1
|
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa TH, Mahendra I, Febrian MB, Sriyani ME, Halimah I, Daruwati I, Gunawan R, Achmad A, Nugraha DH, Lesmana R, Nugraha AS. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers. Adv Pharm Bull 2024; 14:86-104. [PMID: 38585455 PMCID: PMC10997928 DOI: 10.34172/apb.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Crhisterra E. Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isti Daruwati
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Rudi Gunawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Arifudin Achmad
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari S. Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
2
|
Tournier B, Bouteldja F, Amossé Q, Nicolaides A, Duarte Azevedo M, Tenenbaum L, Garibotto V, Ceyzériat K, Millet P. 18 kDa Translocator Protein TSPO Is a Mediator of Astrocyte Reactivity. ACS OMEGA 2023; 8:31225-31236. [PMID: 37663488 PMCID: PMC10468775 DOI: 10.1021/acsomega.3c03368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
An increase in astrocyte reactivity has been described in Alzheimer's disease and seems to be related to the presence of a pro-inflammatory environment. Reactive astrocytes show an increase in the density of the 18 kDa translocator protein (TSPO), but TSPO involvement in astrocyte functions remains poorly understood. The goal of this study was to better characterize the mechanisms leading to the increase in TSPO under inflammatory conditions and the associated consequences. For this purpose, the C6 astrocytic cell line was used in the presence of lipopolysaccharide (LPS) or TSPO overexpression mediated by the transfection of a plasmid encoding TSPO. The results show that nonlethal doses of LPS induced TSPO expression at mRNA and protein levels through a STAT3-dependent mechanism and increased the number of mitochondria per cell. LPS stimulated reactive oxygen species (ROS) production and decreased glucose consumption (quantified by the [18F]FDG uptake), and these effects were diminished by FEPPA, a TSPO antagonist. The transfection-mediated overexpression of TSPO induced ROS production, and this effect was blocked by FEPPA. In addition, a synergistic effect of overexpression of TSPO and LPS on ROS production was observed. These data show that the increase of TSPO in astrocytic cells is involved in the regulation of glucose metabolism and in the pro-inflammatory response. These data suggest that the overexpression of TSPO by astrocytes in Alzheimer's disease would have rather deleterious effects by promoting the pro-inflammatory response.
Collapse
Affiliation(s)
- Benjamin
B. Tournier
- Department
of Psychiatry, University Hospitals of Geneva, Geneva 1206, Switzerland
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Farha Bouteldja
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Quentin Amossé
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Alekos Nicolaides
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| | - Marcelo Duarte Azevedo
- Laboratory
of Cellular and Molecular Neurotherapies, Center for Neuroscience
Research, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Liliane Tenenbaum
- Laboratory
of Cellular and Molecular Neurotherapies, Center for Neuroscience
Research, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Valentina Garibotto
- Division
of Nuclear Medicine, Diagnostic Department, University Hospitals of Geneva, Geneva 1206, Switzerland
- CIBM
Center for BioMedical Imaging; NIMTLab, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Kelly Ceyzériat
- Department
of Psychiatry, University Hospitals of Geneva, Geneva 1206, Switzerland
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
- Division
of Nuclear Medicine, Diagnostic Department, University Hospitals of Geneva, Geneva 1206, Switzerland
- CIBM
Center for BioMedical Imaging; NIMTLab, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Philippe Millet
- Department
of Psychiatry, University Hospitals of Geneva, Geneva 1206, Switzerland
- Department
of Psychiatry, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
3
|
Buczyńska A, Sidorkiewicz I, Kościuszko M, Adamska A, Siewko K, Dzięcioł J, Szumowski P, Myśliwiec J, Popławska-Kita A, Krętowski AJ. The Relationship between Oxidative Status and Radioiodine Treatment Qualification among Papillary Thyroid Cancer Patients. Cancers (Basel) 2023; 15:cancers15092436. [PMID: 37173902 PMCID: PMC10177082 DOI: 10.3390/cancers15092436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Total oxidative status (TOS), total antioxidant capacity (TAC), tumor protein 53 (p53), nuclear factor kappa B (NF-κB), forkhead box protein O1 (FOXO), and sirtuin 1 (SIRT1) play crucial roles in oxidative homeostasis and the progression of papillary thyroid cancer (PTC), as previously demonstrated in the literature. Therefore, profiling these markers among PTC patients may be useful in determining their eligibility for radioiodine (RAI) treatment. Since treatment indications are based on multiple and dynamic recommendations, additional criteria for adjuvant RAI therapy are still needed. In our study, we evaluated the TOS, TAC, and serum concentrations of p53, NF-κB, FOXO, and SIRT1 to analyze the relationship between oxidative status and qualification for RAI treatment. For the purpose of this study, we enrolled 60 patients with PTC allocated for RAI treatment as the study group and 25 very low-risk PTC patients not allocated for RAI treatment as a reference group. The serum TOS and SIRT1 concentrations were significantly higher in the study group compared to the reference group (both p < 0.001), whereas the TAC and p53, NK-κB, and FOXO concentrations were significantly lower (all p < 0.05). We also demonstrated the diagnostic utility of TAC (AUC = 0.987), FOXO (AUC = 0.648), TOS (AUC = 0.664), SIRT1 (AUC = 0.709), p53 (AUC = 0.664), and NF-κB (AUC = 0.651) measurements as indications for RAI treatment based on American Thyroid Association recommendations. Our study revealed that oxidative status-related markers may become additional criteria for RAI treatment in PTC patients.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland
| | - Piotr Szumowski
- Nuclear Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Janusz Myśliwiec
- Nuclear Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| |
Collapse
|
4
|
Tournier B, Ceyzériat K, Bouteldja FN, Millet P. Amyloid and Tau Induce Cell Death Independently of TSPO Polymerization and Density Changes. ACS OMEGA 2021; 6:18719-18727. [PMID: 34337211 PMCID: PMC8319921 DOI: 10.1021/acsomega.1c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Apoptosis-dependent cell death of astrocytes has been described in Alzheimer's disease and is linked to the presence of two markers of the pathology: the β-amyloid peptide (Aβ) and the hyperphosphorylated Tau protein. Astrocytes also show reactive states characterized by the overexpression of the 18 kDa translocator protein (TSPO). However, TSPO is also known, in other areas of research, to participate in cell proliferation and death. Regulation of its function by autopolymerization has been described, but its involvement in apoptosis remains unknown. The aim was to determine the effects of Aβ, Tau, and TSPO antagonists on proliferation/cell death and TSPO polymerization in the C6 astrocytic cell line. The dose-effect on cell death in response to Aβ and Tau was observed but without alterations of TSPO density and polymerization. In contrast, nanomolar doses of antagonists stimulated cell proliferation, although micromolar doses induced cell death with a reduction in TSPO density and an increase in the ratio between the 36 and the 72 kDa TSPO polymers. Therefore, an alteration in the density and polymerization of TSPO appears to be related to cell death induced by TSPO antagonisms. In contrast, Aβ- and Tau-induced death seems to be independent of TSPO alterations. In conclusion, even if its role in cell death and proliferation is demonstrated, TSPO seems to, in the context of Alzheimer's disease, rather represent a marker of the activity of astrocytes than of cell death.
Collapse
Affiliation(s)
- Benjamin
B. Tournier
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
| | - Kelly Ceyzériat
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
- Division
of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, 1205 Genève, Switzerland
- Division
of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, 1205 Genève, Switzerland
| | - Farha N. Bouteldja
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
| | - Philippe Millet
- Department
of Psychiatry, University Hospitals of Geneva, 1205 Genève, Switzerland
- Department
of Psychiatry, University of Geneva, 1211 Genève, Switzerland
| |
Collapse
|
5
|
In Vivo TSPO Signal and Neuroinflammation in Alzheimer's Disease. Cells 2020; 9:cells9091941. [PMID: 32839410 PMCID: PMC7565089 DOI: 10.3390/cells9091941] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in in vivo imaging has attempted to demonstrate the presence of neuroinflammatory reactions by measuring the 18 kDa translocator protein (TSPO) expression in many diseases of the central nervous system. We focus on two pathological conditions for which neuropathological studies have shown the presence of neuroinflammation, which translates in opposite in vivo expression of TSPO. Alzheimer's disease has been the most widely assessed with more than forty preclinical and clinical studies, showing overall that TSPO is upregulated in this condition, despite differences in the topography of this increase, its time-course and the associated cell types. In the case of schizophrenia, a reduction of TSPO has instead been observed, though the evidence remains scarce and contradictory. This review focuses on the key characteristics of TSPO as a biomarker of neuroinflammation in vivo, namely, on the cellular origin of the variations in its expression, on its possible biological/pathological role and on its variations across disease phases.
Collapse
|
6
|
Celano M, Mio C, Sponziello M, Verrienti A, Bulotta S, Durante C, Damante G, Russo D. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol Cell Endocrinol 2018; 469:38-47. [PMID: 28579118 DOI: 10.1016/j.mce.2017.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Genomic and epigenetic alterations are now being exploited as molecular targets in cancer treatment. Abnormalities involving the post-translational modification of histones have been demonstrated in thyroid cancer, and they are regarded as promising molecular targets for novel drug treatment of tumors that are resistant to conventional therapies. After a brief overview of the histone modifications most commonly associated with human malignancies, we will review recently published preclinical and clinical findings regarding the use of histone-activity modulators in thyroid cancers. Particular attention will be focused on their use as re-differentiating or anti-proliferating agents, the differential effects observed when they are used alone and in combination with other targeted drugs, and current prospects for their use in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
7
|
Adrenal Oncocytic Neoplasm with Paradoxical Loss of Important Mitochondrial Steroidogenic Protein: The 18 kDA Translocator Protein. Case Rep Endocrinol 2017; 2017:6734695. [PMID: 29318061 PMCID: PMC5727653 DOI: 10.1155/2017/6734695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
The adrenal glands produce a variety of hormones that play a key role in the regulation of blood pressure, electrolyte homeostasis, metabolism, immune system suppression, and the body's physiologic response to stress. Adrenal neoplasms can be asymptomatic or can overproduce certain hormones that lead to different clinical manifestations. Oncocytic adrenal neoplasms are infrequent tumors that arise from cells in the adrenal cortex and display a characteristic increase in the number of cytoplasmic mitochondria. Since the rate-limiting step in steroidogenesis includes the transport of cholesterol across the mitochondrial membranes, in part carried out by the 18-kDa translocator protein (TSPO), we assessed the expression of TSPO in a case of adrenal oncocytic neoplasm using residual adrenal gland of the patient as internal control. We observed a significant loss of TSPO immunofluorescence expression in the adrenal oncocytic tumor cells when compared to adjacent normal adrenal tissue. We further confirmed this finding by employing Western blot analysis to semiquantify TSPO expression in tumor and normal adrenal cells. Our findings could suggest a potential role of TSPO in the tumorigenesis of this case of adrenocortical oncocytic neoplasm.
Collapse
|
8
|
Epigenetic Silencing of the Human 18 kDa Translocator Protein in a T Cell Leukemia Cell Line. DNA Cell Biol 2017; 36:103-108. [DOI: 10.1089/dna.2016.3385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
9
|
Krhin B, Goricar K, Gazic B, Dolzan V, Besic N. Functional polymorphisms in antioxidant genes in Hurthle cell thyroid neoplasm - an association of GPX1 polymorphism and recurrent Hurthle cell thyroid carcinoma. Radiol Oncol 2016; 50:289-96. [PMID: 27679545 PMCID: PMC5024660 DOI: 10.1515/raon-2016-0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/02/2016] [Indexed: 01/21/2023] Open
Abstract
Background Hurthle cells of the thyroid gland are very rich in mitochondria and oxidative enzymes. As a high level oxidative metabolism may lead to higher level of oxidative stress and can be associated with an increased risk for cancer, we investigated whether common functional polymorphisms in antioxidant genes (SOD2, CAT, GPX, GSTP1, GSTM1 and GSTT1) are associated with the development or clinical course of Hurthle cell thyroid carcinoma (HCTC). Methods A retrospective study was performed in 139 patients treated by thyroid surgery for a Hurthle cell neoplasm. HCTC, Hurthle cell thyroid adenoma (HCTA) or Hurthle cell thyroid nodule (HCTN) were diagnosed by pathomorphology. DNA was extracted from cores of histologically confirmed normal tissue obtained from formalin-fixed paraffin-embedded specimens and genotyped for investigated polymorphisms. Logistic regression was used to compare genotype distributions between patient groups. Results HCTC, HCTA and HCTN were diagnosed in 53, 47 and 21 patients, respectively. Metastatic disease and recurrence of HCTC were diagnosed in 20 and 16 HCTC patients, respectively. Genotypes and allele frequencies of investigated polymorphisms did not deviate from Hardy-Weinberg equilibrium in patients with HCTC, HCTA and HCTN. Under the dominant genetic model we observed no differences in the genotype frequency distribution of the investigated polymorphisms when the HCTA and HCTN group was compared to the HCTC group for diagnosis of HCTC or for the presence of metastatic disease. However, GPX1 polymorphism was associated with the occurrence of recurrent disease (p = 0.040). Conclusions GPX1 polymorphism may influence the risk for recurrent disease in HCTC.
Collapse
Affiliation(s)
- Blaz Krhin
- Institute of Oncology Ljubljana, Slovenia
| | - Katja Goricar
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Vita Dolzan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Roncaroli F, Su Z, Herholz K, Gerhard A, Turkheimer FE. TSPO expression in brain tumours: is TSPO a target for brain tumour imaging? Clin Transl Imaging 2016; 4:145-156. [PMID: 27077069 PMCID: PMC4820497 DOI: 10.1007/s40336-016-0168-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Positron emission tomography (PET) alone or in combination with MRI is increasingly assuming a central role in the development of diagnostic and therapeutic strategies for brain tumours with the aim of addressing tumour heterogeneity, assisting in patient stratification, and contributing to predicting treatment response. The 18 kDa translocator protein (TSPO) is expressed in high-grade gliomas, while its expression is comparatively low in normal brain. In addition, the evidence of elevated TSPO in neoplastic cells has led to studies investigating TSPO as a transporter of anticancer drugs for brain delivery and a selective target for tumour tissue. The TSPO therefore represents an ideal candidate for molecular imaging studies. Knowledge of the biology of TSPO in normal brain cells, in-depth understanding of TSPO functions and biodistribution in neoplastic cells, accurate methods for quantification of uptake of TSPO tracers and pharmacokinetic data regarding TSPO-targeted drugs are required before introducing TSPO PET and TSPO-targeted treatment in clinical practice. In this review, we will discuss the impact of preclinical PET studies and the application of TSPO imaging in human brain tumours, the advantages and disadvantages of TSPO imaging compared to other imaging modalities and other PET tracers, and pathology studies on the extent and distribution of TSPO in gliomas. The suitability of TSPO as molecular target for treatment of brain tumours will also be the appraised.
Collapse
Affiliation(s)
- Federico Roncaroli
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Zhangjie Su
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | | |
Collapse
|
11
|
Tu LN, Zhao AH, Hussein M, Stocco DM, Selvaraj V. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells. Endocrinology 2016; 157:1110-21. [PMID: 26741196 PMCID: PMC4769361 DOI: 10.1210/en.2015-1795] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism.
Collapse
Affiliation(s)
- Lan N Tu
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Amy H Zhao
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Mahmoud Hussein
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Douglas M Stocco
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Vimal Selvaraj
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
12
|
Morin D, Musman J, Pons S, Berdeaux A, Ghaleh B. Mitochondrial translocator protein (TSPO): From physiology to cardioprotection. Biochem Pharmacol 2015; 105:1-13. [PMID: 26688086 DOI: 10.1016/j.bcp.2015.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/04/2015] [Indexed: 01/08/2023]
Abstract
The mitochondrial translocator protein (TSPO) is a high affinity cholesterol binding protein which is primarily located in the outer mitochondrial membrane where it has been shown to interact with proteins implicated in mitochondrial permeability transition pore (mPTP) formation. TSPO is found in different species and is expressed at high levels in tissues that synthesize steroids but is also present in other peripheral tissues especially in the heart. TSPO has been involved in the import of cholesterol into mitochondria, a key step in steroidogenesis. This constitutes the main established function of the protein which was recently challenged by genetic studies. TSPO has also been associated directly or indirectly with a wide range of cellular functions such as apoptosis, cell proliferation, differentiation, regulation of mitochondrial function or porphyrin transport. In the heart the role of TSPO remains undefined but a growing body of evidence suggests that TSPO plays a critical role in regulating physiological cardiac function and that TSPO ligands may represent interesting drugs to protect the heart under pathological conditions. This article briefly reviews current knowledge regarding TSPO and discusses its role in the cardiovascular system under physiological and pathologic conditions. More particularly, it provides evidence that TSPO can represent an alternative strategy to develop new pharmacological agents to protect the myocardium against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Didier Morin
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Julien Musman
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Sandrine Pons
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Alain Berdeaux
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| | - Bijan Ghaleh
- INSERM U955, Équipe 3, Créteil, France; Université Paris-Est, UMR_S955, DHU A-TVB, UPEC, Créteil, France.
| |
Collapse
|
13
|
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer. MICROARRAYS 2015; 4:287-310. [PMID: 26388997 PMCID: PMC4573573 DOI: 10.3390/microarrays4020287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Collapse
|
14
|
Busch AW, Montgomery BL. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol 2015; 4:260-71. [PMID: 25618582 PMCID: PMC4315935 DOI: 10.1016/j.redox.2015.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Tetrapyrroles are involved in light sensing and oxidative stress mitigation. Reactive oxygen species (ROS) can form upon light exposure of free tetrapyrroles. Tetrapyrrole homeostasis must be tightly regulated to avoid oxidative stress. ROS can result in cellular damage or oxidative stress signaling in cells.
Collapse
|
15
|
Sánchez-Peña ML, Isaza CE, Pérez-Morales J, Rodríguez-Padilla C, Castro JM, Cabrera-Ríos M. Identification of potential biomarkers from microarray experiments using multiple criteria optimization. Cancer Med 2013; 2:253-65. [PMID: 23634293 PMCID: PMC3639664 DOI: 10.1002/cam4.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization procedure to compare different experiments is no longer necessary.
Collapse
Affiliation(s)
- Matilde L Sánchez-Peña
- Bio IE Lab, Industrial Engineering Department, University of Puerto Rico at Mayaguez, Mayagüez, Puerto Rico
| | | | | | | | | | | |
Collapse
|