of heterozygosity at 1q31.2 locus, account for about 50-75% of familial cases; over 75% of sporadic PCs harbor biallelic somatic inactivation/loss of CDC73. Recurrent mutations of the PRUNE2 gene, a recurrent mutation in the ADCK1 gene, genetic amplification of the CCND1 gene, alterations of the PI3K/AKT/mTOR signaling pathway, and modifications of microRNA expression profile and gene promoter methylation pattern have all been detected in PC. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of PC, in both familial and sporadic forms of this malignancy.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- Fondazione Italiana per la Ricerca sulle Malattie dell'Osso (F.I.R.M.O.) Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuliano Perigli
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero-Universitaria (AOU)-Careggi, Florence, Italy
| | - Roberto Santoro
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero-Universitaria (AOU)-Careggi, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione Italiana per la Ricerca sulle Malattie dell'Osso (F.I.R.M.O.) Italian Foundation for the Research on Bone Diseases, Florence, Italy
- *Correspondence: Maria Luisa Brandi,
| |
Collapse
|
6
|
Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126469. [PMID: 34208778 PMCID: PMC8234676 DOI: 10.3390/ijms22126469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid–protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.
Collapse
|
7
|
Cheng L, Tong Q. Interaction of FLNA and ANXA2 promotes gefitinib resistance by activating the Wnt pathway in non-small-cell lung cancer. Mol Cell Biochem 2021; 476:3563-3575. [PMID: 34018148 DOI: 10.1007/s11010-021-04179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Lung cancer is still a main cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancers, and gefitinib is an effective targeted drug for NSCLC. It is important to explore the underlying molecular mechanisms of gefitinib resistance to provide new treatment strategies and to improve the prognosis of gefitinib-resistant NSCLC patients. This study aimed to examine the role of filamin A (FLNA) in acquired resistance to gefitinib in NSCLC, and identify ANXA2 (annexin A2), one of calcium-dependent phospholipid-binding proteins, as its corresponding regulatory factor. First, we established resistant cells via long-term exposure to gefitinib to analyse the association between FLNA and gefitinib resistance. Through quantitative real-time polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8), western blotting (WB), and flow cytometry assays, we evaluated the role of FLNA. The effect of FLNA knockdown or overexpression was analysed not only in cell lines but also in mouse models. We verified the FLNA-interacting protein through coimmunoprecipitation (CoIP) experiments and found that the downstream signalling pathway was regulated by FLNA and its interacting protein. Finally, the upstream transcription factor was identified by chromatin immunoprecipitation (ChIP). Increased FLNA expression induced gefitinib resistance. Knockdown of FLNA restored gefitinib sensitivity and induced apoptosis in vivo and in vitro. FLNA and ANXA2 cooperatively led to the activation of the Wnt pathway, which was closely linked to gefitinib resistance. Subsequently, SP1 promoted transcriptional activation of FLNA to regulate gefitinib resistance. We determined that FLNA serves as a regulator of gefitinib resistance in NSCLC and found that FLNA and ANXA2 together induced gefitinib resistance by activating the Wnt pathway.
Collapse
Affiliation(s)
- Lifang Cheng
- Department of Oncology, Shenzhen Samii Medical Center, No. 1, Jinniu West Road, Pingshan District, Shenzhen, 518118, Guangdong, People's Republic of China
| | - Qin Tong
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Zhou J, Kang X, An H, Lv Y, Liu X. The function and pathogenic mechanism of filamin A. Gene 2021; 784:145575. [PMID: 33737122 DOI: 10.1016/j.gene.2021.145575] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Filamin A(FLNa) is an actin-binding protein, which participates in the formation of the cytoskeleton, anchors a variety of proteins in the cytoskeleton and regulates cell adhesion and migration. It is involved in signal transduction, cell proliferation and differentiation, pseudopodia formation, vesicle transport, tumor resistance and genetic diseases by binding with interacting proteins. In order to fully elucidate the structure, function and pathogenesis of FLNa, we summarized all substances which directly or indirectly act on FLNa so far, upstream and downstream targets which having effect on it, signaling pathways and their functions. It also recorded the expression and effect of FLNa in different diseases, including hereditary disease and tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xinmei Kang
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Hanxiang An
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Yun Lv
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| | - Xin Liu
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
| |
Collapse
|
9
|
Yes-Associated Protein 1 Is a Novel Calcium Sensing Receptor Target in Human Parathyroid Tumors. Int J Mol Sci 2021; 22:ijms22042016. [PMID: 33670622 PMCID: PMC7922006 DOI: 10.3390/ijms22042016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is involved in human tumorigenesis and tissue repair. Here, we investigated the Hippo coactivator Yes-associated protein 1 (YAP1) and the kinase large tumor suppressor 1/2 (LATS1/2) in tumors of the parathyroid glands, which are almost invariably associated with primary hyperparathyroidism. Compared with normal parathyroid glands, parathyroid adenomas (PAds) and carcinomas show variably but reduced nuclear YAP1 expression. The kinase LATS1/2, which phosphorylates YAP1 thus promoting its degradation, was also variably reduced in PAds. Further, YAP1 silencing reduces the expression of the key parathyroid oncosuppressor multiple endocrine neoplasia type 1(MEN1), while MEN1 silencing increases YAP1 expression. Treatment of patient-derived PAds-primary cell cultures and Human embryonic kidney 293A (HEK293A) cells expressing the calcium-sensing receptor (CASR) with the CASR agonist R568 induces YAP1 nuclear accumulation. This effect was prevented by the incubation of the cells with RhoA/Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitors Y27632 and H1152. Lastly, CASR activation increased the expression of the YAP1 gene targets CYR61, CTGF, and WNT5A, and this effect was blunted by YAP1 silencing. Concluding, here we provide preliminary evidence of the involvement of the Hippo pathway in human tumor parathyroid cells and of the existence of a CASR-ROCK-YAP1 axis. We propose a tumor suppressor role for YAP1 and LATS1/2 in parathyroid tumors.
Collapse
|
10
|
Signorelli P, Pivari F, Barcella M, Merelli I, Zulueta A, Dei Cas M, Rosso L, Ghidoni R, Caretti A, Paroni R, Mingione A. Myriocin modulates the altered lipid metabolism and storage in cystic fibrosis. Cell Signal 2021; 81:109928. [PMID: 33482299 DOI: 10.1016/j.cellsig.2021.109928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a hereditary disease mostly related to ΔF508 CFTR mutation causing a proteinopathy that is characterized by multiple organ dysfunction, primarily lungs chronic inflammation, and infection. Defective autophagy and accumulation of the inflammatory lipid ceramide have been proposed as therapeutic targets. Accumulation of lipids and cholesterol was reported in the airways of CF patients, together with altered triglycerides and cholesterol levels in plasma, thus suggesting a disease-related dyslipidemia. Myriocin, an inhibitor of sphingolipids synthesis, significantly reduces inflammation and activates TFEB-induced response to stress, enhancing fatty acids oxidation and promoting autophagy. Myriocin ameliorates the response against microbial infection in CF models and patients' monocytes. Here we show that CF broncho-epithelial cells exhibit an altered distribution of intracellular lipids. We demonstrated that lipid accumulation is supported by an enhanced synthesis of fatty acids containing molecules and that Myriocin is able to reduce such accumulation. Moreover, Myriocin modulated the transcriptional profile of CF cells in order to restore autophagy, activate an anti-oxidative response, stimulate lipid metabolism and reduce lipid peroxidation. Moreover, lipid storage may be altered in CF cells, since we observed a reduced expression of lipid droplets related proteins named perilipin 3 and 5 and seipin. To note, Myriocin up-regulates the expression of genes that are involved in lipid droplets biosynthesis and maturation. We suggest that targeting sphingolipids de novo synthesis may counteract lipids accumulation by modulating CF altered transcriptional profile, thus restoring autophagy and lipid metabolism homeostasis.
Collapse
Affiliation(s)
- Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Francesca Pivari
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Matteo Barcella
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Aida Zulueta
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Michele Dei Cas
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lorenzo Rosso
- Thoracic surgery and transplantation Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Health Sciences Department, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Rita Paroni
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Department of Health Science, University of Milan, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Verdelli C, Tavanti GS, Corbetta S. Intratumor heterogeneity in human parathyroid tumors. Histol Histopathol 2020; 35:1213-1228. [PMID: 32468569 DOI: 10.14670/hh-18-230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parathyroid tumors are the second most common endocrine neoplasia after thyroid neoplasia. They are mostly associated with impaired parathormone (PTH) synthesis and release determining the metabolic and clinical condition of primary hyperparathyroidism (PHPT). PHPT is the third most prevalent endocrine disorder, mainly affecting postmenopausal women. Parathyroid benign tumors, both adenomas of a single gland or hyperplasia involving all the glands, are the main histotypes, occurring in more than 95% of PHPT cases. The differential diagnosis between benign and malignant parathyroid lesions is a challenge for clinicians. It relies on histologic features, which display significant overlap between the histotypes with different clinical outcomes. Parathyroid adenomas and hyperplasia have been considered so far as a unique monoclonal/polyclonal entity, while accumulating evidence suggest great heterogeneity. Intratumor parathyroid heterogeneity involves tumor cell type, as well as tumor cell function, in terms of PTH synthesis and secretion, and of expression patterns of membrane and nuclear receptors (calcium sensing receptor, vitamin D receptor, α-klotho receptor and others). Intratumor heterogeneity can also interfere with cell molecular biology, in regard to clonality, oncosuppressor gene expression (such as MEN1 and HRPT2/CDC73), transcription factors (GCM2, TBX1) and microRNA expression. Such heterogeneity is likely involved in the phenotypic variability of the parathyroid tumors, and it should be considered in the clinical management, though at present target therapies are not available, with the exception of the calcium sensing receptor agonists.
Collapse
Affiliation(s)
- C Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - G S Tavanti
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - S Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Coelho MCA, Vasquez ML, Wildemberg LE, Vázquez-Borrego MC, Bitana L, Camacho AHDS, Silva D, Ogino LL, Ventura N, Sánchez-Sánchez R, Chimelli L, Kasuki L, Luque RM, Gadelha MR. Clinical significance of filamin A in patients with acromegaly and its association with somatostatin and dopamine receptor profiles. Sci Rep 2019; 9:1122. [PMID: 30718563 PMCID: PMC6361919 DOI: 10.1038/s41598-018-37692-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
Filamin-A (FLNA) plays a crucial role in somatostatin receptor (sst) subtype-2 signaling in somatotropinomas. Our objective was to investigate the in vivo association between FLNA and sst2 expression, sst5 expression, dopamine receptor subtype-2 (D2) expression, somatostatin receptor ligand (SRL) responsiveness and tumor invasiveness in somatotropinomas. Quantitative real-time PCR was used to evaluate the absolute mRNA copy numbers of FLNA/sst2/sst5/D2 in 96 somatotropinomas. FLNA, sst2 and sst5 protein expression levels were also evaluated using immunohistochemistry. The Knosp-Steiner criteria were used to evaluate tumor invasiveness. Median FLNA, sst2, sst5 and D2 copy numbers were 4,244, 731, 156 and 3,989, respectively. Thirty-one of the 35 available tumors (89%) were immune positive for FLNA in the cytoplasm and membrane but not in the nucleus. FLNA and sst5 expression were positively correlated at the mRNA and protein levels (p < 0.001 and p = 0.033, respectively). FLNA was positively correlated with sst2 mRNA in patients who were responsive to SRL (p = 0.014, R = 0.659). No association was found between FLNA and tumor invasiveness. Our findings show that in somatotropinomas FLNA expression positively correlated with in vivo sst5 and D2 expression. Notably, FLNA was only correlated with sst2 in patients who were controlled with SRL. FLNA was not associated with tumor invasiveness.
Collapse
Affiliation(s)
- Maria Caroline Alves Coelho
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, Brazil
| | - Marina Lipkin Vasquez
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Luciana Bitana
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Aline Helen da Silva Camacho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Pathology Division, Instituto Nacional do Câncer, Rio de janeiro, Brazil
| | - Débora Silva
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Liana Lumi Ogino
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Nina Ventura
- Radiology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Raul M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil. .,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Gorvin CM. Insights into calcium-sensing receptor trafficking and biased signalling by studies of calcium homeostasis. J Mol Endocrinol 2018; 61:R1-R12. [PMID: 29599414 DOI: 10.1530/jme-18-0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
The calcium-sensing receptor (CASR) is a class C G-protein-coupled receptor (GPCR) that detects extracellular calcium concentrations, and modulates parathyroid hormone secretion and urinary calcium excretion to maintain calcium homeostasis. The CASR utilises multiple heterotrimeric G-proteins to mediate signalling effects including activation of intracellular calcium release; mitogen-activated protein kinase (MAPK) pathways; membrane ruffling; and inhibition of cAMP production. By studying germline mutations in the CASR and proteins within its signalling pathway that cause hyper- and hypocalcaemic disorders, novel mechanisms governing GPCR signalling and trafficking have been elucidated. This review focusses on two recently described pathways that provide novel insights into CASR signalling and trafficking mechanisms. The first, identified by studying a CASR gain-of-function mutation that causes autosomal dominant hypocalcaemia (ADH), demonstrated a structural motif located between the third transmembrane domain and the second extracellular loop of the CASR that mediates biased signalling by activating a novel β-arrestin-mediated G-protein-independent pathway. The second, in which the mechanism by which adaptor protein-2 σ-subunit (AP2σ) mutations cause familial hypocalciuric hypercalcaemia (FHH) was investigated, demonstrated that AP2σ mutations impair CASR internalisation and reduce multiple CASR-mediated signalling pathways. Furthermore, these studies showed that the CASR can signal from the cell surface using multiple G-protein pathways, whilst sustained signalling is mediated only by the Gq/11 pathway. Thus, studies of FHH- and ADH-associated mutations have revealed novel steps by which CASR mediates signalling and compartmental bias, and these pathways could provide new targets for therapies for patients with calcaemic disorders.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|