1
|
Ma H, Hong WS, Chen SX. A progestin regulates the prostaglandin pathway in the neuroendocrine system in female mudskipper Boleophthalmus pectinirostris. J Steroid Biochem Mol Biol 2023; 231:106300. [PMID: 36990161 DOI: 10.1016/j.jsbmb.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Sex hormones regulate the reproductive cycle through brain-pituitary axis, but the molecular mechanism is still enigmatic. In the reproductive season, the mudskipper Boleophthalmus pectinirostris possesses a semilunar periodicity spawning rhythm, which coincides with the semilunar periodicity variations in 17α-hydroxyprogesterone, the precursor of 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a sexual progestin in teleosts. In the present study, we investigated in vitro the brain transcriptional differences between DHP-treated tissues and control groups using RNA-seq. Differential expression analysis revealed that 2700 genes significantly differentially expressed, including 1532 up-regulated and 1168 down-regulated genes. The majority of prostaglandin pathway-related genes were dramatically up-regulated, especially the prostaglandin receptor 6 (ptger6). Tissue distribution analysis revealed that ptger6 gene was ubiquitously expressed. In situ hybridization results showed that ptger6, nuclear progestin receptor (pgr), and DHP-induced c-fos mRNA were co-expressed in the ventral telencephalic area, the ventral nucleus of ventral telencephalic area, the anterior part of parvocellular preoptic nucleus, the magnocellular part of magnocellular preoptic nucleus, the ventral zone of periventricular hypothalamus, the anterior tubercular nucleus, the periventricular nucleus of posterior tuberculum, and the torus longitudinalis. DHP significantly enhanced promoter activities of ptger6 via Pgr. Together, this study suggested that DHP regulates the prostaglandin pathway in the neuroendocrine system of teleost fish.
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wang Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Shi S, Shu T, Li X, Lou Q, Jin X, He J, Yin Z, Zhai G. Characterization of the Interrenal Gland and Sexual Traits Development in cyp17a2-Deficient Zebrafish. Front Endocrinol (Lausanne) 2022; 13:910639. [PMID: 35733778 PMCID: PMC9207535 DOI: 10.3389/fendo.2022.910639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike the Cytochrome P450, family 17, subfamily A, member 1 (Cyp17a1), which possesses both 17α-hydroxylase and 17,20-lyase activities involved in the steroidogenic pathway that produces androgens and estrogens, Cytochrome P450, family 17, subfamily A, polypeptide 2 (Cyp17a2) possesses only 17α-hydroxylase activity and is known essential for the synthesis of cortisol. Besides with expressed in testes and ovaries, where the cyp17a1 is mainly expressed, cyp17a2 is also expressed in the interrenal gland in fish. Until now, the roles of cyp17a2 in fish, especially in sexual traits development and hypothalamic-pituitary-interrenal (HPI) axis, are poorly studied. To investigate the roles of Cyp17a2 in teleosts, the cyp17a2-null zebrafish was generated and analyzed by us. The significantly decreased cortisol concentration was observed both in the cyp17a2-deficient males and females at adult stage. The interrenal gland enlargement, increased pituitary proopiomelanocortin a (pomca) expression, decreased locomotion activity and response to light-stimulated stress were observed in cyp17a2-deficient fish. Intriguingly, the cyp17a2-deficient males were fertile and with normal breeding tubercles on the pectoral fin, but females were infertile, deficient in genital papilla and with decreased gonadosomatic index (GSI). The increased progesterone (P4), 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and 11-ketotestosterone (11-KT) in the cyp17a2-deficient males and females were observed. The increased concentration of testosterone (T) and estradiol (E2) was observed in cyp17a2-/- females and cyp17a2-/- males, respectively. By examining the ovaries development of cyp17a2-deficient fish at 3 months postfertilization (mpf), we observed that the oocytes were over-activated. Taken together, our findings demonstrate that Cyp17a2 is indispensable for production and physiology of cortisol, and cyp17a2-deficiency resulted in diminished cortisol but accumulated P4 and DHP, which may result in the over-activated oocytes in cyp17a2-deficient females.
Collapse
Affiliation(s)
- Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gang Zhai,
| |
Collapse
|
3
|
Trudeau VL. Neuroendocrine Control of Reproduction in Teleost Fish: Concepts and Controversies. Annu Rev Anim Biosci 2021; 10:107-130. [PMID: 34788545 DOI: 10.1146/annurev-animal-020420-042015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the teleost radiation, extensive development of the direct innervation mode of hypothalamo-pituitary communication was accompanied by loss of the median eminence typical of mammals. Cells secreting follicle-stimulating hormone and luteinizing hormone cells are directly innervated, distinct populations in the anterior pituitary. So far, ∼20 stimulatory and ∼10 inhibitory neuropeptides, 3 amines, and 3 amino acid neurotransmitters are implicated in the control of reproduction. Positive and negative sex steroid feedback loops operate in both sexes. Gene mutation models in zebrafish and medaka now challenge our general understanding of vertebrate neuropeptidergic control. New reproductive neuropeptides are emerging. These include but are not limited to nesfatin 1, neurokinin B, and the secretoneurins. A generalized model for the neuroendocrine control of reproduction is proposed. Hopefully, this will serve as a research framework on diverse species to help explain the evolution of neuroendocrine control and lead to the discovery of new hormones with novel applications. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; ,
| |
Collapse
|
4
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Li M, Liu X, Dai S, Xiao H, Qi S, Li Y, Zheng Q, Jie M, Cheng CHK, Wang D. Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell Mol Life Sci 2020; 77:4921-4938. [PMID: 31955242 PMCID: PMC11104970 DOI: 10.1007/s00018-019-03439-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023]
Abstract
A novel insulin-like growth factor (igf3), which is exclusively expressed in the gonads, has been widely identified in fish species. Recent studies have indicated that Igf3 regulates spermatogonia proliferation and differentiation in zebrafish; however, detailed information on the role of this Igf needs further in vivo investigation. Here, using Nile tilapia (Oreochromis niloticus) as an animal model, we report that igf3 is required for spermatogenesis and reproduction. Knockout of igf3 by CRISPR/Cas9 severely inhibited spermatogonial proliferation and differentiation at 90 days after hatching, the time critical for meiosis initiation, and resulted in less spermatocytes in the mutants. Although spermatogenesis continued to occur later, more spermatocytes and less spermatids were observed in the igf3-/- testes when compared with wild type of testes at adults, indicating that Igf3 regulates spermatocyte to spermatid transition. Importantly, a significantly increased occurrence of apoptosis in spermatids was observed after loss of Igf3. Therefore, igf3-/- males were subfertile with drastically reduced semen volume and sperm count. Conversely, the overexpression of Igf3 in XY tilapia enhanced spermatogenesis leading to more spermatids and sperm count. Transcriptomic analysis revealed that the absence of Igf3 resulted in dysregulation of many genes involved in cell cycle, meiosis and pluripotency regulators that are critical for spermatogenesis. In addition, in vitro gonadal culture with 17α-methyltetosterone (MT) and 11-ketotestosterone (11-KT) administration and in vivo knockout of cyp11c1 demonstrated that igf3 expression is regulated by androgens, suggesting that Igf3 acts downstream of androgens in fish spermatogenesis. Notably, the igf3 knockout did not affect body growth, indicating that this Igf specifically functions in reproduction. Taken together, our data provide genetic evidence for fish igf3 in the regulation of reproductive capacity by controlling spermatogenesis.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuangshuang Qi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yibing Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mimi Jie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Huang J, Zhang TT, Jiang K, Hong WS, Chen SX. GFP expression pattern in pituitary and gonads under the control of nuclear progesterone receptor promoter in transgenic zebrafish. Dev Dyn 2020; 249:1365-1376. [PMID: 32506585 DOI: 10.1002/dvdy.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The nuclear progesterone receptor (Pgr) is a ligand-dependent transcription factor primarily responsible for mediating progesterone actions relevant for reproduction across vertebrates. Information on the cellular localization of Pgr expression in the reproductive system is required for developing a comprehensive approach to elucidate the role of Pgr in reproduction. RESULTS We generated transgenic zebrafish Tg(pgr:eGFP) that express enhanced green fluorescent protein (eGFP) driven by promoter sequence of pgr gene. The tissue distribution pattern of egfp mRNA is consistent with the pgr mRNA expression in Tg(pgr:eGFP). In the pituitary, GFP signals are found in the proximal pars distalis. In order to better discern the cellular localization of GFP signals in gonads, Tg(pgr:eGFP) line was crossed with Tg(gsdf:nfsB-mCherry) line, specifically expressing nitroreductase-mCherry fusion protein in granulosa and Sertoli cells in ovary and testis, respectively. Imaging of testis tissue showed that GFP expression was confined to Leydig cells. In the ovary, GFP expression colocalized with the mCherry signal in granulosa cells. Intriguingly, we also identified some non-granulosa cells close to where blood vessels branched, expressing stronger GFP signals than granulosa cells. CONCLUSIONS Analyzing Tg(pgr:eGFP) expression in zebrafish provided leads toward new routes to study the role of Pgr in reproduction.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ting Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Liu DT, Hong WS, Chen SX, Zhu Y. Upregulation of adamts9 by gonadotropin in preovulatory follicles of zebrafish. Mol Cell Endocrinol 2020; 499:110608. [PMID: 31586455 PMCID: PMC6878983 DOI: 10.1016/j.mce.2019.110608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023]
Abstract
Previously we had identified adamts9 as a downstream target of Pgr, which is essential for ovulation in zebrafish. The primary goal of this study is to determine whether human chorionic gonadotropin (hCG, LH analog) also regulate adamts9 expression prior to ovulation. The expression of adamts9 was induced by hCG in a dose and time dependent manner in zebrafish preovulatory follicles in vitro. Interestingly, the stimulatory effect of hCG on adamts9 expression was not blocked in pgr-/- follicles but blocked in lhcgr-/-. This effect of hCG was via Lhcgr and its associated cAMP and PKC signaling pathways. Reduced fecundity and reduced expression of adamts9 were also found in lhcgr-/- females in vivo. Therefore, we have provided the first evidence of gonadotropin (hCG) regulated adamts9 in zebrafish, which could be important for ovulation.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China.
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, 361102, People's Republic of China; Department of Biology, East Carolina University, 1000 5th Street, Greenville, NC, 27858, USA.
| |
Collapse
|
8
|
Zhai G, Shu T, Xia Y, Lu Y, Shang G, Jin X, He J, Nie P, Yin Z. Characterization of Sexual Trait Development in cyp17a1-Deficient Zebrafish. Endocrinology 2018; 159:3549-3562. [PMID: 30202919 DOI: 10.1210/en.2018-00551] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 (Cyp)17A1 has both 17α-hydroxylase and 17,20-lyase activities, which are involved in the steroidogenic pathway that produces androgens and estrogens. Previously, a phenotype of all-male cyp17a1-deficient zebrafish generated by transcription activatorlike effector nuclease has been reported. In the current study, the mechanisms relating to Cyp17a1 that are involved in the development of sexual traits, especially gonadal differentiation and testicular development, were characterized. We found that the cyp17a1-deficient fish at 3 months postfertilization (mpf) were all fertile males with normal testis and spermatogenesis but compromised male-typical mating behaviors and secondary sex characters (SSCs), including breeding tubercles, body pigmentation, and anal fin coloration. These results demonstrate that spermatogenesis and testicular development are not as susceptible to androgen deficiency compared with the formation of male-typical SSCs and mating behaviors in zebrafish. The differentiation of the juvenile ovary into the mature ovary failed during the critical sexual differentiation stage. This all-male phenotype of the cyp17a1-deficient fish could be restored with testosterone or estradiol treatment. For testicular development in cyp17a1-deficient fish, a gradually increasing number of spermatozoa and testis hypertrophy from 3 to 6 mpf were observed, accompanied by constitutively upregulated pituitary gonadotropin FSH subunit β (fshβ). The hypertrophic testis and enhanced spermatogenesis in the cyp17a1-deficient fish at 6 mpf could be effectively rescued by fshβ depletion. These results confirm that adequate estrogen is essential for maintaining ovarian differentiation, and they provide new insight into the role of FSHβ in male testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuguo Xia
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Shang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Fang X, Wu L, Yang L, Song L, Cai J, Luo F, Wei J, Zhou L, Wang D. Nuclear progestin receptor (Pgr) knockouts resulted in subfertility in male tilapia (Oreochromis niloticus). J Steroid Biochem Mol Biol 2018; 182:62-71. [PMID: 29705270 DOI: 10.1016/j.jsbmb.2018.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/22/2018] [Indexed: 12/25/2022]
Abstract
It was documented that 17α, 20β-dihydroxy-4-pregnen-3-one (DHP), a fish specific progestin, might play critical roles in spermatogenesis, sperm maturation and spermiation partially through activating nuclear receptor (Pgr). However, no direct evidence is available to demonstrate the functions of DHP in fish spermatogenesis. To further elucidate the roles of DHP in teleosts, we generated a pgr homozygous mutant line in XY Nile tilapia (Oreochromis niloticus). Pgr gene mutation resulted in the development of a smaller, thinner testis and a lower GSI compared with normal testis. Pgr gene knockout led to irregular arrangement of spermatogenic cysts, decline of sperm count and sperm motility. Significant decrease of spermatocytes and spermatozoa was observed, which was further proved by the PCNA and Ph3 staining. Real-time PCR analysis demonstrated that mutation of pgr gene resulted in a significant up-regulation of steroidogenesis-related genes of cyp17a, cyp11b2, StAR, scc, 20β-HSD, and sf1, and down-regulation of fshb, fshr, oct4, sycp3, cdk1, prm, cyclinB1, cyclinB2 and cdc25 genes. Furthermore, both Immunohistochemistry and Western blotting experiments revealed a remarkable increase of Cyp17a1, Cyp17a2 and Cyp11b2 expressions in the pgr-/- testis. EIA measurement showed that an evident increase of 11-KT level was found in the pgr-/- XY fish. There was a significant increase in the mortality of offspring when crossing pgr-/- XY fish with wild type XX fish. Increased TUNEL staining and enhanced apoptosis maker gene (bax) expressions were also observed. Taken together, our data suggested that DHP-activated physiology via pgr is crucial for the fertility in the XY tilapia.
Collapse
Affiliation(s)
- Xuelian Fang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, HeNan, 453007, PR China
| | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
de Castro Assis LH, de Nóbrega RH, Gómez-González NE, Bogerd J, Schulz RW. Estrogen-induced inhibition of spermatogenesis in zebrafish is largely reversed by androgen. J Mol Endocrinol 2018; 60:273-284. [PMID: 29476039 DOI: 10.1530/jme-17-0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
The hormonal regulation of spermatogenesis involves both gonadotropins and steroid hormones. Long-term in vivo exposure of adult zebrafish to estrogen impaired spermatogenesis associated with an androgen insufficiency, possibly induced by inhibiting gonadotropin release. Using this experimental model, we investigated if androgen treatment could enhance spermatogenesis, while maintaining the inhibition of gonadotropin release through continued estrogen exposure. Moreover, we also exposed animals to androgen alone, in order to examine androgen effects in the absence of estrogen-induced gonadotropin inhibition. Estrogen exposure depleted type B spermatogonia, meiotic and postmeiotic germ cells from the adult testis, but promoted the proliferation of type A undifferentiated spermatogonia, which accumulated in the testis. This change in germ cell composition was accompanied by reduced mRNA levels of those growth factors (e.g. insl3 and igf3) expressed by testicular somatic cells and known to stimulate spermatogonial differentiation in zebrafish. Additional androgen (11-ketoandrostenedione, which is converted to 11-ketotestosterone) treatment in vivo reversed most of the effects of estrogen exposure on spermatogenesis while insl3 and igf3 transcript levels remained suppressed. When androgen treatment was given alone, it promoted the production of haploid cells at the expense of spermatogonia, and increased transcript levels of some growth factor and hormone receptor genes, but not those of insl3 or igf3 We conclude that estrogen exposure efficiently inhibits spermatogenesis because it induces androgen insufficiency and suppresses gonadotropin-regulated growth factors known to stimulate germ cell differentiation. Moreover, our results suggest that androgens and the growth factors Insl3 and Igf3 stimulate spermatogenesis via independent pathways.
Collapse
Affiliation(s)
- Luiz Henrique de Castro Assis
- Reproductive Biology GroupDivision of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Rafael Henrique de Nóbrega
- Reproductive and Molecular Biology GroupDepartment of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Nuria Esther Gómez-González
- Department of Cell Biology and HistologyFaculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Jan Bogerd
- Reproductive Biology GroupDivision of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger Winfried Schulz
- Reproductive Biology GroupDivision of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
12
|
Zhu B, Ge W. Genome editing in fishes and their applications. Gen Comp Endocrinol 2018; 257:3-12. [PMID: 28919449 DOI: 10.1016/j.ygcen.2017.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
There have been revolutionary progresses in genome engineering in the past few years. The newly-emerged genome editing technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats associated with Cas9 (CRISPR/Cas9) have enabled biological scientists to perform efficient and precise targeted genome editing in different species. Fish represent the largest group of vertebrates with many species having values for both scientific research and aquaculture industry. Genome editing technologies have found extensive applications in different fish species for basic functional studies as well asapplied research in such fields as disease modeling and aquaculture. This mini-review focuses on recent advancements and applications of the new generation of genome editing technologies in fish species, with particular emphasis on their applications in understanding reproductive functions because the reproductive axis has been most systematically and best studied among others and its function has been difficult to address with reverse genetics approach.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
13
|
Liu DT, Carter NJ, Wu XJ, Hong WS, Chen SX, Zhu Y. Progestin and Nuclear Progestin Receptor Are Essential for Upregulation of Metalloproteinase in Zebrafish Preovulatory Follicles. Front Endocrinol (Lausanne) 2018; 9:517. [PMID: 30279677 PMCID: PMC6153345 DOI: 10.3389/fendo.2018.00517] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022] Open
Abstract
Ovulation requires proteinases to promote the rupture of ovarian follicles. However, the identity of these proteinases remains unclear. In our previous studies using RNA-seq analysis of differential expressed genes, we found significant down-regulation of five metalloproteinases: adam8b (a disintegrin and metalloproteinase domain 8b), adamts8a (a disintegrin and metalloproteinase with thrombospondin motif 8a), adamts9, mmp2 (matrix metalloproteinase 2), and mmp9 in the nuclear progestin receptor knockout (pgr -/-) zebrafish that have failed to ovulate. We hypothesize that these metalloproteinases are responsible for ovulation and are regulated by progestin and Pgr. In this study, we first determined the expression of these five metalloproteinases and adamts1 in preovulatory follicles at different times within the spawning cycle in pgr -/- and wildtype (wt) zebrafish and under varying hormonal treatments. We found that transcripts of adam8b, adamts1, adamts9, and mmp9 increased drastically in the preovulatory follicular cells of wt female zebrafish, while changes of adamts8a and mmp2 were not significant. This increase of adam8b, adamts9, and mmp9 was significantly reduced in pgr -/-, whereas expression of adamts1 was not affected in pgr -/- zebrafish. Among upregulated metalloproteinases, adamts9 mRNA was found to be expressed specifically in follicular cells. Strong immunostaining of Adamts9 protein was observed in the follicular cells of wt fish, and this expression was reduced drastically in pgr -/-. Interestingly, about an hour prior to the increase of metalloproteinases in wt fish, both Pgr transcript and protein increased transiently in preovulatory follicular cells. The results from in vitro experiments showed that adamts9 expression markedly increased in a dose, time and Pgr-dependent manner when preovulatory follicles were exposed to a progestin, 17α,20β-dihydroxy-4-pregnen-3-one (DHP). Taken together, our results provide the first evidence that upregulation of adamts9 occurs specifically in preovulatory follicular cells of zebrafish prior to ovulation. Progestin and its receptor (Pgr) are essential for the upregulation of metalloproteinases.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Nichole J. Carter
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Xin Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Shi Xi Chen
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Biology, East Carolina University, Greenville, NC, United States
- Yong Zhu
| |
Collapse
|
14
|
Zhang YT, Hong WS, Liu DT, Qiu HT, Zhu Y, Chen SX. Involvement of Membrane Progestin Receptor Beta (mPRβ/Paqr8) in Sex Pheromone Progestin-Induced Expression of Luteinizing Hormone in the Pituitary of Male Chinese Black Sleeper ( Bostrychus Sinensis). Front Endocrinol (Lausanne) 2018; 9:397. [PMID: 30072952 PMCID: PMC6058016 DOI: 10.3389/fendo.2018.00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
Our previous studies showed that 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) acted as a sex pheromone to induce reproductive success in Chinese black sleeper (Bostrychus sinensis), but its functional mechanism remains unclear. In the present study, we cloned the cDNAs of the gonadotropin subunits (cgα, fshβ, and lhβ), and found that, in exposure to 5 nM DHP, transcript levels of lhβ significantly increased in the pituitary at 6 h post exposure; plasma 11-KT levels increased at 24 h post exposure in mature male fish. In contrast, DHP exposure failed to increase the transcript levels of lhβ in the pituitary of immature male fish, suggesting that the responsiveness to DHP depends on reproductive status. Interestingly, expression of progestin and adipoQ receptor 8 (paqr8, also known as mPRβ) and progesterone receptor membrane component 2 significantly increased in the olfactory rosette of male fish at late meiosis stage following a co-injection of human chorionic gonadotropin (HCG) and luteinizing hormone releasing hormone-A3 (LHRH-A3), while no increases of other progestin receptors were observed. Moreover, Paqr8 protein was localized in the dendritic knobs of the olfactory sensory neurons, which were activated following the in vivo exposure to DHP. The DHP-induced expression of lhβ in pituitary was not inhibited by RU486, an antagonist of nuclear progesterone receptor. Taken together, our results suggested that sex pheromone DHP increased the expression of lhβ transcript in the pituitary and plasma 11-KT levels of mature male, important for reproduction; and Paqr8 might be involved in responding to sex pheromone DHP in the olfactory rosette of male B. sinensis.
Collapse
Affiliation(s)
- Yu Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Heng Tong Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Fujian, China
- *Correspondence: Shi Xi Chen
| |
Collapse
|
15
|
Nuclear and membrane progestin receptors in the European eel: Characterization and expression in vivo through spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:79-92. [DOI: 10.1016/j.cbpa.2017.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/04/2023]
|
16
|
Siegenthaler PF, Zhao Y, Zhang K, Fent K. Reproductive and transcriptional effects of the antiandrogenic progestin chlormadinone acetate in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:346-356. [PMID: 28118999 DOI: 10.1016/j.envpol.2017.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Chlormadinone acetate (CMA) is a frequently used progestin with antiandrogenic activity in humans. Residues may enter the aquatic environment but potential adverse effects in fish are unknown. While our previous work focused on effects of CMA in vitro and in zebrafish eleuthero-embryos, the present study reports on reproductive and transcriptional effects in adult female and male zebrafish (Danio rerio). We performed a reproductive study using breeding groups of zebrafish. After 15 days of pre-exposure, we exposed zebrafish to different measured concentrations between 6.4 and 53,745 ng/L CMA for 21 days and counted produced eggs daily to determine fecundity. Additionally, transcriptional effects of CMA in brains, livers, and gonads were analyzed. CMA induced a slight but statistically significant reduction in fecundity at 65 ng/L and 53,745 ng/L compared to pre-exposure. Furthermore, we observed differential expression for gene transcripts of steroid hormone receptors, genes related to the hypothalamic-pituitary-gonadal axis, and steroidogenesis. In particular, we found a significant decrease of transcript levels of vitellogenin (vtg1) in ovaries and liver, and of cyp2k7 in the liver of males, as well as a significant increase of transcripts of the progesterone receptor (pgr) in testes, and cyp2k1 in the liver of females. The observed effects were weaker than those of other very potent progestins, which is probably related to the lack of interaction of CMA with the zebrafish progesterone receptor.
Collapse
Affiliation(s)
- Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Yanbin Zhao
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|