1
|
Silveira JM, Cesar Dos Santos A, Calado de Brito DC, de Oliveira MF, Conley AJ, de Assis Neto AC. Morphohistometric and steroidogenic parameters during testicular and epididymal differentiation in cavy (Galea spixii) fetuses. Reprod Biol 2024; 24:100829. [PMID: 38039944 DOI: 10.1016/j.repbio.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Sexual differentiation and steroidogenic mechanisms have an important impact on postnatal gonadal phenotypic development. Thus, establishing the activities that lead to male phenotypic development can provide a better understanding of this process. This study examined the prenatal development of cavies to establish morphological and histometric development patterns and protein and enzyme immunolocalization processes that are responsible for androgen synthesis in the testes and epididymis. Histological and histometric analyses of the diameter of the seminiferous cords and epididymal ducts of male fetuses on Days 25, 30, 40, and 50 were performed, as well as immunohistochemistry of the steroidogenic enzymes 5α-reductase and 17β-HSD, the androgen receptor, and the anti-Müllerian hormone (AMH). Our findings showed a cellular grouping of gonocytes from Day 30 onward that was characteristic of the seminiferous cord, which was not present in the lumen at any of the studied dates. From Day 50 onward, the differentiation of the three anatomical regions of the epididymis was evident, the head (caput), body (corpus), and tail (cauda), with tissue distinctions. Furthermore, the diameters of the seminiferous cords and epididymal ducts significantly increased with age. On Day 50, the tail showed the greatest diameter of the three regions. The Sertoli and Leydig cells exhibited AMH immunoreactivity at all dates. In addition, the Leydig cells and epididymal epithelial tissue were immunopositive for 5α-reductase, 17β-HSD, and the androgen receptor; therefore, these factors influenced the development and maintenance of the testis and epididymis during cavy prenatal development.
Collapse
Affiliation(s)
- Júlia Moreira Silveira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amilton Cesar Dos Santos
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Alan James Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, UC, Davis, CA, USA
| | - Antonio Chaves de Assis Neto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Conley AJ, Legacki EL, Corbin CJ, Stanley S, Dahlen CR, Reynolds LP. Serum and tissue pregnanes and pregnenes after dexamethasone treatment of cows in late gestation. Reproduction 2020; 157:413-422. [PMID: 30763279 DOI: 10.1530/rep-18-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022]
Abstract
Dexamethasone (DEX) initiates parturition by inducing progesterone withdrawal and affecting placental steroidogenesis, but the effects of DEX in fetal and maternal tissue steroid synthetic capacity remains poorly investigated. Blood was collected from cows at 270 days of gestation before DEX or saline (SAL) treatment, and blood and tissues were collected at slaughter 38 h later. Steroid concentrations were determined by liquid chromatography tandem mass spectrometry to detect multiple steroids including 5α-reduced pregnane metabolites of progesterone. The activities of 3β-hydroxysteroid dehydrogenase (3βHSD) in cotyledonary and luteal microsomes and mitochondria and cotyledonary microsomal 5α-reductase were assessed. Quantitative PCR was used to further assess transcripts encoding enzymes and factors supporting steroidogenesis in cotyledonary and luteal tissues. Serum progesterone, pregnenolone, 5α-dihydroprogesterone (DHP) and allopregnanolone (3αDHP) concentrations (all <5 ng/mL before treatment) decreased in cows after DEX. However, the 20α-hydroxylated metabolite of DHP, 20αDHP, was higher before treatment (≈100 ng/mL) than at slaughter but not affected by DEX. Serum, cotyledonary and luteal progesterone was lower in DEX- than SAL-treated cows. Progesterone was >100-fold higher in luteal than cotyledonary tissues, and serum and luteal concentrations were highly correlated in DEX-treated cows. 3βHSD activity was >5-fold higher in luteal than cotyledonary tissue, microsomes had more 3βHSD than mitochondria in luteal tissue but equal in cotyledonary sub-cellular fractions. DEX did not affect either luteal or cotyledonary 3βHSD activity but luteal steroidogenic enzyme transcripts were lower in DEX-treated cows. DEX induced functional luteal regression and progesterone withdrawal before any changes in placental pregnene/pregnane synthesis and/or metabolism were detectable.
Collapse
Affiliation(s)
- Alan J Conley
- Department of Population Health & Reproduction, University of California, Davis, California, USA
| | - Erin L Legacki
- Department of Population Health & Reproduction, University of California, Davis, California, USA
| | - C Jo Corbin
- Department of Population Health & Reproduction, University of California, Davis, California, USA
| | - Scott Stanley
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
3
|
Liu Q, Yu W, Fan S, Zhuang H, Han Y, Zhang H, Yuan Z, Weng Q. Seasonal expressions of androgen receptor, estrogen receptors, 5α-reductases and P450arom in the epididymis of the male muskrat (Ondatra zibethicus). J Steroid Biochem Mol Biol 2019; 194:105433. [PMID: 31376460 DOI: 10.1016/j.jsbmb.2019.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
The steroid hormones not only exert various endocrine functions but also act as the autocrine or paracrine factors in different tissues of mammals. In the present study, the seasonal expressions of androgen receptor (AR), estrogen receptors alpha and beta (ERα and ERβ), aromatase cytochrome P450 (P450arom) and 5α-reductase 1, 2 were investigated in the epididymis of the muskrat. HE staining showed enlarged lumen and abundant sperm in the breeding season while reduced lumen with no sperm in the non-breeding season. The staining of AR was presented in nuclei of epithelial cells of the epididymis in both seasons. The immunostaining of ERα was localized in both nuclei and cytoplasm of epithelial cells of the epididymis during the breeding season, while the weak staining of ERα was only in the nuclei of epithelial cells during the non-breeding season. In contrast, ERβ signal was negative in the epididymis of the muskrat in both seasons. The positive signals for P450arom and 5α-reductase 1, 2 were found in the cytoplasm of epithelial and smooth muscle cells during both seasons. Moreover, the protein and mRNA expression levels of AR, ERα, P450arom and 5α-reductase 1, 2 were significantly higher in the epididymis during the breeding season than those of the non-breeding season, and the expression level of 5α-reductase 1 was higher when compared with 5α-reductase 2. In addition, the levels of testosterone (T) and dihydrotestosterone (DHT) in the epididymis and serum were remarkably higher during the breeding season. Taken together, these findings suggested androgen and estrogen might play an important endocrine or autocrine/paracrine role to regulate the epididymal functions of the muskrat.
Collapse
Affiliation(s)
- Qian Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenyang Yu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haotong Zhuang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Wang J, Liu Q, Wang Z, Sheng X, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of luteinising hormone receptor, follicle-stimulating hormone receptor and prolactin receptor in the epididymis of the male wild ground squirrel (Spermophilus dauricus). Reprod Fertil Dev 2019; 31:735-742. [DOI: 10.1071/rd18262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 10/24/2018] [Indexed: 11/23/2022] Open
Abstract
Luteinising hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) are pituitary-derived hormones and mediate their functions through LH receptor (LHR), FSH receptor (FSHR) and PRL receptor (PRLR) respectively. This study aimed to investigate the seasonal expression patterns of LHR, FSHR and PRLR in the epididymis of the male wild ground squirrel during the breeding and non-breeding seasons. Histologically, principal cells, basal cells, cilia and mature spermatozoa were found in the lumen of caput, corpus and cauda epididymidis in the breeding season, whereas in the non-breeding season, cilia and basal cells were rarely found and the epididymidal duct was devoid of spermatozoa. Immunohistochemical results showed that LHR, FSHR and PRLR were mainly present in the filamentous cytoplasm layer of epithelial cells of the caput, corpus and cauda epididymidis and FSHR and PRLR displayed stronger staining in the breeding season than in the non-breeding season. Furthermore, the mRNA and protein levels of FSHR and PRLR in all regions of epididymis as well as the levels of LHR in the caput and cauda epididymidis were higher during the breeding season. The protein levels of FSHR, LHR and PRLR were positively correlated with epididymal weight. Together, these results suggest that LHR, FSHR and PRLR may regulate epididymal functional changes in the male wild ground squirrel during its seasonal breeding cycle.
Collapse
|
5
|
Zimmer B, Tenbusch L, Klymiuk MC, Dezhkam Y, Schuler G. SULFATION PATHWAYS: Expression of SULT2A1, SULT2B1 and HSD3B1 in the porcine testis and epididymis. J Mol Endocrinol 2018; 61:M41-M55. [PMID: 29588428 DOI: 10.1530/jme-17-0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
In the porcine testis, in addition to estrogen sulfates, the formation of numerous sulfonated neutral hydroxysteroids has been observed. However, their functions and the underlying synthetic pathways are still widely unclear. To obtain further information on their formation in postpubertal boars, the expression of sulfotransferases considered relevant for neutral hydroxysteroids (SULT2A1, SULT2B1) was investigated in the testis and defined segments of the epididymis applying real-time RT-qPCR, Western blot and immunohistochemistry (IHC). Sulfotransferase activities were assessed in tissue homogenates or cytosolic preparations applying dehydroepiandrosterone and pregnenolone as substrates. A high SULT2A1 expression was confirmed in the testis and localized in Leydig cells by IHC. In the epididymis, SULT2A1 expression was virtually confined to the body. SULT2B1 expression was absent or low in the testis but increased significantly along the epididymis. Immunohistochemical observations indicate that both enzymes are secreted into the ductal lumen via an apocrine mechanism. The results from the characterization of expression patterns and activity measurements suggest that SULT2A1 is the prevailing enzyme for the sulfonation of hydroxysteroids in the testis, whereas SULT2B1 may catalyze the formation of sterol sulfates in the epididymis. In order to obtain information on the overall steroidogenic capacity of the porcine epididymis, the expression of important steroidogenic enzymes (CYP11A1, CYP17A1, CYP19, HSD3B1, HSD17B3, SRD5A2) was monitored in the defined epididymal segments applying real-time RT-qPCR. Surprisingly, in addition to a high expression of SRD5A2 in the epididymal head, a substantial expression of HSD3B1 was detected, which increased along the organ.
Collapse
Affiliation(s)
- B Zimmer
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - L Tenbusch
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - M C Klymiuk
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Y Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
6
|
Conley AJ, Scholtz EL, Legacki EL, Corbin CJ, Knych HK, Dujovne GD, Ball BA, Moeller BC, Stanley SD. 5α-dihydroprogesterone concentrations and synthesis in non-pregnant mares. J Endocrinol 2018; 238:25-32. [PMID: 29853526 DOI: 10.1530/joe-18-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 11/08/2022]
Abstract
In vivo and in vitro evidence indicates that the bioactive, 5α-reduced progesterone metabolite, 5α-dihydroprogesterone (DHP) is synthesized in the placenta, supporting equine pregnancy, but its appearance in early pregnancy argues for other sites of synthesis also. It remains unknown if DHP circulates at relevant concentrations in cyclic mares and, if so, does synthesis involve the non-pregnant uterus? Jugular blood was drawn daily from cyclic mares (n = 5). Additionally, ovariectomized mares (OVX) and geldings were administered progesterone (300 mg) intramuscularly. Blood was drawn before and after treatment. Incubations of whole equine blood and hepatic microsomes with progesterone were also investigated for evidence of DHP synthesis. Sample analysis for progesterone, DHP and other steroids employed validated liquid chromatography-tandem mass spectrometry methods. Progesterone and DHP appeared a day (d) after ovulation in cyclic mares, was increased significantly by d3, peaking from d5 to 10 and decreased from d13 to 17. DHP was 55.5 ± 3.2% of progesterone concentrations throughout the cycle and was highly correlated with it. DHP was detected immediately after progesterone administration to OVX mares and geldings, maintaining a relatively constant ratio with progesterone (47.2 ± 2.9 and 51.2 ± 2.7%, respectively). DHP was barely detectable in whole blood and hepatic microsome incubations. We conclude that DHP is a physiologically relevant progestogen in cyclic, non-pregnant mares, likely stimulating the uterus, and that it is synthesized peripherally from luteal progesterone but not in the liver or blood. The presence of DHP in pregnant perissodactyla as well as proboscidean species suggests horses may be a valuable model for reproductive endocrinology in other exotic taxa.
Collapse
Affiliation(s)
- A J Conley
- Department of Population Health & ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - E L Scholtz
- Department of Population Health & ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - E L Legacki
- Department of Population Health & ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - C J Corbin
- Department of Population Health & ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - H K Knych
- Department of Molecular BiosciencesSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - G D Dujovne
- Department of Population Health & ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - B A Ball
- Gluck Equine Research CenterDepartment of Veterinary Science, University of Kentucky, Lexington Kentucky, USA
| | - B C Moeller
- Department of Molecular BiosciencesSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - S D Stanley
- Department of Molecular BiosciencesSchool of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
7
|
Wynn MAA, Ball BA, Legacki E, Conley A, Loux S, May J, Esteller-Vico A, Stanley S, Scoggin K, Squires E, Troedsson M. Inhibition of 5α-reductase alters pregnane metabolism in the late pregnant mare. Reproduction 2018; 155:251-258. [DOI: 10.1530/rep-17-0380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/11/2018] [Indexed: 11/08/2022]
Abstract
In the latter half of gestation in the mare, progesterone concentrations decline to near undetectable levels while other 5α-reduced pregnanes are elevated. Of these, 5α-dihydroprogesterone and allopregnanolone have been reported to have important roles in either pregnancy maintenance or fetal quiescence. During this time, the placenta is necessary for pregnane metabolism, with the enzyme 5α-reductase being required for the conversion of progesterone to 5α-dihydroprogesterone. The objectives of this study were to assess the effects of a 5α-reductase inhibitor, dutasteride on pregnane metabolism (pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3β,20α-diol and allopregnanolone), to determine circulating dutasteride concentrations and to assess effects of dutasteride treatment on gestational parameters. Pregnant mares (n = 5) received dutasteride (0.01 mg/kg/day, IM) and control mares (n = 4) received vehicle alone from 300 to 320 days of gestation or until parturition. Concentrations of dutasteride, pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3β,20α-diol, and allopregnanolone were evaluated via liquid chromatography–tandem mass spectrometry. Samples were analyzed as both days post treatment and as days prepartum. No significant treatment effects were detected in pregnenolone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3β,20α-diol or allopregnanolone for either analysis; however, progesterone concentrations were increased (P < 0.05) sixfold in dutasteride-treated mares compared to control mares. Dutasteride concentrations increased in the treated mares, with a significant correlation (P < 0.05) between dutasteride concentrations and pregnenolone or progesterone concentrations. Gestational length and neonatal outcomes were not significantly altered in dutasteride-treated mares. Although 5α-reduced metabolites were unchanged, these data suggest an accumulation of precursor progesterone with inhibition of 5α-reductase, indicating the ability of dutasteride to alter progesterone metabolism.
Collapse
|
8
|
Legacki EL, Corbin CJ, Ball BA, Scoggin KE, Stanley SD, Conley AJ. Steroidogenic enzyme activities in the pre- and post-parturient equine placenta. Reproduction 2018; 155:51-59. [DOI: 10.1530/rep-17-0472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023]
Abstract
Steroidogenic enzymes in placentas shape steroid hormone profiles in the maternal circulation of each mammalian species. These include 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase (3βHSD) and 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17) crucial for progesterone and androgen synthesis, respectively, as well as aromatase cytochrome P450 (P450arom) that converts Δ4-androgens to estrogens. 5α-reductase is another important enzyme in equine placentas because 5α-dihydroprogesterone (DHP) sustains pregnancy in the absence of progesterone in the second half of equine pregnancy. DHP and its metabolites decline dramatically days before foaling, but few studies have investigated placental enzyme activity before or at parturition in mares. Thus, key enzyme activities and transcript abundance were investigated in equine placentas at 300 days of gestation (GD300) and post-partum (term). Equine testis was used as a positive control for P450c17 activity. Substrates were incubated with microsomal preparations, together with enzyme inhibitors, and products were measured by liquid chromatography tandem mass spectrometry or radiometric methods (aromatase). Equine placenta expressed high levels of 3βHSD, 5α-reductase and aromatase, and minimal P450c17 activity at GD300 compared with testis (600-fold higher). At foaling, 3βHSD and aromatase activities and transcript abundance were unchanged but 5α-reductase (and P450c17) was no longer detectable (P < 0.05) and transcript was decreased. Trilostane inhibited 3βHSD significantly more in testis than placenta, suggesting possible existence of different 3βHSD isoforms. Equine placentas have significant capacity for steroid metabolism by 5α-reductase, 3βHSD and aromatase but little for androgen synthesis lacking P450c17. Declining pre-partum 5α-reduced pregnane concentrations coincide with selective loss of placental 5α-reductase activity and expression at parturition in horses.
Collapse
|
9
|
Wynn MA, Esteller-Vico A, Legacki EL, Conley AJ, Loux SC, Stanley SD, Curry TE, Squires EL, Troedsson MH, Ball BA. A comparison of progesterone assays for determination of peripheral pregnane concentrations in the late pregnant mare. Theriogenology 2018; 106:127-133. [DOI: 10.1016/j.theriogenology.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
|
10
|
Han W, Xie W, Zhang Y, Zhang F, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expression of P450c17 and 5α-reductase-2 in the scented gland of male muskrats (Ondatra zibethicus). Gen Comp Endocrinol 2017; 254:60-67. [PMID: 28919450 DOI: 10.1016/j.ygcen.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
Cytochrome P450 17A1 (P450c17) is the key enzyme required for the production of androgenic sex steroids by converting progestogens to androgens. 5α-reductases are enzymes that convert testosterone (T) to dihydrotestosterone (DHT), which has a greater affinity for androgen receptors (AR) and stronger action than T. Our previous studies revealed that the scented glands of male muskrats expressed AR during the breeding and nonbreeding seasons. To further seek evidence of the activities of androgens in scented glands, the expression patterns of P450c17 and 5α-reductase 2 were investigated in the scented glands of male muskrats during the breeding and nonbreeding seasons. The weight and size of scented glands in the breeding season were significantly higher than those of the nonbreeding season. Immunohistochemical data showed that P450c17 and 5α-reductase 2 were presented in the glandular cells and epithelial cells of scented glands in both the seasons. The protein and mRNA expression of P450c17 and 5α-reductase 2 were significantly higher in the scented gland during the breeding season than those during the nonbreeding season. In addition, the levels of DHT and T in the scented gland were remarkably higher during the breeding season. Taken together, these results suggested that the scented glands of male muskrats were capable of locally synthesizing T and DHT, and T and DHT might play an important role in the scented glandular function via an autocrine or paracrine manner.
Collapse
Affiliation(s)
- Wentao Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fengwei Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Legacki EL, Ball BA, Corbin CJ, Loux SC, Scoggin KE, Stanley SD, Conley AJ. Equine fetal adrenal, gonadal and placental steroidogenesis. Reproduction 2017; 154:445-454. [DOI: 10.1530/rep-17-0239] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022]
Abstract
Equine fetuses have substantial circulating pregnenolone concentrations and thus have been postulated to provide significant substrate for placental 5α-reduced pregnane production, but the fetal site of pregnenolone synthesis remains unclear. The current studies investigated steroid concentrations in blood, adrenal glands, gonads and placenta from fetuses (4, 6, 9 and 10 months of gestational age (GA)), as well as tissue steroidogenic enzyme transcript levels. Pregnenolone and dehydroepiandrosterone (DHEA) were the most abundant steroids in fetal blood, pregnenolone was consistently higher but decreased progressively with GA. Tissue steroid concentrations generally paralleled those in serum with time. Adrenal and gonadal tissue pregnenolone concentrations were similar and 100-fold higher than those in allantochorion. DHEA was far higher in gonads than adrenals and progesterone was higher in adrenals than gonads. Androstenedione decreased with GA in adrenals but not in gonads. Transcript analysis generally supported these data.CYP17A1was higher in fetal gonads than adrenals or allantochorion, andHSD3B1was higher in fetal adrenals and allantochorion than gonads.CYP11A1transcript was also significantly higher in adrenals and gonads than allantochorion andCYP19and SRD5A1 transcripts were higher in allantochorion than either fetal adrenals or gonads. Given these data, and their much greater size, the fetal gonads are the source of DHEA and likely contribute more than fetal adrenal glands to circulating fetal pregnenolone concentrations. LowCYP11A1but highHSD3B1andSRD5A1transcript abundance in allantochorion, and low tissue pregnenolone, suggests that endogenous placental pregnenolone synthesis is low and likely contributes little to equine placental 5α-reduced pregnane secretion.
Collapse
|